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ABSTRACT Data augmentation is an effective way to increase the diversity of existing training datasets that
result in improved generalization ability of convolutional neural networks (CNNs). The augmentation effect
is usually global for the existing methods i.e., a single augmentation effect is applied to the whole image,
thus limiting the diversity of local characteristics in augmented images. Moreover, the global augmentation
effect does not support the most fundamental behavior of CNNs i.e., they focus more on local features (local
texture, tiny noise etc.) than global shapes. We refer to this behavior as local bias property. In this paper,
we propose a new data augmentation method, called Local Augment (LA), which highly alters the local
bias property so that it can generate significantly diverse augmented images and offers the network with
a better augmentation effect. First, we select few local patches in an image, then apply different types of
augmentation strategies to each local patch. This augmentation process collapses the global structure of
the object but creates locally diversified samples, which helps the network to learn the local bias property
in a more generalized way. As a result, it increases the generalizability and the prediction accuracy of the
network. To verify the effectiveness of the proposed method, we perform comprehensive experiments on
image classification with benchmark datasets, where the proposed method outperforms the sate-of-the-art
data augmentation techniques on ImageNet and STL10 and shows competitive performance on CIFAR100.

INDEX TERMS Image classification, overfitting, data augmentation, local bias property, multiple augmen-
tation effects.

I. INTRODUCTION
Convolutional neural networks (CNN) have shown promising
results in almost every field [6], [16], [18], [19], [22], [23]
due to their complex feature representation ability. However,
they have a trend to be overfitted when the training data is
insufficient i.e., the model parameters excessively fit to the
training data. As a result, they poorly perform on unseen data
(test data) [5]. To solve this problem, various methods e.g.,
dropout [1], [25], network ensemble [9], [17] and data aug-
mentation [21], [26] have been proposed. Dropout and net-
work ensemble solve the overfitting problem bymanipulating
the network architecture and/or its weights, while the data
augmentation solves the problem by directly manipulating
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data distribution. This paper focuses on data augmentation
methods.

Data augmentation [21], [26] enriches the diversity of data
by creating new samples with the help of some transfor-
mations applied to the original training data. As a result,
these diversified data can prevent the network from being
overfitted to the original training data. In general, traditional
augmentations apply linear transformations (shifting, rota-
tion, flipping, shearing and etc.) to the existing training data
to create new samples that help to change the distribution
of the data. Recent works [8], [30], [32], [33] have made
the distribution of the original training data more diverse
by applying nonlinear transformations, such as zeroing out
local regions in an image, injecting random noise, combining
two different images and so on. Thanks to the high flex-
ibility of nonlinear operations, data augmentation methods
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with non-linear operations tend to have higher generalization
performance compared to the augmentation methods with
linear operations [8], [30], [32], [33].

The augmentation methods with nonlinear operations [8],
[30], [32], [33] are divided into two groups: intra-image
and inter-image augmentation methods. The intra-image aug-
mentation methods create images by applying transformation
on a single image source, where the labels of the created
images remain the same with the source image. On the other
hand, inter-image augmentation methods create images by
combining multiple image sources where the labels of the
created images are made by interpolation among the labels
of source images. Due to the unlimited number of possible
combinations and label smoothing effect, the inter-image
augmentation method have shown higher generalization per-
formance compared to the intra-image augmentation when
being used in CNNs [30], [32].

However, the inter-image augmentationmethods can suffer
from the problem of mixing unimportant image regions (e.g.,
background) when generating new samples, resulting in per-
formance degradation of CNNs. For example, in Mixup [32],
a new image is created by combining the two images with
different transparencies, thus leading to generating unnatural
image structures as mentioned in CutMix [30]. Instead of
mixing two different images, CutMix [30] cuts a patch from
an image and then pastes it to another image to generate a new
sample. However, CutMix [30] also may suffer from mixing
a meaningless patch or a patch which is irrelevant to the
interpolated object label [27]. In addition, the conventional
augmentation methods are limited to applying a single aug-
mentation effect on an image which globally alters the image
characteristics. We refer to this fact as global augmentation
effect.

