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ABSTRACT With the sustainable growth in the integration of distributed generation units in the distribution
network, the probability of the fault current level exceeding the rating of existing components increases.
Cascaded H bridge fault current limiter is widely used in the power grid due to its advantage in inhibiting
surge current flexibly. In order to equilibrate the objective functions of its cost, fault current mitigation
effect, and the weighted load reliability index, a novel methodology is proposed to simultaneously optimize
the location and size of the limiters in the distribution network. Therein, the sensitivity factor considering the
Monte Carlo fault simulation model is introduced to reduce the search space and rank candidate locations
referencing the actual conditions. And then, according to the candidate locations and considering different
conflicting objective functions, a multi-objective improved bat algorithm is employed to obtain the Pareto
optimal solution set. Also, life cycle cost and net present value are introduced to construct an economicmodel
to access the scheme costs and service life. The proposed approach is verified using the modified IEEE 33-
bus distribution systems with DGs and IEEE 30-bus Benchmark system. The results demonstrate that the
proposed method exhibits higher efficiency in finding optimum solutions and provides a new economic
configuration idea for the practical engineering application.

INDEX TERMS Pareto optimal configuration, cascaded H bridge fault current limiters, sensitivity factor
analysis, multi-objective optimization, life cycle cost.

I. INTRODUCTION
Because of the increasing demand for electricity and contin-
uous growth of distributed generations (DGs), fault current
has been larger. In some cases, it may exceed the ratings of
existing circuit breakers (CBs), disturb the coordination of
protective relays and damage system equipment. Therefore,
the excessive short current has become an essential factor
affecting the safe and stable operation of Active Distribution
Networks (ADNs). As a traditional solution, however, raising
voltage grade and installing a high impedance transformer/the
series reactor limit the flexibility of ADNs and increase

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

the network loss [1]. An alternative solution coping with
these issues is to employ the fault current limiters (FCLs)
such as superconducting fault current limiter (SFCL) and
flexible fault current limiter (FFCL) [2]–[4]. In the regular
operation of power systems, almost all FCLs exhibit a nearly
zero impedance as an invisible device. When a fault occurs,
FCLs present a high impedance to limit the short current.
However, these approaches have some drawbacks: owing to
the heat dissipation problems of SFCL, it cannot be widely
used. Although FFCL can flexibly suppress the fault current
to the reference value, the withstand voltage and current
levels of power electronic devices are still an important factor
affecting their development in medium and high voltage dis-
tribution networks. With the development of multi-cascaded
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converters, cascaded H-bridge current limiters (CHB-FCLs)
are widely favored, which can effectively alleviate surge cur-
rent and are suitable for medium voltage distribution network
environment [5], [6].

The limiting current effect of CHB-FCLs is dependent on
their number, location, and capacity. And their installation
and maintenance costs are as higher as the conventional FCL.
To achieve an equilibrium between action efficiency and cost,
the location and capacity optimal problems of CHB-FCLs
are becoming increasingly important. At present, the solu-
tion techniques for their location and capacity optimal prob-
lems are attained via traditional mathematical programming
methods or intelligent methods. However, with the increase
of computational complexity and research scope, the
conventional enumeration method cannot find the optimal
solution [7]. In [8], an iterative mixed integer nonlinear pro-
gramming approach is introduced to solve the optimal loca-
tion and sizing of FCLs in mesh networks, which minimizes
the total installed cost. The works, presented in [9], [2],
establish an optimal allocation of FCLs for enhancing power
system security and stability by using mixed-integer non-
linear programming. However, along with the complexity
of the optimal problem increasing, and the shortcomings of
complexmodels, low operating efficiency and poor versatility
being revealed, the traditional mathematical programming
methods are prevented from being widely used.

In [10], the optimal sizes and locations of FCLs are deter-
mined using particle swarm optimization (PSO) to enhance
the reliability/economy of the power system and reduce
the power loss. A two-stage optimization approach is pro-
posed in [11]. In stage I, a hashing-integrated genetic algo-
rithm is employed to optimize the FCL placement problem.
In stage II, the optimal shunt reactance of FCL is determined
by PSO. In [12], a fuzzy imperialism competitive algorithm is
presented to reconfigure the network and resolve the location
and capacity optimal problems of FCLs simultaneously. And
its objective functions are to maintain fault current levels
and reduce power losses. In [13], a biogeography-based opti-
mization method is used to measure optimal FCL impedance
in terms of maximizing the benefit with FCL. Nevertheless,
a limitation of the above-listed papers is represented by the
fact that they transform a multi-objective problem into a
single objective problem by using weight coefficients, which
led to the subjectivity and inaccuracy of the FCL’s optimal
problem.

Along with the objective dimension increasing, multi-
objective optimization algorithms exhibit more excellent per-
formance than single-objective optimization algorithm in
handling such problems. In [14], the Pareto optimal solution
set of resistive-type FCLs are obtained by using an improved
multi-objective particle swarm optimization (MOPSO) and a
multi-objective artificial bee colony. In [15], a nondominated
sorting genetic algorithm (NSGA-II) is applied to optimize
the allocation of DGs and FCLs to reduce fault negative
effects on distribution networks. Based on the decompo-
sition strategy, a multi-objective evolutionary algorithm is

used to improve the reliability and fault current reduction
in [16]. A differential evolution multi-objective algorithm
and a complex artificial bee colony algorithm are employed
to optimize the allocation of FCLs for minimizing FCL’s
cost and fault current mitigation in [17], [18]. In order to
improve computational efficiency and accuracy, the sensi-
tivity factor is used to pick out the best scheme for active
FCL installation in [19]. In [20], the effective/dominated
candidate locations are sort out from the search space
by sensitivity analysis. Nevertheless, the development of
the above algorithms are restricted by the optimal local
solution and without adequately considering the cost of
the CHB-FCLs.

For making up for the shortage of the above meth-
ods, a novel methodology for Pareto optimal allocation of
CHB-FCLs is proposed. In the proposed approach, the sensi-
tivity factor analysis method including the Monte Carlo fault
simulation model is introduced to simulate fault locations and
choose better candidate locations. Among them, the Monte
Carlo fault simulation model constructs probability function
distribution through the Analytic Hierarchy Process (AHP)
and EntropyWeightedMethod (EWM), and the random num-
ber is used to calculate the probability of fault occurrence.
Considering the objectives of the cost, fault mitigation, and
Weighted Load Reliability Index (WLRI), a multi-objective
improved bat algorithm (MOIBA) is proposed to obtain the
Pareto optimal set and compared withMOPSO andNSGA-II.
Thereinto, the stochastic inertia weight (SIW) strategy,
the iterative local search (ILS) strategy, the balance strat-
egy, and the non-dominant sorting strategy are introduced in
MOIBA to overcome the shortcoming of local optimums and
premature convergence. Furthermore, Life Cycle Cost (LCC)
and Net Present Value (NPV) are introduced to construct
the economic evaluation model of CHB-FCLs. This model
calculates the actual service life of FCL based on the heat
loss fitting and establishes various cost functions. Finally, The
results obtained by testing the IEEE 33-bus test system and
IEEE 30-bus Benchmark system demonstrate the efficiency
of the proposed method.

This study is organized into six sections. Following the
Introduction, the mathematical model of CHB-FCL and
sensitivity factor analysis are presented in Section II. The
formulation of the optimization problem and the proce-
dure of MOIBA are stated in Section III. Section IV
constructs the LCC model. The simulation results are
discussed in Section V, and the conclusion is given
in Section VI.

