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ABSTRACT The big data availability of Radio Access Network (RAN) statistics suggests using it for
improving the network management through machine learning based Self Organized Network (SON)
functionalities. However, this may increase the already high energy consumption of mobile networks. Multi-
access Edge Computing can mitigate this problem; however, the machine learning solutions have to be
properly designed for efficiently working in a distributed fashion. In this work, we propose distributed
architectures for two RAN SON functionalities based on multi-task and gossip learning. We evaluate
their accuracy and consumed energy in realistic scenarios. Results show that the proposed distributed
implementations have the same performance but save energy with respect to their correspondent centralized
versions and benchmark solutions. We conclude the paper discussing open research issues for this interesting
emerging field.

INDEX TERMS Distributed learning, edge intelligence, energy efficiency, Green AI, mobile networks.

I. INTRODUCTION
Mobile communications have become part of our daily lives.
However, the fifth generation (5G) of mobile technology is
expected to introduce a new revolution by bringing enhanced
broadband services everywhere, smart vehicles and trans-
portation, and complex human machine interactions (e.g.,
extended reality) [1], [2]. Such a connected society will gen-
erate a considerable amount of data: CISCO estimates that
the internet traffic will increase up to 805 ZB by 2021 [1],
with an annual growth rate of 20.6 ZB in 2021. Big data
availability and processing will be the key driver for the
booming of the Artificial Intelligence (AI), whose application
is expected to significantly enrich people’s lifestyle, improve
human productivity and enhance social efficiency.

Nevertheless, various reports indicate that mobile networks
already have a huge carbon footprint and the situation is
worsening: their energy consumption is expected to reach
the 51% of the worldwide electricity generation by 2030 [3].
Consequently, an energy sustainable design of next genera-
tion mobile networks architecture and algorithms represents
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one of the key requirements of 5G and beyond in order to
ensure cost effectiveness and reduce the negative impact on
the environment.

As a key driver that boosts 5G performance, Self-
Organizing Networks (SON) functionalities represent an
important building block enabling an automatic network
management. By learning from the experience and adapting
to the changing environment, SON functionalities are able to
maximize the efficiency of the network, while at the same
time reducing the operational costs. 5G cellular networks are
characterized by extremely dense and heterogeneous deploy-
ments, such that coverage and capacity are increased. In addi-
tion, the high diversity of mobile devices and applications,
further complicates the network architecture and its man-
agement. In this context, current and next generation net-
works generate a massive amount of measurements, control
and management information [4], [5]. This huge amount of
information could be efficiently utilized to address the 5G
network management challenges. Recently, the evolution in
computational capabilities, has allowed to take advantage
of Machine Learning (ML) and novel Deep Learning (DL)
solutions to tackle multiple problems in different disciplines.
In mobile networks and its evolution toward the 6G wireless
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communications paradigm, the possibilities now available for
ML implementations are infinite and pave the way to an
evolved vision of Next Generation SON to be able to address
intelligent end-to-end solutions [6].

There is a complexity downside, though, that normally
is not taken into account when picturing this intelligent,
autonomous and DL-based Next Generation SON. In fact,
DL is based on Artificial Neural Networks (ANNs) of many
neurons and layers that need a big amount of data in order
to learn the huge number of parameters they are composed
of. This represents an extremely high computational com-
plexity, which requires an equally high energy consumption.
For example, training a single Natural Language Process-
ing (NLP) ML model is equivalent to 284 tons of carbon
dioxide emission, i.e., five times the lifetime emissions of
an average car [7]. Therefore, both industry and academia
need to consider the trade-off between the improvement in
the performance and the energy consumed for a sustainable
design of AI solutions, which is the aim on the emerging
Green AI [8]. From an ethical perspective, the environmental
costs have been included among the nine main requirements
and practical specifications for a transparent development and
implementation of AI [9]. In particular, the energy required
from an AI solution, as well as its model sensitivity to
hyperparameters, should be investigated in order to provide
a comprehensive evaluation.

To respond to such energy needs, whilst meeting the rate
and latency requirements of the underlying services, the
next cornerstone in the mobile network domain is repre-
sented by the integration with Multi-access Edge Computing
(MEC), which amounts to performing computation right at
the network edge [10]. By empowering Base Stations (BSs)
with processing capabilities, MEC will avoid unnecessary
communication latency, enabling faster responses and higher
privacy for end users. Moreover, MEC solutions allow con-
suming 25% less energy than conventional data centers [11]
by reducing the need of communications and the dimension
of the cooling system. However, adding MEC processes to
Mobile Network Operators (MNOs) will further exacerbate
their electrical power consumption, which is already respon-
sible of a major part of their operational expenditures [12].
Hence, the integration of mobile network and edge com-
puting domains needs a proper sustainable design. To do
so, we advocate an energy-aware design of the radio access
segment and the computing infrastructure of the mobile net-
work based on the edge intelligence (EI) [13], [14], which
enables distributed computing of ML models at the net-
work edge. EI will facilitate the management of data com-
ing to the edge, like Internet of Things (IoT), human and
machine based. In particular, the scope of EI is to distribu-
tively train ML models (training) and run ML models (infer-
ence) [13]. Several solutions have been already proposed to
this respect [13], mainly with the focus of parallelizing the
models. In addition, EI has been already identified as one of
the key missing elements in 5G networks and it is expected
to become a key enabling factor for future 6G networks [15].

Consequently, we consider that an accurate study of the dif-
ferent distributed learning solutions in terms of accuracy and
energy consumption, is of paramount importance for their
efficient and energy-aware application.

Another paradigm which is attracting interest in the
community is represented by the Multi-Task Learning
(MTL) [16]. MTL aims to leverage useful information con-
tained in multiple related tasks to improve the generalization
process of all the tasks and to boost the performance. Thanks
to the online, parallel and distributed principles, in conjunc-
tion with dimensionality reduction, MTL models can be used
to speed-up the learning process, by sharing training models
of high dimensional spaces, among multiple tasks.