In order to overcome the aforementioned problems,
we propose a new augmentation method where we select
local patches in an image, and then apply different augmen-
tation effects to each local patch to generate a new sam-
ple. each local image region takes multiple augmentation
effects so that a much variety of images can be created for
training CNNs. Theoretically, our proposed augmentation
method relies on the local bias property which is a funda-
mental behavior of CNN [2]–[4], [11], [24], [28]. Recent
studies [2]–[4], [11], [24], [28] have found that, in image
classification task, CNN is greatly influenced even by a small
noise since it classifies an input image based on the local
shape and texture rather than the global structure of the
object. This characteristic is considered as a disadvantage
of CNNs and difficult to overcome. However, our method
have considered this characteristic as a beneficial tool for
data augmentation such that it creates new samples containing
locally diversified augmentation effects.

We conduct a simple experiment to see the effectiveness
of the local bias property in data augmentation. Figure 1
compares the performance in terms of test accuracy for the
data augmentation with global and local image rotations on
CIFAR100. Figure 1(a) visualizes the augmented images and

FIGURE 1. Comparisons with a global and local augmentation method.
(a) Images with global and local data augmentation method (rotation).
(b) CIFAR100 test dataset accuracy results from baseline, global rotation
and local rotation for WideResNet22_10 [31] and ResNeXt29_8 × 64d [29].

Figure 1(b) shows the performance comparison of global
and local augmentation where the two baseline networks are
WideResNet [31] and ResNext [29]. Note that all experimen-
tal specifications are identical to Section III.A.

As shown in Figure 1(b), applying both the global and
local image rotations yields higher test accuracy compared
to the baseline models that do not use data augmentation.
Further the local image rotation outperforms the global image
rotation in both baseline networks.

These experimental results imply that locally variant data
augmentation methods can offer higher generalization per-
formance to a network due to the local bias property of
CNNs and higher flexibility of data augmentation methods.
Based on this observation, we propose a new data augmen-
tation method, Local Augment (LA), which selects local
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FIGURE 2. Images with various data augmentation methods: (from
top-left) Input image, Cutout [8], Random Erasing [33], Mixup [32],
CutMix [30] and our LA.

patches in an image, and then applies different augmenta-
tion effects (flipping, rotation and channel-shuffling) to each
local patch. Comprehensive experimental results demonstrate
the superiority of our method compared to the conventional
global data augmentation methods on benchmark datasets in
image classification task.

The main contribution of this paper are as follows:
• To demonstrate the local bias property of CNNs, we train
a network using traditional data augmentation with
destructed global shape of an object. And we reveal
that utilizing this property can improve the model
performance.

• Based on the above mentioned evidence (i.e., the local
bias property) we propose a new data augmentation
method, called Local Augment (LA), which destructs
the global shape and applies various augmentation
effects to the local image patches.

• Our method outperforms the state-of-the-art data aug-
mentation methods on ImageNet and STL10 classifica-
tion tasks and shows competitive performance on the
CIFAR100 classification task.

II. RELATED WORK
A. DATA AUGMENTATION
Data augmentation is one of the effective regularization tech-
niques that aims to prevent overfitting of a network and
increases the generalization performance [8], [30], [32], [33].
The data augmentation techniques create more affluent train-
ing data, transformed from the original such that the trained
network gains higher generalization performance to unseen
test data.