II. MATHEMATICAL MODEL OF CHB-FCL AND
SENSITIVITY FACTOR ANALYSIS
By equating CHB-FCLs to variable impedance, the
CHB-FCLs can precisely suppress the current to the target
value within the allowed range. In order to speed up the
search of the Pareto optimal set, the candidate branches are
screened by combining sensitivity analysis and Monte Carlo
fault simulation mode [21]–[23].
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A. MATHEMATICAL MODEL OF CHB-FCL
Fig. 1(a) shows a schematic diagram of the CHB-FCLmodel,
which includes the H-bridge units and the series capacitances.
Here, Ci/Li/Ri (i = 1 . . .m) is the capacitance/inductances/
resistance of CHB-FCL. n and m respectively represent the
number of series capacitances and the cascaded H-bridge
converter. Udc is the DC voltage of the H-bridge converter.
Ifm, UCm, ICm, Iref are inductor current, capacitor volt-
age, capacitor current and reference current, respectively.
pwm is the modulation wave of the cascaded H bridge.
Sni(i = 1 . . . 4) is the switch action variable of the H bridge
unit. Because the number of the series capacitances can be
conveniently enlarged so as to the withstand voltage capacity
of the single series capacitor and cascaded H bridge convert-
ers can be significantly enhanced, this structure of CHB-FCL
is convenient to expand the capacity of the FCLs.

From Fig 1(b), the main goal of the cascade H bridge
converters is through four switchings offering specific cur-
rent to make CHB-FCL equivalent to a variable impedance.
Therefore, when grid system fault happens and the phase
current, Ia/b/c, exceeds the trigger current, Iact, CHB-FCLs
are triggered to quickly suppressed fault current to its pre-set
value.

FIGURE 1. Scheme diagram of the CHB-FCL model and PI control.

In order to present the current-limiting effect clearly, it is
supposed that the symmetrical three line to ground (3LG)
fault occurs at 0.1s, the CHB-FCLs are triggered at 0.15s,

the reference current is switched from 2pu to 3pu at 0.3s and
the 3LG fault is eliminated at 0.45s.

From Fig. 2, when the fault current exceeds the threshold
of the CHB-FCL at 0.1s and where consider 0.05s delay time,
the per-unit value of fault current can be limited from 10pu
to 2pu at 0.15s. With the change of reference current at 0.3s,
the fault current tracks the target value accurately. Therefore,
CHB-FCL can effectively limit the fault current to the target
value.

FIGURE 2. Simulated responses of CHB-FCLs when 3LG fault.

In addition, the suggested CHB-FCL has the following
advantages [21]: (1) Large current limiting inductances are
not required. (2) There is no high-frequency oscillation prob-
lem. (3) No need to cooperate with solid state circuit breaker.
(4) The huge transformer is replaced by the capacitive cou-
pling structure, which not only reduces the cost, but also does
not exist excitation inrush current. (5) The topology can be
applied to active filtering and other fields, so that the device
will not be idle when the line is operating normally. Based
on the above factors, CHB-FCL is selected as the planning
subject.

According to the principle of substitution and superposi-
tion, the fault circuit can be divided into a normal component
and a fault component. The voltage equation can be written
as follows:
U̇1
· · ·

U̇f
· · ·

U̇n

 =

U̇1(0)
· · ·

U̇f (0)
· · ·

U̇n(0)

+

Z11 · · · Z1f · · · Z1n
· · · · · · · · · · · · · · ·

Zf 1 · · · Zff · · · Zfn
· · · · · · · · · · · · · · ·

Zn1 · · · Znf · · · Znn




0
· · ·

−İf
· · ·

0


(1)

where U̇i(i = 1, 2, . . . n) and U̇i(0) are the node voltage and
nominal voltage, respectively. Zij is the branch impedance
value between i bus and j bus. İf is the short-circuit current.
According to Fig. 3 and (1), the calculation method of

ADNs’ short-circuit current integrating with DGs can be
expressed as:

İk =
U̇f (0)
Zff
=

U̇f (0)

Z1 +
(Zs+Z2)×ZDG
Zs+Z2+ZDG

(2)

where U̇f (0) is the nominal voltage of the fault bus. Z1 and Z2
are the line impedance. Zs is the Thevenin impedance to the
main network, ZDG is the equivalent impedance of DG.
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FIGURE 3. Schematic diagram of power network equivalent.

In order to simulate the influence of CHB-FCL in a given
network, CHB-FCL impedance is added into the system
impedance matrix under fault conditions. Fig. 3 shows that
the CHB-FCL is inserted between bus i and bus j, which
equals to parallel a chain branch with ZB in ij branch. Accord-
ingly, the equivalent impedance ZB can be formulated as
follows:

ZB =
−Zij

(
ZCHB-FCL + Zij

)
ZCHB-FCL

(3)

Here, ZCHB−FCL is the equivalent impedance of CHB-FCL.
When CHB-FCL is inserted in the branch ij, the modified
self-impedance Z ′ii is derived as follows [14]:

Z ′ii = Zii −
(Zij − Zif )2

Zff + Zjj − 2Zfj + ZB
(4)

B. SENSITIVITY FACTOR ANALYSIS
For the operation state of a given distribution network, the
quantitative relationship between operation variables and
control variables can be analyzed by sensitivity. And then
the variable’s effects on the whole system can be analyzed.
The sensitivity factor is defined by the node’s self-impedance
to reduce the searching range of the objective function and
prevent the matrix dimension from being too much. Here,
the sensitivity factor, η1, is

η1 = lim
ZCHB-FCL=0

(Zij−Zif )2

Zff+Zjj−2Zfj+ZB

ZCHB-FCL
=

(Zij − Zif )2

Z2
fj

(5)

The traditional sensitivity method calculates the first
K nodes whose short circuit current exceeded the allowable
current. And then the branches of the fault nodes are arranged
in descending order of sensitivity. The candidate branches are
selected from the branches whose sensitivity ranking ahead.
However, this method simulates the probability of equal fault
and cannot reflect the fault conditions of different nodes in
the actual ADNs. Therefore, theMonte Carlo fault simulation

model is introduced in this study, which is a method of calcu-
lating the probability occurrence by constructing probability
function distribution and using a random number. There-
into, the line of length (X1), operating life (X2), lightning
density (X3), pollution level (X4), and importance (X5) are
selected as evaluation indexes to evaluate the combined
weight.

1) ANALYTIC HIERARCHY PROCESS METHOD
AHP is a hierarchy weight of decision analysis methods to
calculate each hierarchy’s order. First, making a pairwise
importance comparison between the evaluation indexes from
X1 to X5 and structuring the comparison matrix (fij)N∗N .
Second, calculating the relative weights ωAHP and making
consistency checks.

ωAHP,j =
1
N

N∑
i=1

fij
N∑
k=1

fki

j = 1, 2, . . .N (6)

Here, N is the dimension of the comparison matrix.

2) ENTROPY WEIGHTED METHOD
Based on the difference among the index values, the
EWM is proposed. The higher the difference of an index
value, the smaller the information entropy. According to the
different degree among the indexes, the entropy can be used
to calculate each index’s weight. There are M lines and
N indexes. (Xij)M∗N is the original index matrix. The infor-
mation entropy Ej is

Ej = −
1

lnN

N∑
i=1

(
Xij
N∑
i=1

Xij

ln
Xij
N∑
i=1

Xij

) (7)

The weight coefficientωEWM is determined by entropy and
it can be expressed as:

ωEWM,j =
1− Ej

M −
M∑
j=1

Ej

(8)

3) MONTE CARLO FAULT SIMULATION MODEL
Based onAHP and EWM, the combinationweightingmethod
has the advantages of reducing the subjective randomness
of weighting and taking into account the decision maker’s
preference for attributes [24], [25]. The combined weight ωj
is expressed as follows:

ωj =
ωAHP,jωEWM,j

N∑
k=1

ωAHP,kωEWM,k

j = 1, 2, . . .N (9)

The probability of line failure Pi can be derived as follows:

Pi =

N∑
j=1
ωjXij

M∑
i=1

N∑
j=1
ωjXij

i = 1, 2, . . .M (10)
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According to the probability of fault, the probability den-
sity model is represented by the random number, k1, which
can be expressed as follows:

f =



1 k1 < P1

2 P1 ≤ k1 ≤
2∑
i=1

Pi

...
...