In this work, we focus on studying the energy and accu-
racy performance of EI solutions for SON functionalities.
In detail, we investigate distributed ML paradigms that can
rely on the data acquired by the network elements, collected
at the edge, and distributively perform the training. We com-
pare them against centralized implementations, where data
are transferred from the edge to a central entity performing
the training and finally distributing actions to be taken at
the edge. Without loss of generality, we consider two Radio
Access Network (RAN) use cases: handover decision and
the selection of the initial Modulation and Coding Scheme
(MCS). We believe that these use cases can benefit from
the introduction of sophisticated DL solutions, taking into
account all the historical information available at all the
layers of the protocol stack, which brings added value in
terms of users’ Quality of Experience (QoE). To do this,
we set up a realistic cellular scenario using a high fidelity,
full protocol stack, end-to-end network simulator, ns-3, and
we extract statistics from all the layers of the RAN pro-
tocol stack. In order to exploit the temporal characteris-
tic of the extracted data, we adopt ML models based on
Recurrent Neural Network (RNN). In particular, we consider
different Long-Short-Term-Memory (LSTM) architectures
for implementing predictors based both on single-task and
multi-task paradigms. To parallelize the training of the two
uses cases, we adopt MTL, which has been implemented
through Autoencoders (AEs). For the distribution of training,
among various options, we propose Gossip Learning (GL)
paradigm [17], [18], which allows to perform training by
peer-to-peer information exchange, thus enabling a full asyn-
chronization and total decentralization. As a result, the con-
tributions of the paper are summarized in the following list:

• Design of distributed learning architectures using GL
and MTL.

• Design of predictors for testing two RAN use cases
with both single-task and multi-task paradigm, and in
distributed and centralized version.

• Performance evaluation in realistic scenarios of the
proposed distributed solutions both in terms of accu-
racy and consumed energy and comparison with respect
to their correspondent single-task and centralized
versions.
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• Discussion of the main open issues to be addressed for
enabling an effective and energy sustainable develop-
ment of EI techniques in mobile networks.

We present a set of results, which demonstrate that pre-
diction can be successfully performed in distributed fash-
ion. Moreover, we prove that the approach based on QoE
outperforms traditional solutions from network performance
perspective for both use cases compared with state-of-the-art
algorithms (i.e., considering instantaneous signal strength for
the handover and taking the most conservative option for the
MCS). In addition to that, regarding the energy consumption,
we show that the distribution of training process based on GL,
allows to save energy, without compromising the prediction
performance. Similarly, MTL also results beneficial in terms
of used energy when multiple tasks have to implemented.
These results are novel, and valid for two different RAN use
cases that we have considered, and to the best of the authors’
knowledge still have not been discussed in the literature.

The rest of the paper is organized as follows. In Section II,
we discuss the background. In Section III, we introduce the
methodology considered in this paper, including the problem
statement and an overview of the differentML solutions used.
In Section IV, we describe the generation of the database.
In Section V, we analyze the achieved performance in terms
of error behavior during the training, QoE and energy con-
sumption. In Section VI, we present open research challenges
concerning the integration of the edge computing into future
mobile networks. Finally, in Section VII, we draw our con-
clusions.

II. BACKGROUND
The architectural availability of edge computing resources
to execute AI directly at the edge, lately has been attract-
ing significance attention, also due to Ultra-Reliable Low
Latency Communications (URLLC) scenarios, like factory
automation, autonomous driving, remote surgery, and aug-
mented/virtual reality. In fact, locating the data processing
in proximity of its origin, e.g., at the edge, offers manifolds
benefits, that can be classified in these four Key Performance
Indicators (KPIs):

• Computation: the algorithms work with local informa-
tion, which implies a reduced amount of data and, thus,
the use of less demanding hardware, both in terms of
computational and memory requirements. On the other
hand, it will require the use of specific techniques for
distributing the training and inference models.

• Communication: proximity allows to reduce the trans-
mission hops of the data, and hence network congestion.

• Privacy: distributed data permits to keep it safer locally,
which prevents leakage [19].

• Energy: the advantages in computation and communi-
cation enable to reduce the energy consumption of the
whole system.

In order to efficiently exploit data on the edge, the edge
intelligence paradigm, also called edge AI [13], [14], aims

at evaluating distributed solutions to run ML models (the
inference phase) and to train MLmodels (the training phase).
For what concerns the inference at the edge, the main

problem is the limited resources of the devices. In this case,
the solutions aim to relax the computational requirements of
the model during the inference phase. In model compression,
some of the weights can be pruned according to a specific
policy, e.g., their magnitude [20], the energy [21]. In model
early-exit, the inference is performed only with a subset of
the network, according to the latency requirements. Whereas,
partition [22] and input filtering [23] represent interesting
solutions for reducing the computational complexity on the
device model, which relay on pre-processing the data on the
device and perform the inference on the edge.

With respect to the training phase, the main problem of
a distributed solution is the convergence of a consensus,
i.e., how fast and whether the training can be considered
finalized. This problem is related to how the gradient is
synchronized and updated. The most popular solution for
distributed training is represented by the Federated Learning
(FL) [24]. In this solution, the server is in charge of combining
the results of the training of a shared model with specific
Stochastic Gradient Descent (SGD) methods, such as the
Selective SGD [25]. However, the SGD methods are not
optimized for working with unbalanced and non independent
and identical distribution (iid) data. The frequency of the
updates of themodel at the central server is also an open issue.
Too frequent updates allow to relax the hardware constraints
of the edge, but result in a higher risk of unreliable network
communications. Another interesting solution is the Knowl-
edge Transfer Learning (KTL) [26], where a teacher network
is trained with general data and then student networks are
retrained on a more specific local dataset. This allows to
reduce the resource demand at the edge devices. Similarly,
GL [17], [18] allows for a total decentralized paradigm and
is based on randomized gossip algorithms. GL works by
finding the convergence towards a consensus among nodes,
by exchanging information in a peer-to-peer fashion, thus
removing the requirement on centralized nodes or variables,
as for FL and KTL. Moreover, the full decentralized and
asynchronous nature of GL makes it a valuable approach for
RAN SON functionalities, since it allows to limit the coordi-
nation among the nodes and to reduce the complexity of the
management architecture on interfaces like X2/Xn, which are
usually characterized by high latency and low bandwidth.