There have been many transformation techniques to cre-
ate a new image in previous data augmentation methods.
Figure 2 illustrates some representative data augmentation
methods, i.e., Cutout [8], Random Erasing [33], Mixup [32],
CutMix [30], and our LA. In [8], [33], to create a new
training image, a certain part of an original input image is
erased with zero values (Cutout) or replaced with random

values (Random Erasing) which can be considered dropout
effects [25] on the input data. In [30], [32], two different
original images are used to create a new image. InMixup [32],
the two different original images are interpolated with ran-
dom ratio at the same pixel position to create a blended
image. Also, to assign a new label data (one-hot-encoded
vector) for the new created image, the label data for the two
images are blended by a element-wise vector interpolation.
In CutMix [30], a certain part of an original input image
is randomly replaced with a certain part of another original
image, where the label vector for the new created image is
made with the element-wise vector interpolation with the two
label data corresponding to the each image. The ratio for the
vector interpolation is determined by areas occupied by the
two original images in the new image.

Although these aforementioned data augmentation meth-
ods have shown promising generalization performance, all of
them are global augmentation methods, limited to have only
one augmentation effect in a new image. Unlike these meth-
ods, our method can take advantages of numerous augmenta-
tion effects by applying different augmentation strategies on
each local part in the new image.

B. LOCAL BIAS PROPERTY
Recently, many studies have revealed that CNN is biased
to local features (textures, tiny noises and etc) and it has
been considered as a disadvantage for improving the network
robustness. In [4], the image-independent universal patch is
developed to apply adversarial attack on neural networks
and easily fools the network to wrongly classify the image
in image classification tasks [12], [20]. In [2] and [11],
researchers have found the local bias property by confirm-
ing the wrong predictions from inconsistent input images
where the local texture of the images and global shape of the
objects in the images are not consistent. Especially in [11],
the AdaIN [14] style transfer dataset where texture of object
is changed to different paintings is created to train the network
to be less biased to the local texture and more biased to the
global shape. Through this, the robustness of the network is
improved by supressing the local bias property.

In [3], it is revealed that, for training networks, using only
several local image patches of input images can bring out
similar performance compared to the network trained with
the whole image regions in ImageNet classification task [23].
Through this, they reveal that the behavior of CNN is still
similar to bag-of-feature models [10] that use only local fea-
tures for classification tasks. In [28], an additional classifier
that takes the local features of an image as input is trained
to make wrong prediction and the main classifier that takes
the global features of the image as input is trained to make
right prediction. This method allows the network to take full
consideration for global representation while suppressing the
dependency on local representation to enhance the robustness
for adversarial attack, thus achieving good performance in
various domain datasets. In [24], the global structure bias,
a disadvantage in adversarial training is overcome by training
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FIGURE 3. Local Augment total process. First, we divide an input image by 4 sub-regions. Second, we select local patches to be shuffled and
sub-regions to be augmented. Finally, we shuffle local patches and augment sub-regions.

TABLE 1. CIFAR100 test dataset Top1 accuracy results with baseline and
global/local data augmentation for WideResNet22_10 [31] and
ResNeXt29_8 × 64d [29]. The best case between the global and local
methods is shown through the check mark for each augmentation
method.

a network to make robust local features through Random
Block Shuffle in adversarial training methods [12], [20].

III. METHOD
A. PRELIMINARY EXPERIMENTS ON EFFECTIVENESS OF
LOCAL DATA AUGMENTATION
Before designing the proposed method, we conduct a sim-
ple experiment to see if CNN’s local bias property helps to
improve data augmentation performance. We consider two
cases of augmentation: (i) data augmentation on the whole
image (global augmentation effect) and (ii) data augmenta-
tion on local patches. Then we compare their effect in terms
of test accuracy.We trainWideResNet [31] and ResNeXt [29]
on CIFAR100 dataset and use the rotation and flipping for
data augmentation in the image classification task.

Figure 1 shows the case of global and local data augmen-
tation. For local augmentation, it can be seen that even if
we use a single augmentation effect, it can be applied on
each local patches differently e.g., rotation with 90◦, 180◦

and 270◦, flipping with horizontal and vertical directions
that allows one image to have several augmentation effects.
Although this causes the global structure to be collapsed,
it offers the network with better performance. In other words,
this experiment showswhether a network has a greater depen-

dence on the global structure of an object or on various local
information of an image during data augmentation.