M
M−1∑
i=1

Pi ≤ k1 ≤ 1

(11)

where k1 is a random value within [0,1]. f is the fault node.
ThroughMonte Carlo’s fault simulation point and sensitivity,
the total sensitivity of each branch can be calculated. If the
value of the sensitivity factor is larger, it means that more
effective for mitigating fault and a better current limiting
performance can be obtained, installing the CHB-FCL into
a branch. And the novel sensitivity factor is

η =

tfault∑
i=1

(Zij − Zif (k1(i)))
2

Z2
f (k1(i))j

(12)

where tfault is the maximum number of failures. f (k1(i)) is the
fault node at i times. According to (12), the branches can be
screened to be the best candidate locations when the largest
sensitivity factor is obtained.

III. PROPOSED CHB-FCL OPTIMAL ALLOCATION
METHOD
A. PROBLEM FORMULATION
Considering the cost, mitigation fault effect, and WLRI,
this paper proposes a Pareto optimal allocation method
for CHB-FLCs. The optimal allocation problem in this
method can be regarded as a multi-objective function that is
subject to equality and inequality constraints. And it can be
formulated by the mathematical equation as follows:

minF(x) = (minF1(x),minF2(x),minF3(x))

s.t.

{
Zmin
CHB-FCL ≤ ZCHB-FCL ≤ Z

max
CHB-FCL

Nmin
CHB-FCL ≤ NCHB-FCL ≤ Nmax

CHB-FCL

(13)

where x = (x1, x2, . . . xn) represents the solution to the three-
dimensional problem. F(x) is the target space of the three-
dimensional problem.NCHB−FCL is the number of CHB-FCL.
ZCHB−FLC(i) is the impedance of CHB-FCL. From (13),
the Pareto optimal solution is a solution set, and it is limited
by objective functions and constraint conditions.

The first objective function, F1, for optimal allocation of
CHB-FCLs is to minimize the capital cost of the CHB-FCLs.
The cost of the current limiter includes installation cost and
capacity cost. And installation cost is proportional to the num-
ber of CHB-FCLs. The capacity cost is significantly corre-
lated with the impedance value of the CHB-FCLs. Therefore,
it is necessary to choose the configuration scheme with the
least number of installation stations and the least capacity.

Accordingly, the first objective function can be expressed as

F1 = NCHB-FCL +

NCHB-FCL∑
i=1

ZCHB-FCL(i) (14)

The second objective function, F2, is used to evaluate the
current-limiting ability of the CHB-FCL [14]. And it is

F2 = logM [
M∑
i=1

frate(
ICHB-FCL(i)
Iwithout(i)

)]+ fpena (15)

fpena =

pc
M∑
i=1

max
{
ICHB-FCL(i)− Imax

per , 0
}

M∑
i=1

Iwithout(i)

(16)

frate(a) =

 (M + 1)k−1,
k − 1
s
≤a≤

k
s

(k=1, 2 . . . s)

(M + 1)s, a ≥ 1
(17)

where ICHB−FCL(i) is the current in i bus with accessing
CHB-FCL. Iwithout(i) is the current in i bus without accessing
CHB-FCL. fpena is the penalty function and determined by
the fault current constraints. s is the pre-set phase of limiting
current proportion. pc is a penalty coefficient. Imax

per is the
permissible limit current. M is the branch of the system.
Suppose ICHB−FCL(i) is lower than Imax

per , fpena equals to 0.
Otherwise, (17) is achieved. When the difference between
the short-circuit current value with and without CHB-FCL
is large, the allocation scheme with CHB-FCLs has a better
current-limiting effect and lower value of F2.

The third objective function, F3, is used to evaluate the
reliability of ADNs [26].WLRI is used to estimate the system
reliability, which is composed of System Average Interrup-
tion Duration Index (SAIDI), Average Service Unavailability
Index (ASUI), and Average Energy Not Supplied (AENS).
The lower value of WLRI indicates a higher value for system
reliability. Accordingly, F3 can be expressed as

F3 =
M∑
i=1

ωCIC,k

(
WLRIwithoutx,i −WLRICHB-FCLx,i

)
(18)

WLRICHB-FCLx,i = SAIDIFCLx,i + ASUIFCLx,i + AENSFCLx,i

=
λFCLi Ni
M∑
k=1

Nk

+
rFCLi λFCLi Ni

8760
M∑
k=1

Nk

+
rFCLi Pi
M∑
k=1

Nk

(19)

λFCLi = λwithouti − ηFCLi λwithouti,faultcurrent (20)

ωCIC,k =
CIC of ith load point

average CIC of all types of customers
(21)

where ωCIC,k is the significance of the kth load and deter-
mined by considering customer interruption cost of each
customer. λFCLi and λwithouti are the failure rate of the protec-
tive device with CHB-FCL and without CHB-FCL. ηFCLi is
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the fault current reduction efficiency when CHB-FCL is
installed.Ni, rFCLi , and Pi are the number of customers, repair
time, and amount of electric demand power, respectively.
A higher index of F3 means a more suitable place to install
CHB-FCL from the viewpoint of reliability improvement.

B. STANDARD BAT ALGORITHM
Becausemicrobats continually adjust the searching frequency
to update the location of the population, they can avoid
obstacles or find prey during their flights [27], [28]. Based
on this phenomenon, the bat algorithm (BA), as a meta-
heuristic optimization algorithm, is proposed. Hereon, the
frequency, fri, speed vi, and position pi of the ith virtual
microbat are defined as (22), (23), and (24).

fri = frmin + τ1 ∗ (frmax − frmin) (22)

vi(t) = vi(t − 1)+ fri ∗ (pi(t − 1)− pbest) (23)

pi(t) = pi(t − 1)+ vi(t) (24)

where fri is restricted within [frmin, frmax]. τ1 (τ1 ∈ (0,1))
is a random number. pbest indicates the current optimum
individual.

The local searching operation, as a dominance strategy,
is mainly to find a better scheme pbet near the pbest one
by updating the loudness loi and pulse rate ri. The update
formulas of loi and ri are defined as follows:

loi(t + 1) = τ2loi(t) (25)

ri(t + 1) = r0(1− exp(−τ3t)) (26)

where τ2 (τ2 ∈ (0,1)) and τ3 (τ3 > 0) represent the attenuation
coefficient of lo and the increase coefficient of r , respectively.
r0 is the initial pulse rate. After finding prey, lo is decreased,
and r is increased to improve the searching efficiency.

C. MOIBA ALGORITHM
In order to handle the multi-objective optimization prob-
lems more effectively, the MOIBA algorithm is introduced,
which overcomes the shortcomings of local optimums and
premature-convergence and has significant advantages on
optimization accuracy and convergence stability [29].

1) STOCHASTIC INERTIA WEIGHT STRATEGY
The SIW ωSIW is introduced to enhance the convergence
of rapidity and precision, which can improve the updating
manner of vi. The updated formulas of vi andωSIW are defined
as follows:

vi(t) = ωSIWvi(t − 1)+ fri ∗ (pi(t − 1)− pbest) (27)

ωSIW = umin
SIW + τ4(u

max
SIW − u

min
SIW)+ τ5σSIW (28)

where umax
SIW and umin

SIW are the maximum and minimum influ-
encing factors of SIW. τ4/τ5 (τi ∈(0,1), i = 4, 5) is a random
number. σSIW is the deviation coefficient.