Regarding the possible applications, AI will play an
important role also for providing solution to the resource
management problem in edge computing, the so called
Intelligence-enabled Edge Computing (IEC), which is com-
plementary to the problems presented above, where the issue
is how to carry out the ML process on the edge, or AI
on the Edge (AIE). Typical examples of IEC are Radio
Resource Management in wireless networking, computation
offloading strategies and services placement and caching.
In this case, the challenges are on the model definition,
which often has to be defined as a tractable Markov decision
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process, on the algorithm deployment, since it has to work
on-line. Consequently, a trade-off between optimality and
efficiency has to be found. In case of Radio Resource Man-
agement (RRM), individual rule-based algorithms can be
replaced by a general-purpose learning framework capable
of autonomously generating complex algorithms specialized
for each RRM functionality. This type of framework, when
based on DL applied to the raw network data, can be able to
improve the feature-engineered solutions based on standard
ML designed to solve specific tasks in a restricted environ-
ment and, possibly, solve multiple tasks [27].

Up to now, the work has been mainly concentrated on IEC
and, in particular, on RRMoptimization solutions for improv-
ing the performance of the system in edge-computing archi-
tectures, mainly on IoT scenarios. In this case, ML has been
applied to improve the resource allocation and the spectrum
management for offloading computational-intensive tasks
from resource-limitedmachine-type devices to powerful edge
servers [28], [29].

Regarding AIE, some work has been already published
in the area of wireless communications, especially on FL
for IEC [30]. FL has been applied in [31] to learn the sta-
tistical properties of vehicular users for ultra-reliable low-
latency vehicular communications. Authors in [32] applied
FL to learn the locations and orientations of the users in
wireless virtual reality networks for minimizing the breaks
in presence. A device scheduling problem for heterogeneous
resources in MEC based on FL has been proposed in [33].
In [34], a FL based approach has been used for mobile packet
classification, which allowsmobile devices to collaborate and
to train a global model, without sharing users’ sensitive infor-
mation. The authors demonstrate its effectiveness in terms
of classification performance using three real-world datasets.
Energy-efficient radio resource allocation for enabling FL in
an edge scenario has been investigated in [35] by adapting the
communication to devices’ channel states and computation
capacities so as to reduce their energy consumption while
guaranteeing learning performance.

Another ML paradigm that can help in reducing the imple-
mentation complexity without sacrificing ANN’s universal
function approximation property is represented byMTL [36].
As KTL, MTL is animated by the human learning principle
of transferring the acquired knowledge: often people apply
some ability, learned from previous tasks, to help learn a
new task. In MTL, all the tasks are treated with the same
priority and the objective is to improve the performance of
all the tasks. Whereas, in KTL, the target is to improve the
performance of a specific task with the help of a source task.
An example of usage of MTL in mobile communications is
represented by [37], wheremulti-task Sparse Bayesian Learn-
ing (SBL) has been applied for learning time-varying sparse
channels in the uplink for multi-user massiveMIMO systems.
Results showed that it is possible to considerably reduce
the complexity and the required time for the convergence
with negligible sacrifice of the estimation accuracy. In [38],
multi-task deep ANN framework for non-orthogonal multiple

access (NOMA), namely DeepNOMA, has been proposed for
treating non-orthogonal transmissions as multiple distinctive
but correlated tasks.

In this work we would like to evaluate jointly the two AI
MEC paradigms by investigating the performance of AIE
solutions with a specific IEC application (i.e., the two RAN
SON functionalities). In particular, for AIE we consider GL
as a distributed training model together with MTL and we
study their performance both in terms of prediction accuracy
and wasted energy, which have not been done till now in these
scenarios to the best of our knowledge.

III. METHODOLOGY
A. PROBLEM STATEMENT
In this work we consider next-Generation Node B (gNB)
architecture [39], where each BS will be composed of a
Central Unit (CU) and one or more Distributed Units (DUs),
which have computation capabilities to store the different
algorithms of the protocol stack as defined in the Open RAN
(O-RAN) paradigm [40]. In detail, we rely on the concept of
decoupling the Control-Plane (CP) from the User-Plane (UP)
into RAN for bringing in the CP embedded intelligence by
introducing the RAN Intelligent Controller (RIC). Without
loss of generality, in this paper we focus on two RAN SON
use cases for the RIC: Handover Decision (HD) and Initial
MCS Selection (IMS). We selected them in such a way that
they are sufficiently different tasks of the RAN, and they
are traditionally handled by different layers of the protocol
stack. In particular, handover management is normally han-
dled by Radio Resource Control (RRC) functions, whereas
the selection of theMCS is a MediumAccess Control (MAC)
layer problem. We do that to derive conclusions as general
as possible from the solutions proposed for these use cases.
We consider that both use cases will benefit from an ML
oriented approach, as we discuss in the following.