Table 1 presents the experimental results. It can be seen that
when flipping is applied to an image, both networks show
lower performance when the local augmentation method is
used compared to the global augmentation method. On the
other hand, local augmentation method shows higher perfor-
mance when rotation is applied. Furthermore, when rotation
and flipping are applied together, the two networks show
comparable performance regardless of local and global aug-
mentation methods. These experimental results imply that
that applying appropriate augmentation strategy on each local
image patch may improve the generalization ability of a
network, despite the global shape collapsing.

B. PROPOSED LOCAL AUGMENT
Based on the above discovery, we propose Local Augment
(LA) to diversify the augmentation effect of an input image
using CNN’s local bias property. Before explaining a total
process of the proposed method, we define sub-region and
local patch. The sub-region accounts for a local part of
an input image and the local patch is in the sub-region.
Figure 3 shows the total process of the proposed method.
First, we divide the original image intoN sub-regions. Empir-
ically, we set N as 4 which is identically applied to all the
experiments. Second, we perform different data augmenta-
tion techniques in a unit of sub-region. Especially, we also
propose to use a local patch which is defined in a sub-region
where we perform shuffling between two local patches. The
number of the local patches are randomly selected in the
uniform distribution ranging from 0 to 4. After shuffling
the local patches, LA performs data augmentation with a
50% probability for the remaining sub-regions which do not
shuffle the local patches. That is, each rotation/flipping mode
(among 90◦, 180◦ and 270◦rotations and horizontal and verti-
cal direction flipping) has 10% probability for being selected.
After that, a channel shuffling is applied to all the augmented
sub-regions and shuffled with a 25% probability in the RGB
domain. In Section V, we provide empirical bases for the
aforementioned carefully designed augmentation strategy.
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Figure 4 shows how the local patch is selected in the sub-
region, a local part of an input image. In this paper, we create
the sub-regions by dividing width and height of the original
image (W ,H ) into two halves (W/2,H/2) as N = 4. The
local patch is selected from a random location (bw, bh) in the
sub-region. The location (bw, bh) and size of the local patch
(lw, lh) are set by a border value B which is set to be 10%
of the width and height size for the input image which. The
width and height in the local patch is expressed as:

lw =
W
2
− B

lh =
H
2
− B (1)

The location (bw, bh) is sampled with a uniform distribution
parameterized by B as

bw, bh ∼ U (0,B) (2)

IV. EXPERIMENTS
We conduct image classification experiments on three
datasets i.e., ImageNet [16], STL10 [7], CIFAR100 [15] to
compare the proposed LA with other representative augmen-
tation methods [8], [30], [32], [33]. Except ImageNet, all
the experiments are conducted three times and their aver-
age values taken for comparison. Since the image dimen-
sion and number of classes vary from dataset to dataset,
and the augmentation methods are applied with a certain
probability (we call this probability as method probability
throughout the paper) for each mini-batch during the training
process, a few hyper-parameters are required. All of these
hyper-parameters are carefully selected either by following
the original papers, or based on our experimental obser-
vations. The method probability for Cutout [8] and Ran-
domErasing [33] is 1.0 and 0.5 respectively. Cutout mask size
is the same as used in the original paper [8] for CIFAR100 and
we manually set the size 24 × 24 for STL10, 112 × 112 for
ImageNet datasets. In RandomErasing [33], we set erased
rectangle area scale from 0.02 to 0.4 and ratio r1, r2 as
0.3, 3.3, respectively for CIFAR100 and STL10 datasets.
The α for Mixup [32] is set to 1.0. The method probability
of CutMix [30] is set to 0.5, 0.5 and 1.0 for CIFAR100,
STL10 and ImageNet datasets, respectively. The method
probability of the proposedmethod is set to 0.5 for all datasets
and hyper-parameter B is set to 3, 8 and 22 for CIFAR100,
STL10 and ImageNet, respectively.