2) ITERATIVE LOCAL SEARCH STRATEGY
The ILS strategy can obtain the global optimal x∗ when the
acceptance criteria are satisfied, which is put forward to jump

out of the local optimal. Here, the update of x∗ is defined as
follows:

x∗ =

{
x ′∗ = x∗τ6
when F

(
x ′∗
)
< F (x∗) or e(−(F(x

′
∗)−F(x∗))>τ7)

(29)

where x ′∗ is the intermediate state, τ6/τ7 (τi ∈ (0,1),
i = 6, 7) is a random number. The acceptance criterion is a
greedy method with random factors, which guides the search
for finding pbet.

3) BALANCE STRATEGY
The balance strategy controls the movements of the bats by ri
and the acceptance of a new solution by loi, which is applied
to balance between local and global search. The renewed
manners of ri and loi are defined as follows:

ri(t + 1) = τr ∗ ri(t)2 ∗ sin(πri(t)) (30)

loi(t + 1) =
(
lomax − lomin

t − tmax

)
(1− tmax)+ lomin (31)

where τr is the iteration parameter. lomin and lomax is the
limited range of loudness. tmax is the maximum iteration.
From Fig.4, it can be seen that the sine map function of ri
andmonotone randomfillingmodel function loi exhibit better
chaos ergodicity in searching space.

FIGURE 4. Pulse rate functions and loudness functions.

4) NON-DOMINANT SORTING STRATEGY
In multi-objective optimization, it is impossible to find a
solution to minimize all objectives simultaneously due to the
conflict’s objective functions. The Pareto-optimality, as an
essential concept of game theory, is taken into account
and states that a non-dominate policy has the property
which regardless of how the process entered a given state,
the remaining decision must belong to a non-dominated
sub-policy [30]. A non-dominated solution x(1) dominates
another solution x(2) and it can be noted as x(1) ≺ x(2).

If and only if:(
Fi(x(1)) ≤ Fi(x(2)), ∀i

)
∧
(
Fi(x(1)) < Fi(x(2)), ∃i

)
(32)

After the dominance relationships between individuals
are determined, a non-dominant sorting strategy is used to
divide the population into different ranks according to the
dominance relationships. The non-dominant solution can be
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defined as a new rank by traversing the population. And
the above procedures are repeated to search the remaining
population until all individuals are defined.

Crowding distance is introduced to characterize the dis-
tance between individuals, so that the distribution of individu-
als is more uniform in space. A novel crowding distanceD(x)
can be formulated as follows:

E (x) =
3∑
i=1

|Fi(x + 1)− Fi(x − 1)|
Fi,max − Fi,min

(33)

D(x) =

n−1∑
j=2

(∣∣∣∣∣ 3∑
i=1

|Fi(j+1)−Fi(j−1)|
Fi,max−Fi,min

∣∣∣∣∣− E(x)
)2

n− 1
(34)

where n is the number of populations. Traditional crowding
distance E(x) tends to fail to retain excellent individuals due
to the large numerical differences in different dimensions.
Therefore the crowding degree variance calculation D(x) is
used to ensure the uniformity of the particle distribution and
unlikely to fall into a local solution. Fig. 5 shows the Pareto
front set can be obtained by the optimal process of MOIBA.
When the number of iterations is tmax, the algorithm stops
iteration.

FIGURE 5. The process of MOIBA in multi-objective optimization.

D. ALGORITHM PERFORMANCE ANALYSIS
In order to evaluate the convergence and uniformity of
the Pareto front solution, the inverted generational dis-
tance (IGD) is used as the performance evaluation index [31].
The lower the index value, the better the convergence and
diversity of the Pareto front solution obtained by the algo-
rithm, and the closer to the reference Pareto front solution.

The IGD can be expressed as follows:

IGD=
1
|P|

|P|∑
i=1

|A|
min
j=1

√√√√ M∑
m=1

(
fm(pi)− fm(aj)
f max
m − f min

m

)2

(35)

where A denotes the nondominated solutions generated by
the algorithm. aj ∈ A, j = 1, 2, . . . , |A|. P denotes a set
of reference points in the calculation of IGD. pi ∈ P, i =
1, 2, . . . , |P|. f max

m and f min
m are the maximum and minimum

values on the mth target in P, m = 1, 2, . . . ,M . M is the
number of targets.

Table 1 shows the experimental results in terms of IGD
between the three multi-objective algorithms on four test
instances. The mean value and standard deviation value of
IGD are the statistical results of the same algorithm running
independently for 50 times on the same test instance [32].
It can be seen that the MOIBA algorithm obtains the
minimum mean value and Std. value in a different test
instance. And the results show that the MOIBA algorithm
has better convergence and uniformity than the traditional
multi-objective optimization algorithm (such asNSGA-II and
MOPSO). In this section, we only take ZDT1, ZDT2, ZDT3,
and ZDT6 as examples. It’s important to note that according
to the No Free Lunch (NFL) Theorem, we cannot expect the
algorithm to get the best IGD value for every test function.

TABLE 1. The IGD value between different algorithms on four test
instances.

IV. LIFE CYCLE COST MODEL OF CHB-FCL
The economy is one of the critical factors that deter-
mine whether an emerging technology can be popularized
and applied [33]. According to the IEEE Std. 24748, the
LCC criterion is used to calculate the equipment costs com-
prehensively, which can be expressed as follows:

LCC = CI + CO+ CF + CD (36)

where CI is the investment cost. CO is the operation cost.
CF is the maintenance cost. CD is the disposal cost. The
traditional planning problems only aim at equivalenting
the research phase and service life, and it does not take
into account the replacement of equipment. Consequently,
the research phase tr is set to be longer than the service life
of the equipment tFCL in this paper, and after the last replace-
ment of the equipment, the residual value of the equipment is
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considered in this paper. Based on the replacement, the model
of LCC is shown in Fig. 6.

FIGURE 6. The model of LCC is based on equipment replacement.

A. CHB-FCL SERVICE LIFE
When the current flowing through the CHB-FCL reaches a
particular value, the impact on CHB-FCL’s life cannot be
ignored. In [34], the effect of cyclic junction temperature
variations of the power electronics module aging process
is researched, and it is found that such minor stress cycles
contribute to the development of damage and tend to accel-
erate the end of life. In [35], [36], the thermal stresses can
accumulate as fatigue on the devices and challenge the life-
time. Thus, we can know from the above description that
the temperature stress has a great influence on the module
life of power device. However, the existing research rarely
conducts experiments on the quantitative loss of CHB-FCL’s
life which is produced by the fault surge current. In this case,
the rated life of the equipment cannot reflect the actual life of
the CHB-FCL and increases the error of the CHB-FCL cost
model.

The wastage of power electronic devices is related to the
joule heat generated by the current flowing. Take the thyristor
for example. The rated current of the thyristor is limited based
on the junction temperature caused by the power dissipation
and heating. When the current is less than the effective value
(1.57 times the rated current), its heating temperature rise is
within the allowable value, and its loss coefficient is close
to a small number. It is considered that the device operates
indefinitely with the rated service life. When the current
exceeds the effective value, the loss coefficient increases cor-
respondingly. When the current exceeds the inrush current,
the power electronic device will be directly damaged by the
breakdown. As shown in Fig.7, in order to make a preliminary
quantitative analysis of the cost of CHB-FCL, a simplified
CHB-FCL life loss model is constructed by combing the
fatigue life characteristics and the heat loss [27]. If I is less
than the action threshold Iact, there has no loss. If I is within
[Iact, Imax

per ], a small loss coefficient sQmin can be obtained.
If I is within [Imax

per , Imax] (Imax is the maximum bearing cur-
rent), due to the law of dissipation is unknown, the quadratic
curve function is adopted. Thus, the life decay of FCL will be
nonlinear accelerated with the increase of current.