Regarding the HD, in standards and literature, mobility
algorithms are traditionally based on standard events defined
by 3GPP specifications [41], e.g., the A3 or A2 event, and are
mainly focused on the optimization of event trigger param-
eters, e.g., Hysteresis, Time-to-Trigger and Cell individual
Offset [42]. In this respect, many ML solutions have been
proposed to dynamically adjust online these parameters [4].
However, all the solutions present the same limitation: they
consider only some representation of the signal power for
evaluating which decision to make, but not the actual per-
ceived QoE after the decision. A typical problem of HD in
urban scenarios is the presence of many obstacles, that may
cause that the handover to the strongest neighbor cell is suc-
cessful but, a while after, the transmission is deeply affected.
In such cases, traditional handover approaches based on
instantaneous signal strength are not able to provide a satis-
factory solution, since they cannot take advantage of available
data to gain experience and make smarter decisions. Those
approaches are likely to severely affect the QoE of the users,
due to the unpredicted cell outage [43].

12494 VOLUME 9, 2021



M. Miozzo et al.: Distributed and MTL at the Edge for Energy Efficient RAN

Similarly, for what concerns the IMS, the initial MCS
adopted by a device when starting a connection is commonly
selected in a very conservative fashion, e.g., by taking the
MCS with the lowest spectral efficiency. In this way, the first
communication will be delivered with the lowest bit error
probability independently from the device’s position, which
is usually unknown at the beginning. However, for those UEs
that are in good coverage, this solution penalizes their initial
performance.

We propose different ANN architectures to estimate the
QoE that the users are perceiving, based on the data that are
generated by the BS during its normal operation. We extract
data from the complete protocol stack, from the transmis-
sion related parameters of the PHY layer (e.g., transmission
power, Reference Signal Received Power, hybrid automatic
repeat request feedback) to the ones of MAC (e.g., MCS,
resource blocks usage, retransmissions, protocol data unit
size and delay), up to application layer (e.g., inter packet
delay, instantaneous throughput). In particular, our ANNs
are designed to predict the QoE parameters of the two use
cases: i) the time to finalize the download for HD and ii) the
throughput perceived in the initial window for IMS.

The MLmodels that we propose are based on LSTM, so as
to exploit the temporal characteristic of the data extracted
from the mobile network. These solutions have been imple-
mented in both centralized and distributed architectures.
In the rest of the paper we will focus on the following
architectures:

• centralized : where all the local data are collected in a
common server to perform the training of the LSTM-
based solutions.

• distributed : where the data are maintained at the BS
premises for being processed by the local MEC server.
Only the model parameters are exchanged by the differ-
ent BSs after performing the local training.

• multi-task: adopted for enhancing the efficiency of the
training phase of the two use cases. MTL relies on a
sharedAE based on LSTM for learning themost relevant
features and predictors implemented with Multi-Layer
Perceptrons (MLPs).

As benchmark, we consider the single-task architecture,
where two dedicated LSTM predictors are used to estimate
the time to finalize the download and the initial throughput
perceived, respectively.

An example of the reference scenario architecture is pro-
vided in Fig. 1. The centralized solutions, placed in the
central cloud server of Fig. 1, are: single-task LSTM pre-
dictor for HD (ST-HD), single-task LSTM predictor for
IMS (ST-IMS), multi-task LSTM-AE with MLP predictor
for HD and IMS (MT-HD and MT-IMS, respectively). The
corresponding distributed extensions based on GL, deployed
on the edge directly at the BS premises in left part of
Fig. 1, are: single-task LSTM predictor for HD (GL-ST-
HD), single-task LSTM predictor for IMS (GL-ST-IMS),
multi-task LSTM-AE with MLP predictor for HD and IMS

FIGURE 1. Reference scenario architecture.

(GL-MT-HD and GL-MT-IMS, respectively). Summarizing,
in this workwe have considered the implementations reported
in Table 1.

TABLE 1. Implemented solutions.

Our focus in this paper is on adapting and evaluating
the distributed framework specifically in an EI scenario for
RAN management SON functionalities. This includes the
evaluation of two sensitive aspects: i) the behavior of the
ML models, when considering GL and MTL paradigms, and
ii) the assessment of the used energy with each architecture.

In what follows, we present the GL,MTL and LSTMbased
architectures together with their background information.

B. GOSSIP LEARNING
GL has been designed to handle the special cases of peer-to-
peer data processing of distributed data for managing sensi-
tive content that is better to process locally. The main idea
behind GL is to avoid any synchronization among the nodes,
so there is no need of any centralized entity in charge of man-
aging the training phase. This allows to have a more robust
algorithm, since it prevents the single point of failure problem
and do not requires the synchronization among all the nodes
and the central entity at each distributed training step. More-
over, GL guarantees a low communication overhead, since it
needs a reduced number of messages to be exchanged and
of a reduced size, i.e., only the model parameters have to be
exchanged instead of the local database.

The generic skeleton of GL involves three main compo-
nents: an implementation of random walk, an online learning
algorithm and ensemble learning [17]. In this paper we con-
sider a specific implementation of the GL, where the online
learning method is SGD for all the ML models.

Algorithm 1 provides the generic skeleton of the GL frame-
work. The same algorithm is run at each node in the network.
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Algorithm 1 Skeleton of the Gossip Learning Algorithm
1: procedureMain
2: currentModel ← InitModel()
3: loop
4: wait (1)
5: p← SelectRandomPeer()
6: send currentModel to p
7: end loop
8: end procedure
9: procedure OnReceiveModel(m)

10: currentModel ←Merge(m, currentModel)
11: end procedure

The algorithm consists of an active loop of periodic activity,
and a method to handle the reception of incoming models.
We assume that the length of the period of the loop 1 is
the same at all nodes. The original GL model is designed
for working with fully distributed data, where each node is
assumed to own a single, private data point, as for peer-to-
peer application, e.g., recommender systems. In this case,
nodes perform only one step of the learning process at each
loop cycle, according to the available data. However, this may
not be the case in many scenarios, where a single node might
have multiple useful data points, such as image classification
and our case. To this respect, the study in [44] shows that
training on multiple data points provides a clear advantage
over the original protocol, as models see more data in the
same number of iterations, and thus converge faster. There-
fore, we consider the extension proposed in [44], which
propose to call multiple times the SGD on different data
points, i.e., implementing at each node multiple training steps
sequentially every loop cycle. In particular, we consider to
perform the local training on the whole dataset generated by
one BS in one loop cycle, thus the maximum number of steps
of the algorithm will be the number of BSs. For simplic-
ity, in the implemented version, nodes have been randomly
ordered during the initialization, instead of distributively gen-
erating the random sequence during the algorithm. In this
way, nodes are aware of when they receive a new model and
to which node send the updated version. The active loop is
initiated at the same time in all the nodes, and the stopping
criteria is when the nodes reach a consensus. The consensus
is usually dependent on the specific problem to be solved,
e.g., the requested prediction loss. In our case, we consider as
consensus the finalization of the training phase from all BSs.
This allows us to compare the distributed approach against
the centralized, since they have been trained with the same
amount of data.