A. ImageNet
ImageNet dataset [23] consists of 1.28M training images and
50K test images from 1K different classes. In training phase,
we apply standard augmentations such as resizing to 256 ×
256 pixels, random cropping to 224×224 pixels and random
horizontal flipping. The networks are trained for 100 epochs
with a batch size of 256.We use SGD optimizer with learning
rate of 0.1, momentum of 0.9 and weight decay of 0.0001.
The learning rate is decayed by a factor of 0.1 after each 30,
60 and 90 epochs. In test phase, We use resizing to 256×256

FIGURE 4. Definition of sub-region and local patch. The size and location
of a local patch is randomly selected in a sub-region.

TABLE 2. ImageNet test dataset Top1 and Top5 accuracy results with
local augment (LA) and other augmentation methods for ResNet50 [13].

pixels and center cropping to 224 × 224 pixels. We use
ResNet50 [13] as a baseline network for this experiment.
Table 2 presents the experimental results. We can see that the
LA achieves top-1 accuracy of 76.87% that outperforms the
state-of-the-art (SOTA) methods under comparison. More-
over, the test accuracy of the proposed method is 0.05% and
0.37% higher than CutMix [30] andMixup [32], respectively.

Note that, in addition to global augmentation, CutMix and
Mixup exploit label smoothing technique that improves the
performance significantly. Compared to CutMix and Mixup,
the proposed LA is an intra augmentation method which can-
not adopt label smoothing techniques. Therefore, our exper-
imental results imply that applying augmentation techniques
to local regions may generate images with higher diversity
and quality compared to global augmentation techniques.

Figure 5 shows Class Activation Map (CAM) [34] which
focuses on the label-related portion of the test image for
networks trained by each augmentation method. The object
name in the test image of Figure 5 is Haematopus ostralegus,
which features black head and long red beaks and legs. The
CAM for the test image shows that CutMix [30] captures a
more global area than other augmentation methods. However,
it can be seen that the proposed LA has higher performance
even though it captures more local parts than CutMix [30].
Compared to Cutout [8] and Mixup [32], which captures
relatively more local parts except for CutMix [30], Local
Augment captures more meaningful local parts. Cutout [8]
captures the head and beak well, but only for one of the two
birds. Mixup [32] catches both the two birds, but fails to
capture the features that express the birds well (black head,
red beak) and captures meaningless or trivial features (white
boats). But our method captures the most representative fea-
ture for both of the two birds.

This experimental results show that our method which
has multiple augmentation effects using local bias property
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FIGURE 5. Results of ImageNet classification on no augmentation,
various augmentation methods [8], [30], [32], [33] and Local Augment.
Class Activation Map [34] shows where each ResNet50 [13] pre-trained by
each augmentation methods focuses on. Catching high quality of local
information in Local Augment is just enough to improve classification
performance and outperform all augmentation methods.

learns important local features of an object. And in summary,
it suggests that not only capturing global feature of an object
improves the generalization performance in image classifi-
cation task but also capturing the most representative local
features increase the generalization performance.

B. STL10
STL10 [7] dataset consists of labeled data and unlabeled data.
The labeled data consists of 500 training images and 800 test
images for 10 different classes, and the unlabeled data con-
sists of 100k images. All the images are of 96×96 pixels with
RGB format. This dataset is widely used for unsupervised
learning and it has a small number of labeled data. However,
we use this dataset to show that our method also works well
even when the number of training data is significantly small.
In this experiment, we train each of networks for 1000 epochs
with a batch size of 64. Before using the training images,

TABLE 3. STL10 test dataset Top1 accuracy results with Local
Augment(LA) and other augmentation methods for WideResNet22_10
[31] and ResNeXt29_1 × 64d [29]. ’LS’ denotes the label smoothing in
CutMix [30].

we apply random crop from the images with 4 pixels padding
size and horizontal flipping with 0.5 probability. We use SGD
as optimizer with learning rate of 0.1, momentum of 0.9 and
weight decay 0.0005. Learning rate is decayed by a factor
of 0.2 after 300, 400, 600 and 800 epochs. We use WideRes-
Net [31] with a depth of 22 and a width factor of 10 and
ResNeXt [29] with a depth of 29, a cardinality factor of 1 and
a width factor of 64 as baseline networks for this experiment.