The lifetime loss of CHB-FCL is accumulated by combin-
ing the fault points of Monte Carlo simulation, which can be

FIGURE 7. The fitting relationship between loss coefficient and current.

formulated as follows.

SQsum =
tfault∑
k=1

sQI2CHB-FCL,kZCHB-FCLTQ (37)

ηloss =
SQsum
SF

(38)

where TQ is the fault time. sQ is the loss coefficient. ηloss is
the loss ratio. SF is the ultimate life. If ηloss = 1, it denotes
that the corresponding life is the equipment’s tFCL. It should
be noted that the established simplified life loss model
of CHB-FCL is used for the preliminary quantitative analysis
of the cost model. Once amore accurate CHB-FCL life model
is available in the future, it can be directly replaced.

B. COST STRUCTURE
Since the research phase is longer than the service life of
the equipment, there is some residual value after the last
replacement of the equipment in the research phase, so the
value outside the research phase should be deducted when
calculating the investment cost. The investment cost can be
classified into capacity cost and installation cost, which can
be expressed as:

CI = cp

NCHB−FCL∑
i=0

(npv)itFCL −(
tres
tFCL

) (npv)tr


×

NCHB-FCL∑
i=0

ZCHB-FCL
i + NFCLcr

NFCL∑
i=0

(npv)itFCL (39)

npv = (1− q)
(
1+ b
1+ p

)
(40)

where cp is the capacity cost factor. tres is the time of residual
value. cr is the installation costs factor. tr is the research
phase. tFCL is the service life of the equipment. npv is the net
present value function. q is the coefficient of price change.
b is the rate of inflation. p is the interest rate.

The operation cost includes the input of labor and capital.
To simplify the calculation, this paper converts all relevant
operating costs into operation cost factor kco.

CO = cpkco

( tr∑
i=0

(npv)i
) NCHB-FCL∑

i=0

ZCHB-FCL
i (41)
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In order to restore the working capacity of the FCL or
to ensure the efficiency of the FCL, the maintenance cost
must be considered. And the annual maintenance cost is
generally accrued as a percentage of the equipment price
in that year (kcf ). Therefore, CF can be obtained from the
bathtub curve:

CF = cpkcf

( tr∑
i=0

hcf (i) (npv)i
) NCHB-FCL∑

i=0

ZCHB-FCL
i (42)

where kcf is the annual maintenance cost factor. hcf is the
hazard rate, which can be obtained by (42) and Fig. 8.

hcf (t) =

{
α1 − tβ1−1 t < t1
α2tβ2−1 t > t2

(43)

FIGURE 8. The bathtub failure rate curve of CHB-FCL.

where α1, α2, and β1, β2 are the failure rate function param-
eters of Weibull distribution, respectively. If t is less than
0.1tFCL, the failure rate of FCL decreases continuously during
Infant Mortality. If t is within [0.1tFCL, 0.8tFCL], the failure
rate of FCL is lower and more stable under the Random
Failures. If t is greater than 0.8tFCL, due to aging, wear and
other reasons, the failure rate of FCL increase rapidly during
the Wearout.

In order to simplify the calculation of the disposal cost of
FCL, this paper introduces the disposal cost factor kcd . The
disposal cost can be formulated as:

CD = cpkcd

(NCHB-FCL∑
i=1

(npv)itFCL
) NCHB-FCL∑

i=0

ZCHB-FCL
i (44)

V. SIMULATION AND RESULTS
This section is devoted to verifying the optimal allocation
method of the CHB-FCLs in the IEEE 33-bus system and
IEEE 30-bus Benchmark system. Considering the increasing
demand for power consumption because of the country’s eco-
nomic expansion, it’s necessary to plan for additional DGs.

A. IEEE 33-BUS SYSTEM WITH DGS
Fig. 9 shows the IEEE 33-bus system and Table 2 gives
the simulation parameters. The base voltage of the

FIGURE 9. Schematic of the modified IEEE 33-bus system with DGs.

ADN is 12.66kV. The total network load is 5084.26 +
j2547.32 kVA. Combining [14] and system load capacity,
four 500kVA photovoltaic plants (marked as DG1, DG2,
DG3, and DG4) are installed at bus 14, 21, 24, and 29,
respectively. And the subtransient reactance ZDG is 0.2.

1) SELECTING CANDIDATE LOCATIONS
In the traditional sensitivity analysis model, the nodes
whose three-phase short-circuit fault current exceeds 10kA
are selected, and the corresponding sensitivity values η1
of all branches under each node are calculated by (5).
From Table 3, five fault current nodes and their candi-
date branches are given. By selecting the repetitive loca-
tions and sorting the locations at the front, CHB-FCLs
are installed in eight candidate branches, namely, 19-20,
20-21, 3-23, 24-25, 6-26. 30-31, 31-32. and 32-33. How-
ever, the traditional sensitivity analysis model does not con-
sider the actual situation of the distribution network, which
leads to unnecessary planning, such as continuous placement
of adjacent lines and failure to consider the importance of
branches.

In the proposed sensitivity factor analysis, theMonte Carlo
fault simulation is set as 1500 times, the equivalent duration
of the simulation is 15 years. Through the parameters of X1
to X5 in Table 2, the fault probability model of each line
is established by calculating the weight of AHP (ωAHP =

[0.0526, 0.1053, 0.2105, 0.2105, 0.4211]) and the weight of
EWM (ωEWM = [0.2157, 0.2977, 0.1812, 0.1153, 0.1901]).
The probability of line failure can be obtained through (9, 10),
and is listed in [P1, P2] in Table 2. Then, the candidate
positions of the fault current limiter are sorted by calculating
the sensitivity value η.

It can be seen from Table 4, the top eight branches of
the total value of sensitivity factors are selected as candidate
locations. The proposed method accumulates all the sensitive
factors of the branches based on the Monte Carlo fault sim-
ulation points, and the results not only take into account the
actual situation of the network but also significantly reduce
the invalid search range of the multi-objective optimization
algorithm.
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TABLE 2. The simulation parameters of the fault line model and customer data in IEEE 33-bus system.

2) RESULT OF OPTIMAL ALLOCATION
MOPSO, NSGA-II, and MOIBA are applied to compare
the performance for solving the multi-objective optimiza-
tion problem. And their parameters are set as follows. The
number of populations and maximum iteration are 50 and
300, respectively. The maximum and minimum equivalent
impedance of CHB-FCL are 10 and 0, respectively. The
maximum and minimum number of CHB-FCL are 8 and 1,
respectively. The pre-set phase is 10. The penalty coefficient
is 100. The permissible limit current is 12kA. The maximum
and minimum influencing factors of SIW are 0.9 and 0.4,
respectively. The maximum and minimum frequency of bats
are 1 and 0, respectively. The iteration parameter is 2.3. The
maximum and minimum loudness of bats are 0.9 and 0.6,
respectively.

At present, few works of literature have conducted exper-
imental verification on the life of CHB-FCL. In order to
calculate the relationship between the loss coefficient and
the current, SQmin, SQmax, Iact, and Imax are set as 0.0001,
0.01, 5kA, 30kA, respectively. Further, CHB-FCL has not
been fully commercialized and lacks specific cost parameters,
references usually set the cost of the current-limiting reactor
supporting facilities to be 5-10 times the installation cost. The
capacity cost is selected as the benchmark cost, and the ratio
of installation cost cp and capacity cost cr of CHB-FCL is set
as 1: 0.1. The coefficient of price change q is 0.01. The rate of
inflation b is 0.03. The interest rate p is 0.06. The operation
cost factor kco is 0.04. The annual maintenance cost factor kcf
is 0.4. The failure rate function parameters α1, α2 and β1, β2
are 0.2, 0.4, 1.74, and 10.32, respectively. The disposal cost
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FIGURE 10. The convergence property for objective functions of MOIBA and other methods (a) The first objective function (b) The second objective
function (c) The third objective function.