An example of the execution of the GL algorithm in a cell
with 6 BSs is provided in Fig. 2. During the initialization,
we pick up a random sequence for the distributed training,
i.e., {1, 5, 2, 4, 3, 6}. This sequence will be used by the nodes
to send their updated local model, as in Algorithm 1. In this
case, the algorithm initiates in BS1, which starts training the

FIGURE 2. Example of GL organization of compute nodes.

model through SGDwith its entire local dataset according the
specific ML model: the LSTM predictor for GT-ST-HO and
GT-ST-IMS, and the LSTMAE and the MLP for GT-MT-HD
and GT-MT-IMS. After this, BS1 randomly sends the param-
eters of the model to another node, in our case BS5. BS5 ini-
tializes its internal local model with the parameters received
by BS1 and performs the training with its local dataset. The
trained parameters are then randomly passed to the next node,
BS2. This procedure is repeated until the last BS in the
sequence has performed its local training, i.e., BS6.

C. MULTI-TASK LEARNING
The general motivation of the MLT is to obtain some under-
lying functions for prediction, which can define what good
predictors should be like. The critical issue is to obtain such
functions by simultaneously taking various prediction prob-
lems into consideration. Traditional MTL methods assume
that all the tasks are related and their dependencies can be
modeled by a set of latent variables. However, in many real-
world applications not all tasks are related, and enforcing
erroneous (or non-existent) dependencies may lead to neg-
ative knowledge transfer/sharing.

In this work, we consider the Multi-Task Autoencoder
Model (MTAM) [45]. MTAM extracts multiple features from
the data thanks to the AE for the prediction of the two RAN
tasks. The prediction is based on a MLP model, which is
a standard class of feedforward ANN. The MTL paradigm
has been proposed with the aim to enhance parameters esti-
mation; however, in our study, we are more interested in
its computational efficiency, since it allows to share the AE
training phase among the different tasks.

Autoencoders are used in representation learning to
learn a representation of the input in a feature space in
unsupervised manner. We consider a sequence-to-sequence
autoencoder [46], since our dataset consists of time-series
sequences. The objective is to reconstruct the data sam-
ples using an encoded representation of the input sequence.
An autoencoder is made of an encoder and a decoder. Let
X = RD be the input space and F be the feature space.

12496 VOLUME 9, 2021



M. Miozzo et al.: Distributed and MTL at the Edge for Energy Efficient RAN

FIGURE 3. MTL architecture diagram.

An encoder is a function φ : X → F that has to learn the
prominent characteristics and generate an encoded version of
the sample in the feature space F . Alternatively, the decoder
is a function ψ : F → X that aims to reconstruct the input
using the internal representation. Formally, given a sample
sequence x(n), the autoencoder is a function8AE : φ ◦ ψ that
outputs x̂(n)

8AE (x(n)) = x̂(n). (1)

When trained with sufficient samples, the architecture is able
to learn the reconstruction of the normal samples with a low
reconstruction error.

For the implementation of both the encoder and the
decoder, we adopt LSTM cells, according to their capability
of extracting the temporal dependencies from one instance to
another. In detail, the encoder and the decoder architectures
have been chosen through simulation trials and evaluation,
and each one consists of two layers of LSTM cells, respec-
tively. The first layer of the encoder ENC1 has NENC1 = 84
cells and the second layer ENC2 has NENC2 = 100 cells,
which represents the dimension of the learned representation,
or codeword, of the AE. The decoder is symmetrical: DEC1
has NDEC1 100 cells and the second layer DEC2 has NDEC2

= 84 cells. Both encoder and decoder use tanh activation
function, sigmoid recurrent activation function and Adam
optimizer with mean square error minimization function for
the training. The MLP used for the prediction has two fully
connected layers. The first layer MLP1 contains NMLP1 =
84 neurons and the second layer MLP2 has NMLP2 = 42
neurons. Leaky ReLU activation function is used for hid-
den layers while linear activation is applied at the output
layer. In addition,RMSProp optimizer withmean square error
minimization function is used for the training. The resulting
number of trainable parameters of each model based on MTL
according to the hyperpameters of above are 235,620 for the
AE and 6,774 for the MLPs. The input sequence will be
described in Section IV. The diagram of the predictors based
on the MTL architecture is depicted in Fig. 3.

D. LSTM SINGLE-TASK PREDICTOR
When used for performing a prediction, the LSTM algorithm
receives a traffic sequence of length W at time n, x(n) =
[x(n), x(n+1), .., x(n+W−1)], and tries to predict the traffic
sample at time n+W , x̂(n+W )

8PRED(x(n)) = x̂(n+W ). (2)

We consider a stacked architecture that includes multiple
LSTM layers. The number of concatenated cells in the first
layer indicates the number of observations of the data, which
in our case corresponds to the window lengthW . By doing so,
LSTM are capable of learning long-term dependencies from
the input time series, while solving the vanishing-gradient
problem that affects standard RNN [47]. This capability is
due to the structure of the basic LSTM cells (or units) that
includes gates to regulate the learning process.