Table 3 shows the experimental results of the data aug-
mentation methods in comparison for STL10 image classi-
fication. Local Augment achieves top-1 accuracy of 88.65%
and 86.33% for WideResNet [31] and ResNeXt [29] which
outperforms other state-of-the-art (SOTA) methods although
they use multiple images with label smoothing. In addition,
when the proposed method is combined with CutMix [30],
the performance get further increased. In Cutout [8], Random
Erasing [33] and the proposed method, a new sample is
created by using a single image. However Cutout [8] and Ran-
dom Erasing [33] decrease the baseline performance, while
the proposed method significantly improves the network per-
formance. It can be seen that the locally diversified augmen-
tation effects in the proposed method highly contribute to the
performance improvement.

C. CIFAR100
CIFAR100 dataset consists of 60K images for 100 classes,
where 50K are used as training set and 10K are used as
test set. Each set has RGB images of 32 × 32 pixels. Here,
we train all of the networks for 200 epochs with a batch size
of 64. Besides the data augmentations that are in comparison,
we apply random crop on original images with 4 pixels
padding size and horizontal flip with 0.5 probability. SGD
is used as an optimizer with learning rate of 0.1, momentum
of 0.9 and weight decay of 0.0005. Learning rate is decayed
by a factor of 0.1 after each 100 and 150 epochs. We use
WideResNet [31] with a depth of 22 and a width factor
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TABLE 4. CIFAR100 test dataset Top1 and Top5 accuracy results with
Local Augment(LA) and other augmentation methods for
WideResNet22_10 [31] and ResNeXt29_8 × 64d [29]. ’LS’ denotes the label
smoothing in CutMix [30].

of 10 andResNeXt [29] with a depth of 29, a cardinality factor
of 8 and a width factor of 64 as baseline networks for this
experiment. Table 4 shows the experimental results of the data
augmentation methods in comparison for CIFAR100 image
classification. Local Augment shows the highest top-1 and
top-5 accuracy among the augmentation methods that only
uses a single image for augmentation. And the accuracy is
higher than Mixup [32], which uses multiple images. Also,
when the proposed method is combined with CutMix [30],
it outperforms all other methods.

Since the proposed method only uses a single image,
it improves the performance of the network even though
there is no label smoothing effect. This is why the proposed
method results in better overall performance than CutMix
[30] in Table 2 and Table 3, but not all of them (Table 4).
However, when combining CutMix and LA, it shows bet-
ter performance than CutMix because the proposed method
obtains the label smoothing effect as well. Therefore, we per-
formed the experiments with CutMix+LA on CIFAR-100 to
show that the performance is further improved. In addition,
by removing label interpolation from CutMix (e.g., the label
for a created image is identically set to the label of the target
image), the CutMix without label smoothing shows lower
performance than the proposed method. Through this, it can
be concluded that the label smoothing effect contributed to
the performance improvement of CutMix significantly.

V. ABLATION STUDIES
In this section we investigate how Local Augment helps
a network to learn significant feature representation during
training and also analyze several components and degree of
the proposed method.