TABLE 3. Fault currents and candidate branches to install the CHB-FCLs.

TABLE 4. Candidate locations of CHB-FCLs with sensitivity factor analysis.

factor kcd is 0.1. The research phase tr is 50 years. The repair
time of the bus and line are 2 and 5, respectively.

The convergence curves of objective functions are depicted
in Fig. 10. It can be seen from Fig. 10 that the MOIBA’s con-
vergence curves have a sharp decline in the first 50 iterations
and reach the minimum value before 150 iterations. It can
be affirmed that MOIBA has quicker convergence speed and
better search accuracy than MOPSO and NSGA-II because
it can jump out of local extremum easily and determined the
globally optimal values.

Fig. 11 shows the Pareto front with the unfixed num-
ber of CHB-FCLs obtained from MOIBA, MOPSO, and
NSGA-II, and the three curves are depicted in one figure.
From Figure 11, it can be obtained that the Pareto front set
of the MOIBA algorithm is dominated in those of the other
two methods. Among them, the distribution of the results

FIGURE 11. All used algorithms Pareto front for IEEE 33-bus system.

TABLE 5. Optimization solutions of the selected three cases.

obtained by NSGA-II is relatively concentrated and scattered,
which is caused by the local optimal solution being trapped
in the search process and not jumping out of the search
range. In contrast, MOIBA and MOPSO have a wide range
of solutions. Due to the use of a novel crowding distance,
the distribution of MOIBA’s solutions more uniform than
MOPSO. Although the solution sets obtained by the algo-
rithm are different, all the Pareto optimal solutions obtained
by the same algorithm are equal and are considered as an
optimal solution.

Table 5 shows three typical solutions and corresponding
parameters are selected from the Pareto Front.
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FIGURE 12. Pareto front features of optimal allocation of CHB-FCLs using MOIBA algorithm.

TABLE 6. Optimal solutions of the selected four cases.

As can be seen from the table, the scheme selected by
NSGA-II is equipped with five CHB-FCLs, the scheme
selected by MOPSO is equipped with three CHB-FCLs and
the scheme selected by MOIBA is equipped with three
CHB-FCLs. And the installation positions of MOIBA par-
tially overlap with case II and case III. The results are
obtained by MOIBA, which have more reduction in the three
objective functions when it is compared to the other algo-
rithms. However, the current flowing through the limiter is
more massive with the smaller number of CHB-FCLs, result-
ing in more loss life of the limiter, and the cost is increased
due to the shortened service life. In summary, MOIBA not
merely has a faster convergence rate but also achieves a
better Pareto front solution set. It is worth mentioning that
the multi-objective optimization algorithm is to minimize all
objective functions. There is no one solution to minimize

all objective functions and the reduction of one objective
function will inevitably lead to an increase in other objective
functions. Therefore, the complete solution set makes it easier
for decision-makers to choose.

Fig. 12 shows the Pareto front of CHB-FCLs using
MOIBA. The three axes represent the three objective func-
tions, and the red, blue, green, and yellow curves represent
the Pareto optimal solutions when there are 1, 2, 3, and
4 CHB-FCLs, respectively. It can be seen from Fig. 11,
the objective function of the capital cost is inversely propor-
tional to mitigation current effect and the reliability. As well
as the objective functions of the mitigation effect is propor-
tional to reliability. If the capital cost is less, the current
mitigation effect and the reliability are worse. The better
the reliability required, the higher the current mitigation
effect.
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TABLE 7. The simulation parameters of the fault line model and customer data in the IEEE 30-bus system.

Four cases are selected and marked as Case IV, Case V,
Case VI, and Case VII, which represent four optimized solu-
tions of the CHB-FCLs, and the detailed optimization data are
listed in Table 6. These results show the optimal choice with a
different preference for the objective. If the objective function

of F1 is subject to 0 < F1 < 3.8, installing one CHB-FCL is
optimal. If 9.78 < F2 < 10.23 and 0.453 < F3 < 0.455,
installing four CHB-FCLs is optimal. Moreover, installing
two or three CHB-FCLs are the tradeoff of the three objective
functions. In the 50-year life cycle cost, the investment cost
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FIGURE 13. Bus fault currents of IEEE 33-bus distribution system.

FIGURE 14. Schematic of the modified IEEE 33-bus system with DGs.

of the CHB-FCLs accounts for 60% of the main expenditure,
the operation cost, and maintenance cost account for about
20% and 10%, and the rest is the recovery cost.

Fig. 13 shows the bus fault currents with different cases.
There are three buses (6,7, and 26) with excessive fault cur-
rent and the fault current increases significantly near the head
end of the feeder and the DGs. In all schemes, the fault current
of each node falls below the permissible limit current Imax

per ,
in which the current limiting effect of Case VII is the best, and
the current limiting effect of Case IV is the worst. With the
increase in the number of CHB-FCLs, the mitigation effect
and WLRI of CHB-FCL can be improved, but the cost may
increases. Therefore, the selection of the optimal solution
depends on the subjective judgment of the decision-maker.

B. IEEE 30-BUS SYSTEM WITH DGS
Fig. 14 shows the IEEE 30-bus Benchmark system, which
consists of 30 nodes,10 generators, 12 transformers and 34
lines. And Table 7 gives the simulation parameters. The
base voltage is 135kV, the base capacity of the system is
100MVA. Combining [24] and system load capacity, four
500kVA photovoltaic plants (marked as DG1, DG2, DG3,
and DG4) are installed at bus 27, 22, 9, and 19, respectively.
And the subtransient reactance ZDG is 0.2. The threshold of
exceeding current is set as 13 pu.

TABLE 8. Fault currents and candidate branches to install the CHB-FCLs.

TABLE 9. Candidate locations of CHB-FCLs with sensitivity factor analysis.

1) SELECTING CANDIDATE LOCATIONS
In the traditional sensitivity analysis model, seven fault cur-
rent nodes and their candidate branches are given in Table 8.
By selecting the repetitive locations and sorting the loca-
tions at the front, CHB-FCLs are installed in eight candidate
branches, namely, 1-2, 2-5, 3-4, 16-17, 18-19. 19-20, 21-22.
and 29-30. However, the traditional sensitivity analysis model
leads to unnecessary planning, such as continuous placement
of adjacent lines and failure to consider the importance of
branches.

In the proposed sensitivity factor analysis, the candidate
positions of the fault current limiter are listed in Table 9.

It can be seen from Table 9, the top eight branches of
the total value of sensitivity factors are selected as can-
didate locations, namely, 2-5, 9-11, 10-22, 19-20, 21-22,
27-19, 27-30, 29-30. The schemes are overlapped with those
of the traditional sensitivity analysis model and installed
near DGs.

2) RESULT OF OPTIMAL ALLOCATION
Fig. 15 illustrates the convergence curves of objective func-
tions. It can be seen that MOIBA’s convergence curve reaches
the minimum value before 100 iterations. It can be affirmed
that MOIBA has a quicker convergence speed and better
search accuracy than MOPSO and NSGA-II.

Fig. 16 represents the Pareto front obtained by MOIBA,
MOPSO, and NSGA-II for the IEEE 30-bus Benchmark
system, and the Pareto front obtained from these methods
are depicted in one figure. The results obtained by MOIBA
dominate the results obtained by the other two methods.
However, the obtained solution set is subject to the mutual
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FIGURE 15. The convergence property for objective functions of MOIBA and other methods (a) The first objective function (b) The
second objective function (c) The third objective function.

FIGURE 16. Pareto front features of optimal allocation of CHB-FCLs using MOIBA algorithm.