Through simulation trials and evaluation, we have selected
four stacked layers combining three LSTM layers and a final
fully connected output layer. The LSTM layers (respectively
LSTM1, LSMT2 and LSMT3) have NLSTM1 = 84, NLSMT2 =
42 and NLSMT3 = 21 cells. The final fully connected layer
uses linear activation function and its output consists of
the prediction. RMSProp optimizer with mean square error
minimization function is used for the training. According to
these hyperparameters configuration, the number of trainable
parameters of each model based on the LSTM predictor
are: 83,346 for ST-HD and GL-ST-HD, 84,106 for ST-IMS
and GL-ST-IMS. The input sequence will be described in
Section IV.

IV. DATABASE DESCRIPTION
In order to test the proposed solutions, we use a synthetic
database generated with a simulator. In detail, we imple-
mented a realistic simulation scenario through the ns-3 LENA
LTE (Long Term Evolution) - EPC (Evolved Packet Core)
simulator [48]. A macro cell outdoor scenario has been con-
sideredwith a network consisting of three-sectorial BSs. Each
sector has a cluster of User Equipments (UEs) located at ran-
dom positions and moving following a predefined mobility
pattern. In order to mimic the communication challenges of
an urban scenario, and generate random coverage patterns,
we introduce obstacles in the scenario, thus generating mul-
tiple coverage holes, as shown in Fig. 4. Each UE performs a
Transmission Control Protocol (TCP) file transfer to a remote
host in downlink and uplink directions. Different databases
have been generated in order to test the different ML archi-
tectures: DB-ST-HD and DB-ST-IMS for the single-task HD
and IMS solutions, respectively, and DB-MT for the MLT.
For the cases of single-task LSTM prediction of HD use
case (ST-HD) the database is created for collecting info on
this specific task. Therefore, the simulations are designed
for performing deterministic handovers to different potential
neighbors. In this scenario, we observe that the maximum
number of neighbors a UE can perceive is 8; therefore,
each run is repeated 8 times to measure the file download
time when the handover is performed to one of the possible
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FIGURE 4. Simulation scenario.

neighbor BSs. For every simulation run, a UE picks a random
starting position in the cluster and a random angle in the range
of [0◦, 360◦] to move away from the source BS following
a straight line. Regarding DB-ST-IMS, the simulations are
designed for retrieving the throughput in the firsts 20 ms win-
dow when using the initial MCS. Without loss of generality,
we analyze three MCS (0, 14 and 28) for generating this
database, since they substantially differ in spectral efficiency
and allow us to highlight their behavior according to the posi-
tion of the UEs with respect to the BS. Finally, for generating
DB-MT, the simulations are a combination of the two cases
of above. In fact, the database DB-MT is common for the
two tasks; therefore, each run is repeated 24 times for each
user: 8 times to measure the download time and 3 times to
measure the initial throughput. The data obtained from these
simulation campaigns for each UE are stored in the form of a
dataset, according to the format described in what follows.

We design the solutions of the two RAN use cases as
a regression problem, where we need to estimate the QoE
expected for performing handover to a specific target cell
and the initial throughput when starting a new connection.
Therefore, the algorithms are adopting the supervised learn-
ing paradigm, which implies that a labeled dataset is needed.
In fact, in supervised learning, each entry is a pair consisting
of an input object and the correspondent desired output value,
e.g., the label. In our case, the inputs of these datasets consist
of the configuration parameters and the set of features, and the
outputs are the QoE parameters perceived. For what concerns
the features, we extracted 84 measurements from all the
layers of the LTE protocol stack.We gather the measurements
using some logs/traces already available in ns-3, e.g., those
available for RLC (Radio Link Control) and PDCP (Packet
Data Convergence Protocol), and other new custom trace
sources at RRC (Radio Resource Control), MAC and PHY,
obtained by leveraging the tracing system of ns-3. The input
features, for our dataset, are extracted with the periodicity
of 200 ms in order to be consistent with the approximate
periodicity with which UE measurements are reported from

UEs at the RRC level. This dataset can be expressed as a 3D
matrix X:

X =


x1,1 x1,2 · · · x1,m

x2,1
. . . · · · x2,m

...
... x i,j

...

xn,1 xn,2 · · · xn,m


where the feature vector of size 84 is x i,j ∈ X, 1 ≤ i ≤ n,
and 1 ≤ j ≤ m. The upper limit of n can be computed
by multiplying the total number of UEs with the maximum
neighbor BSs to handover and/or the initial MCS to explore,
and the total number of simulation runs. Whereas m defines
the duration of the time series to be analyzed (i.e., the number
of samples in the total simulation time, 40 sec, when sampling
each 200ms), which corresponds to number of time-steps that
the LSTM processes to perform the prediction.

Regarding the simulation scenario, we consider 7 three-
sectorial BSs, which corresponds to 21 sectors, and 10 UEs
per sector, which results in a total of 210 UEs in the whole
simulation field. For an exhaustive description of the simu-
lation scenario and parameters, the reader can refer to [49].
During the simulations, it may happen that some of the data
are not available, because UEsmight experience a Radio Link
Failure (RLF) when forced to handover to a BS with poor
channel conditions. In those cases, we do not have data since
the user is not connected, and consequently, we removed
the affected entries. According to this, the number of entries
of the databases for the overall simulation scenario, i.e.,
the parameter n, are: 33,500 for DB-ST-HD, 29,648 for
DB-ST-IMS and 33,662 for DB-MT. These values correspond
to the databases used for the centralized solutions, since they
aggregate the data of all BSs. On the other hand, in the
distributed versions, each node processes only the entries
generated by the corresponding BS sector, which implies that
the local databases dimension is smaller, i.e., approximately
the 21st part of the dimensions for correspondent centralized
databases.