1) HOW DOES LOCAL AUGMENT TRAIN
A NEURAL NETWORK
To find out how the augmented images with Local Aug-
ment affects a network, we visualize the Class Activation

Map (CAM) [34] of ResNet50 [13] which is trained by
using Local Augment on ImageNet. The third and fourth
row of Figure 6 shows experimental results for baseline
ResNet50 [13], pre-trained without augmentation and with
our method. In baseline, when global structure is collapsed
by our method, it fails to focus on the most representative
local information of the object in the image. But when trained
with the proposed data augmentation method, it focuses well
on the significant local part of the object. For Tench and
Beaker image, the baseline network fails to capture the local
part of an object when collapsed by the shuffling operation
and focuses on meaningless information in the center. But
the network trained with Local Augment correctly focuses
on most important local parts. In Hamster image, baseline
focus on global structure even when the object is collapsed,
but ours focuses on a certain local part. In Chocolate Sauce
image, baseline focuses on the trivial local information (neck
part that does not have much sauce), whereas ours focuses on
the core local information (forehead part where the sauce is
concentrated).

Local Augment image of Figure 6 shows that shuffling
operation makes a network distracted by destruction of
object’s global structure in an original image. However, if we
use these destructed images to train the network without
changing label of the image, it rather increases the general-
ization ability of the network by allowing the network to learn
more robust local features by utilizing locally diversified
augmentation effects.

2) COMPONENTS AND DEGREES OF LOCAL AUGMENT
The shuffling operation of our method consists of spatial-
shuffling and channel-shuffling. We perform experiments
to find out how each component contributes to the per-
formance improvement. Here we perform experiments on
CIFAR100 using ResNet56 [13] and all the configurations
are kept the same as mentioned in Section IV. The experi-
mental results are presented in Table 5. It can be seen that
spatial-shuffling for local patches rather than sub-regions
significantly improves the model performance. This can be
seen as an evidence that varying the local patches through
the border value B, helps diversifying the augmentation
effect. In addition, when channel-shuffling is added, the local
patch shuffling drops its performance slightly, while the sub-
region shuffling improves its performance by a large mar-
gin. Therefore, for generalization of our method, we include
channel-shuffling in the proposed method.

To find out how the degree of our method in each
mini-batch and channel-shuffling contribute to the perfor-
mance improvement, we perform experiments with vary-
ing the method probability and channel-shuffling probability
and other configurations are kept the same as mentioned
in Table 5. As Table 6 shows, the greater the degree of Local
Augment in a mini-batch, the more generalization ability the
network can achieve. But the generalization performance is
decreased when the degree of channel-shuffling increases.
This supports validity of data augmentation effect of our
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FIGURE 6. Class Activation Map (CAM) [34] for Local Augment images. We compared a baseline trained network and Local Augment
trained network. Through these maps, we can find out where each network trained with baseline and our method focuses on in the
input images.

TABLE 5. CIFAR100 test dataset Top1 accuracy results with baseline,
CutMix [30] and our various component versions for ResNet56 [13].

TABLE 6. CIFAR100 test dataset Top1 accuracy results with various
degrees of Local Augment (LA) and channel shuffling for ResNet56 [13].

method and shows that contribution of channel-shuffling
should be small. When we set the method probability to
1.0 and channel shuffling probability to 0.25 or 0.5, our
method outperforms CutMix [30], state-of-the-art method
which uses multiple images during data augmentation.

VI. CONCLUSION
In this paper, we present a newmethod called Local Augment
by utilizing the local bias property of a convolutional neural
network i.e., the tendency to focus on local part (textures,
tiny noises and etc) of an input image. Our method over-
comes the shortcomings of an unrecognizable object in an
input image due to global structure collapsing of the object
through locally diversified augmentation effect, and improves
the generalization performance of a network. Local Augment
uses only a single image to create a new sample with multiple
augmentation effects. Extensive experiments on image classi-
fication for several benchmark datasets and popular network
architectures validates the excellence of the proposed data
augmentationmethod. Local Augment provides a new insight
into designing a novel data augmentationmethod by discover-
ing that the local bias property can be used as a beneficial tool
for improving the generalization performance of a network.
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