TABLE 10. Optimal solutions of the selected four cases.

constraints between the objective functions, so that each solu-
tion in the solution set is a feasible solution. From the Pareto

fronts obtained by MOIBA, MOPSO, and NSGA-II, three
typical solutions are selected and marked as Case I, Case II,
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FIGURE 17. Bus fault currents of IEEE 30-bus distribution system.

and Case III to describe the specific parameters of each
scheme.

As can be seen from Table 10, the scheme selected by
MOPSO and NSGA-II are equipped with five CHB-FCLs,
and the scheme selected by MOIBA is equipped with four
CHB-FCLs. Although the objective function F1 of Case I is
high, the current limiting effect and reliability of this scheme
are better than other cases. The fewer number of CHB-FCLs
make the LCC of Case I smaller than other cases. In the
50-year life cycle cost, the investment cost of the CHB-FCLs
accounts for 60% of the main expenditure, the operation cost,
and maintenance cost account for about 20% and 10%, and
the rest is the recovery cost.

In order to directly reflect the current limiting effect of each
case, Fig. 17 shows the fault currents with different cases.
When the CHB-FCL is not installed, there are seven buses
(4, 6, 8, 10, 21, 22, and 28) with excessive fault current.
In all schemes, the fault current of each node falls below the
threshold of exceeding current, in which the current limiting
effect of Case I is the best, and the current limiting effect of
Case III is the worst.

VI. CONCLUSION
In order to give full play to the CHB-FCL’s flexible adjustable
ability, this paper proposes a novel methodology. The novel
methodology consists of the sensitivity factor analysis, a
multi-objective improved bat algorithm, and the economic
evaluation model. Considering the three objectives of the cost
of CHB-FCLs, the mitigation effect and WLRI, the proposed
approach is verified by the modified IEEE 33-bus system
and IEEE Benchmark system. The significant contributions
of this study can be summarized as follows:

(i) Based on the Monte Carlo fault simulation model,
the sensitivity factor analysis method is proposed to rank
candidate locations, which is not only closer to the actual
situation of the network than the traditional sensitivity anal-
ysis, but also improves the search space and speed of
multi-objective optimization problems.

(ii) SIWstragegy, ILS strategy, balance strategy and non-
dominant sorting strategy are introduced into the standard bat
algorithm. And the proposed multi-objective improved bat
algorithm is applied to search the Pareto front solution set,
which has better convergence precision and spatial distribu-
tion than NSGA2 and MOPSO.

(iii) The economic evaluation model is proposed, which is
used to calculate the service life of the CHB-FCL considering
the operating loss and calculated the NPV of all kinds of costs
in the research phase.

Compared with the previous optimal configuration
method, the proposed method not only has higher accu-
racy and a better Pareto front solution set, but also entirely
constructs the economic model of CHB-FCLs. All in all,
the proposed method provides a good idea for the optimal
configuration of the CHB-FCLs and feasible suggestions for
engineering planning.

REFERENCES
[1] W. T. B. de Sousa, D. Kottonau, S. Karrari, J. Geisbusch, and M. Noe,

‘‘Deployment of a resistive superconducting fault current limiter for
improvement of voltage quality and transient recovery voltage,’’ IEEE
Trans. Appl. Supercond., vol. 31, no. 1, pp. 1–9, Jan. 2021.

[2] M. Aurangzeb, A. Xin, S. Iqbal, and M. U. Jan, ‘‘An evaluation of flux-
coupling type SFCL placement in hybrid grid system based on power
quality risk index,’’ IEEE Access, vol. 8, pp. 98800–98809, May 2020.

[3] Y. Kim, H.-C. Jo, and S.-K. Joo, ‘‘Analysis of impacts of supercon-
ducting fault current limiter (SFCL) placement on distributed generation
(DG) expansion,’’ IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1–5,
Jun. 2016.

[4] F. Zheng, C. Deng, L. Chen, S. Li, Y. Liu, and Y. Liao, ‘‘Transient
performance improvement of microgrid by a resistive superconducting
fault current limiter,’’ IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5,
Jun. 2015.

[5] C. Guo, C. Ye, Y. Ding, Z. Lin, and P. Wang, ‘‘Risk-based many-objective
configuration of power system fault current limiters utilising NSGA-III,’’
IET Gener., Transmiss. Distrib., vol. 14, no. 23, pp. 5646–5654, Dec. 2020.

[6] M. A. Hosseinzadeh, M. Sarbanzadeh, A. Salehi, M. Rivera, J. Munoz,
and P. Wheeler, ‘‘Performance evaluation of cascaded H-bridge multilevel
grid-connected converter with model predictive control technique,’’ in
Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Melbourne, VIC, Australia,
Feb. 2019, pp. 1806–1811.

[7] E. Loukarakis and G. Stavrakakis, ‘‘Adaptive enumeration method for the
optimal interconnection planning of isolated power systems,’’ IET Gener.,
Transmiss. Distrib., vol. 7, no. 3, pp. 235–243, Mar. 2013.

[8] P. Yu, B. Venkatesh, A. Yazdani, and B. N. Singh, ‘‘Optimal location and
sizing of fault current limiters in mesh networks using iterative mixed
integer nonlinear programming,’’ IEEE Trans. Power Syst., vol. 31, no. 6,
pp. 4776–4783, Nov. 2016.

[9] H. Zeineldin, E. El-Saadany, and L. Huchel, ‘‘Protection coordination
index enhancement considering multiple DG locations using FCL,’’ in
Proc. IEEEPower Energy Soc. Gen.Meeting, Chicago, IL, USA, Jul. 2017,
p. 1.

[10] H. B. Habil, E. Azad-Farsani, and H. A. Abyaneh, ‘‘A novel method for
optimum fault current limiter placement using particle swarm optimization
algorithm,’’ Int. Trans. Electr. Energy Syst., vol. 25, no. 10, pp. 2124–2132,
Oct. 2015.

[11] H.-T. Yang, W.-J. Tang, and P. R. Lubicki, ‘‘Placement of fault current
limiters in a power system through a two-stage optimization approach,’’
IEEE Trans. Power Syst., vol. 33, no. 1, pp. 131–140, Jan. 2018.

[12] A. Esmaeili, S. Esmaeili, and H. Hojabri, ‘‘Short-circuit level control
through a multi-objective feeder reconfiguration using fault current lim-
iters in the presence of distributed generations,’’ IET Gener., Transmiss.
Distrib., vol. 10, no. 14, pp. 3458–3469, Nov. 2016.

[13] S. Ghaemi,M. Nazari-Heris, andM. Abapour, ‘‘Reliability impact analysis
of fault current limiters of distribution network under protection miscoor-
dination due to distributed generations,’’ Iranian J. Sci. Technol., Trans.
Electr. Eng., pp. 1–12, Jul. 2020, doi: 10.1007/s40998-020-00365-x.

VOLUME 9, 2021 12777

http://dx.doi.org/10.1007/s40998-020-00365-x


Z. Shu et al.: Pareto Optimal Allocation of FFCL Based on Multi-Objective Improved Bat Algorithm

[14] L. Chen, X. Zhang, H. Chen, G. Li, J. Yang, X. Tian, Y. Xu, L. Ren, and
Y. Tang, ‘‘Pareto optimal allocation of resistive-type fault current limiters
in active distribution networks with inverter-interfaced and synchronous
distributed generators,’’ Energy Sci. Eng., vol. 7, no. 6, pp. 2554–2571,
Aug. 2019.

[15] A. Mahmoudian, M. R. Islam, A. Z. Kouzani, and M. A. P. Mahmud,
‘‘Optimal allocation of fault current limiter in distribution network with
NSGA-II algorithm,’’ in Proc. IEEE Int. Conf. Appl. Supercond. Electro-
magn. Devices (ASEMD), Tianjin, China, Oct. 2020, pp. 1–2.