V. RESULTS
The implementation of the proposed ML architectures relies
on Keras and Tensorflow as backend. In particular, we
adopted the fast LSTM implementation by Nvidia CUDA
Deep Neural Network (CuDNN) library for Graphics Pro-
cessing Units (GPUs) [50]. The used server has the following
specs: 4 GPUs GeForce RTX 2080TI (4.352 cores 11 GB),
2 Central Processing Units (CPUs) Intel Xeon 6230
(20 cores) 2,1 GHz, 192 GB DDR4 2933 MHz of memory,
2 disk of 2TB SATA3 6GB/s.

A. TRAINING PHASE
The datasets have been randomly divided into training and
validation sets, using a split ratio of 0.75 and 0.25, respec-
tively. We train and validate the algorithms using the train-
ing and validation sets to minimize the reconstruction error
over 200 epochs, in the case of the AE, or prediction error,
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FIGURE 5. Validation losses for single-task architectures.

in the case of the predictors. The loss function used to train the
algorithm is the mean square error (MSE) and the RMSProp
algorithm is used to optimize the learning process. The GL
based solutions have been analyzed during its learning pro-
cess among the nodes, i.e., analyzing the error of the ML
model when different number of nodes have been visited and
have performed their local training.

We start analyzing the single-task architectures and we
present the validation errors over the number of visited nodes
in Fig. 5. The centralized versions are presented as a horizon-
tal line, since they are trained on the aggregated databases.
The validation errors of both GL-ST-HD and GL-ST-IMS
have an oscillating behavior when varying the number of
visited nodes. The specific value change according to the
GL training order; but the range and the oscillations are
similar regardless the different random sequence that can be
used. Therefore, we report the results only for one sequence
during its learning process. GL-ST-HD and GL-ST-IMS have
in general worst validation errors with respect to the cor-
respondent centralized solutions. In detail, for what con-
cerns HD use case, the GL-ST-HD solution presents both
higher and lower values of validation error with respect to
ST-HD. The GL-ST-HD has many values of lower validation
error with respect to ST-HD in the middle of the training
phase, i.e., when the number of nodes that have performed
the training is between 7 and 18. Similarly, for the IMS
use case, the values of validation error of the GL-ST-IMS
solution are varying with the number of visited nodes and
the values of high validation errors are concentrated at the
beginning and at the end of the training phase. The higher
validation errors for the distributed solutions at the beginning
(i.e., when the number of visited nodes is low) is expected,
since the model has been trained with a reduced number
of samples. However, when the number of visited nodes
is increasing, the distributed solutions still present higher
validation errors in many steps. Moreover, the final validation
errors of GL-ST-HD and GL-ST-IMS are higher with respect
to the correspondent centralized versions. This phenomenon
depends on the quality of the datasets, i.e., whether data are

FIGURE 6. Validation losses for multi-task architectures.

iid. If the data distribution changes while learning, the new
data will interfere with already acquired knowledge. In this
case, the model might experience performance degradation
at previously learned concepts (i.e., the relation between the
inputs and outputs of the model) when trained sequentially on
learning new concepts, the so called Catastrophic Forgetting
(CF) [51]. This is due the fact that SGD is sequentially applied
to the local datasets; whereas, in the centralized version, SGD
is executed on the randomized aggregated dataset, which has
higher iid properties.

Considering the multi-task architectures, Fig. 6 reports
the validation errors with respect to the number of visited
nodes. In this case, the oscillations of the validation error are
higher with respect to the single-task, especially after 7 nodes,
where both GL-MT-HD and GL-MT-IMS experience only
one value of validation error below the correspondent central-
ized solutions, MT-HD and MT-IMS, respectively. The same
considerations done for the single-task architectures apply
also in this case. In addition, comparing Fig. 5 with Fig. 6,
we can see that there is no correlation among the peaks of
high validation error between the single-task and the multi-
task architectures. This implies that the data generated by
each BS and the variation of validation error during the GL
training are not correlated.

In this work we limit our study to the demonstration that
a distributed learning implementation using GL is return-
ing similar network performance compared to a centralized
solution, as presented in Section V-B. Therefore, we do not
investigate CF issue inmore depth. However, we consider that
CF has to be carefully investigated when applying distributed
solution; thus, in Section VI-A we discuss some open issues
on training when data cannot be assumed iid.

B. NETWORK PERFORMANCE
The network performance evaluation of these models is per-
formed in a supervised offline fashion similar to [52], and
detailed in what follows. We compare the network perfor-
mance of benchmark solutions against the ones obtained with
the predictions based on the centralized architectures and
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FIGURE 7. Example of handover behavior with A2-RSRP, GL-ST-HD and
GL-MT-HD solutions.

the correspondent distributed. To do this, we consider the
distributed version when the training is finalized, i.e., the GL
algorithm has visited all the nodes, in order to have trained all
the models with the same amount of data. The results based
on the centralized architecture are equal to the distributed,
so we can claim that the difference in validation error does not
affect the prediction accuracy for the considered use cases.
According to this, we only report the results of the distributed
approaches for sake of brevity.

For the HD use case, we compare the real time to download
for each UE, obtained after selecting the target cell providing
the lowest predicted time to download, to the one achieved by
using a benchmark approach, i.e., A2-RSRP based handover
algorithm. In particular, to perform this evaluation we con-
sider a test dataset generated with two extra simulation runs
obtained using a seed value for the random number genera-
tor which was not used to build the training and validation
datasets. For IMS use case, we evaluate the performance of
the initial MCS, following an offline strategy, as we did for
HD use case, considering a new testing dataset. We evaluate
three different MCSs for each UE to get the correspondent
predicted initial throughput. Then, for each UE we select the
MCS, which results in the higher initial throughput and we
compare it to the benchmark approach (i.e., select always
MCS 0).

TABLE 2. Offline evaluation HD use case.