[16] A.Mahmoudian,M.Niasati, andM.A.Khanesar, ‘‘Multi objective optimal
allocation of fault current limiters in power system,’’ Int. J. Electr. Power
Energy Syst., vol. 85, pp. 1–11, Jun. 2017.

[17] M. Y. Shih, A. Conde, C. Ángeles-Camacho, E. Fernández, Z. Leonowicz,
F. Lezama, and J. Chan, ‘‘A two stage fault current limiter and direc-
tional overcurrent relay optimization for adaptive protection resetting using
differential evolution multi-objective algorithm in presence of distributed
generation,’’ Electr. Power Syst. Res., vol. 190, Jan. 2021, Art. no. 106844.

[18] M. Esmaili, M. Ghamsari-Yazdel, N. Amjady, and C. Y. Chung, ‘‘Optimal
placement of resistive/inductive SFCLs considering short-circuit levels
using complex artificial bee colony algorithm,’’ IET Gener., Transmiss.
Distrib., vol. 13, no. 24, pp. 5561–5568, Dec. 2019.

[19] J. Teng and C. Lu, ‘‘Optimum fault current limiter placement with search
space reduction technique,’’ IET Gener., Transmiss. Distrib., vol. 4, no. 4,
pp. 485–494, Apr. 2010.

[20] P. T. Ngoc and J. G. Singh, ‘‘Short circuit current level reduction in power
system by optimal placement of fault current limiter,’’ Int. Trans. Electr.
Energy Syst., vol. 27, no. 12, Nov. 2017.

[21] M. F. Guo, L. X. You, and X. Y. Wei, ‘‘A flexible current limiting method
of distribution network short circuit fault based on the voltage feedback
control,’’ Trans. China Electrotechn. Soc., vol. 32, no. 11, pp. 48–56,
Jun. 2017.

[22] G. Mohapatra, ‘‘Current control of a PV integrated CHB-multilevel
inverter using PR controller,’’ in Proc. Technol. Smart-City Energy Secur.
Power (ICSESP), Bhubaneswar, India, Mar. 2018, pp. 1–6.

[23] F. Khalilzadeh Moghaddam and H. Iman-Eini, ‘‘Reliable simple method
for suppression of leakage current in grid-connected CHB inverters,’’ IET
Power Electron., vol. 11, no. 13, pp. 2170–2177, Nov. 2018.

[24] Y. Q. Peng, X. N. Lin, L. Chen, Z. T. Li, X. Ma, and Z. X. Wang,
‘‘Research on global cooperative configuration of superconducting fault
current limiter considering life cycle cost,’’ CSEE J. Power Energy Syst.,
vol. 39, no. 21, pp. 6275–6287, Nov. 2019.

[25] Z. Zeng and Q. Gong, ‘‘Fuzzy comprehensive evaluation of security main-
tenance ability base onAHP-entropy,’’ inProc. 3rd Int. Conf. Circuits, Syst.
Simulation (ICCSS), Nanjing, China, Jun. 2019, pp. 166–171.

[26] S.-Y. Kim, W.-W. Kim, and J.-O. Kim, ‘‘Determining the location of
superconducting fault current limiter considering distribution reliability,’’
IET Generat. Transmiss. Distrib., vol. 6, no. 3, pp. 240–246, Mar. 2012.

[27] G. Chen, J. Qian, Z. Zhang, and Z. Sun, ‘‘Applications of novel hybrid bat
algorithm with constrained Pareto fuzzy dominant rule on multi-objective
optimal power flow problems,’’ IEEE Access, vol. 7, pp. 52060–52084,
Apr. 2019.

[28] G. Chen, J. Qian, Z. Zhang, and Z. Sun, ‘‘Multi-objective optimal
power flow based on hybrid firefly-bat algorithm and constraints-prior
object-fuzzy sorting strategy,’’ IEEE Access, vol. 7, pp. 139726–139745,
Sep. 2019.

[29] C. Gan, W. Cao, M. Wu, and X. Chen, ‘‘A new bat algorithm based on
iterative local search and stochastic inertia weight,’’ Expert Syst. Appl.,
vol. 104, pp. 202–212, Aug. 2018.

[30] Z. He, J. Zhou, L. Mo, H. Qin, X. Xiao, B. Jia, and C. Wang, ‘‘Multi-
objective reservoir operation optimization using improved multiobjective
dynamic programming based on reference lines,’’ IEEE Access, vol. 7,
pp. 103473–103484, Jul. 2019.

[31] Y. Sun, G. G. Yen, and Z. Yi, ‘‘IGD indicator-based evolutionary algorithm
for many-objective optimization problems,’’ IEEE Trans. Evol. Comput.,
vol. 23, no. 2, pp. 173–187, Apr. 2019.

[32] W. Hu, G. G. Yen, and X. Zhang, ‘‘Multiobjective particle swarm optimiza-
tion based on Pareto entropy,’’ Software, vol. 25, no. 5, pp. 1025–1050,
2014.

[33] N. B. Abdul Rahim and T. L. J. Ferris, ‘‘Amethod to establish a trade-space
of system requirements and life cycle cost,’’ IEEE Syst. J., vol. 14, no. 1,
pp. 1257–1264, Mar. 2020.

[34] W. Lai, M. Chen, L. Ran, O. Alatise, S. Xu, and P. Mawby, ‘‘Low stress
cycle effect in IGBT power module die-attach lifetime modeling,’’ IEEE
Trans. Power Electron., vol. 31, no. 9, pp. 6575–6585, Sep. 2016.

[35] V. Smet, F. Forest, J.-J. Huselstein, F. Richardeau, Z. Khatir, S. Lefebvre,
and M. Berkani, ‘‘Ageing and failure modes of IGBT modules in high-
temperature power cycling,’’ IEEE Trans. Ind. Electron., vol. 58, no. 10,
pp. 4931–4941, Oct. 2011.

[36] U.-M. Choi, K. Ma, and F. Blaabjerg, ‘‘Validation of lifetime prediction
of IGBT modules based on linear damage accumulation by means of
superimposed power cycling tests,’’ IEEE Trans. Ind. Electron., vol. 65,
no. 4, pp. 3520–3529, Apr. 2018.

ZHENGYU SHU was born in Yichang, Hubei,
China, in 1983. He received the B.S., M.S., and
Ph.D. degrees in electric engineering from Wuhan
University, China, in 2005, 2009, and 2013,
respectively. He is currently a Lecturer with the
School of Electrical Engineering and Automation,
Three Gorges University. His main research inter-
ests include renewable energy fault ride through,
and microgrid operation and control.

YIQIANG CHEN was born in Quanzhou, Fujian,
China, in October 1995. He received the B.S.
degree from Fuzhou University, China, in 2018,
where he is currently pursuing theM.S. degree. His
research interests include current limiter configu-
ration optimization, and microgrid operation and
control.

CHANGHONG DENG received the Ph.D. degree
from the School of Electrical Engineering, Wuhan
University, Wuhan, China, in 2007. She is cur-
rently a Professor with Wuhan University. Her
research interests include power system security
and stability analysis, optimal control theory, and
renewable energy integration.

FENG ZHENG was born in Wenzhou, Zhejiang,
China, in 1983. He received the B.S. and M.S.
degrees in electric engineering from Three Gorges
University, China, in 2006 and 2009, respectively,
and the Ph.D. degree in electric engineering from
Wuhan University, China, in 2017. He is currently
a Lecturer with the School of Electrical Engineer-
ing and Automation, Fuzhou University. His main
research interests include renewable energy fault
ride through, and microgrid operation and control.

HAO ZHONG was born in Changde, Hunan,
China, in 1983. He received the B.S., M.S., and
Ph.D. degrees in electric engineering from Hunan
University, China. He is currently a Lecturer
with the School of Electrical Engineering and
Automation, Three Gorges University. His main
research interests include power system operation
and control.

12778 VOLUME 9, 2021