In Table 2, we report the results on the HD use
case obtained with the A2-RSRP, the GL-ST-HD and
the GL-MT-HD. As we can see, both GL-ST-HD and
GL-MT-HD outperform the benchmark solution in terms of
number of UEs that are able to finalize the download and,

among these, the download time is also reduced inmost cases.
We have analyzed the behavior of the UEs that have a better
download time from signal strength perspective. In partic-
ular, we have evaluated the behavior of the handover algo-
rithm in the different cases from Reference Signal Received
Power (RSRP) perspective, which is stored in the database as
it is collected by the UEs for all the neighbors independently
from the handover solutions adopted. In Figure 7 we plot the
RSRP as a function of the epoch time perceived by one of
the UEs that have resulted with lower download time. The
UE started attached to sector 13 until epoch 73 where it
reaches an obstacle and it looses the connection, i.e., a Radio
Link Failure (RLF) occurs. At epoch 80, the UE has already
passed the coverage hole, and the A2-RSRP algorithm detects
that sector 15 has the best RSRP and perform a handover to
sector 15. Differently, GL-ST-HD andGL-MT-HD exploit the
experience extracted by the data to select as target sector for
the handover the cell that provide the best long termQoE, i.e.,
sector 14.

TABLE 3. Offline evaluation IMS use case.

The results on the IMS use case are presented in Table 3.
Results show that GL-ST-IMS and GL-MT-IMS outperform
the baseline. In this case, GL-MT-IMS has a lower num-
ber of UEs with improved performance with respect to the
GL-ST-IMS. Since this phenomenon happens also in the
centralized version, the reason can be a low degree of rela-
tion among the two tasks, which jeopardizes the prediction
performance of the IMS use case. In fact, in this case, the two
tasks are learned simultaneously, thus CF does not represent
an issue. It is to be noted that, even all the algorithms present
lower validation error for the IMS use case with respect to
HD, the specific MCS selection problem might require a
higher precision to properly work.

C. ENERGY AND COMMUNICATION KPIs ASSESSMENT
In what follows, we investigate on the consumed energy by
the different architectures for performing the training. In par-
ticular, we are interested in evaluating the energy figures of
the distributed solutions with respect to the centralized ones.
To do so, we use the Machine Learning Emission Calculator
(MLEC) [53] and Green Algorithms (GA) [54] tools, which
can provide the used energy according to the type of used
hardware, the amount of used memory and the execution
time. MLEC takes as input the details regarding the training
of an ML model (i.e., the type of GPU, and the training
time) and gives as output the approximate amount of Wh.
GA is designed to have a wider application and removes the
restrictions on the hardware and applications ofMLEC. To do
this, GA considers the running time, the number, type and
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FIGURE 8. Energy (in black) and GHG emissions (in italic and green) assessment, the percentages in brackets refer to
the savings when using the distributed solution with respect to the correspondent centralized.

process time of computing cores (CPU or GPU), the amount
of used memory and the power draw of these resources.
In detail, the energy consumption E (in KWh) is calculated
as:

E = t × (nc × Pc × uc × nm × Pm)× 0.001, (3)

where t is the running time (hours), nc the number of cores
and nm the size of memory available (gigabytes), uc is the
core usage factor (between 0 and 1), Pc is the power draw of a
computing core andPm the power draw of thememory (Watt).
By providing the region where the training is performed,
MLEC and GA can also estimate the approximate amount of
Carbon Dioxide Equivalent (CO2e) produced. In this work
we adopted a carbon efficiency of 0.432 kg/kWh, which is
the 2014 yearly average value according to the Organiza-
tion for Economic Co-operation and Development (OECD).
The results are presented in Fig. 8 and provide the KWh
used by each architecture (in black) and the correspondent
Greenhouse Gas (GHG) emissions in terms of CO2e (in green
and italic). We can see that the GL based solutions always
reduce the energy consumption, especially in the single-task
paradigm, where GL-ST-HD can reach up to 29% of energy
savings according to GA. The lower energy savings of MTL
can be motivated by the higher complexity of its architecture
(242,394 parameters) with respect to the single-task (83,346
parameters). However, the different implementations of the
two solutions affect the amount of work performed with their
parameters. A more in-depth investigation on the relation
between the consumed energy and their parameters for each
proposed solution might help in clarifying this phenomenon;
however, we consider it is out of the scope of this evaluation
and we left it for future work.

In addition, we would like to observe that, the MTL archi-
tectures facilitate a more energy-efficient paradigm since
the training of the AE is common for all tasks. In fact,

we calculate that the energy consumed by the MLP is around
5% of the whole MTL solution: therefore, adding a new
task in MTL would imply a marginal increment, i.e., the
5% of GL-MT-HD or GL-MT-IMS. Alternatively, for the
single-task based architectures, it implies to train another
LSTM model from scratch. Thus, MTL favors scalability
with respect to number of SON use cases that can be handled
in parallel by the RAN. For instance, considering MLEC
values of GL architectures, the sum of the used energy by
GL-ST-HD andGL-ST-IMS is 1.21KWh,whereas withMTL
the two tasks would consume 1.15 KWh (i.e., 1.09 KWh +
5%). In case we added a third task with energy consumption
equal to the average of the HD and IMS tasks, the single-task
paradigm would require approximately 1.82 KWh, whereas
MTL only 1.2 KWh. Thus, the single-task presents a linear
increment in energy expenditure with respect to the number
of tasks, whereas MTL increments of only 5%.

Finally, it is also worth mentioning that the amount of
data involved in the communication has been dramatically
reduced. In the centralized version, 40 GB have to be trans-
mitted to the central cloud, whereas in the GL versions the
total amount of data exchanged when passing the model
parameters is: 7 MB for GL-ST-HD and GL-ST-IMS, 21 MB
for the AE and 1.5 MB for the MLPs of GT-MT-HD and
GT-MT-IMS. This translates in further energy savings, since
less data have to be transmitted and less demanding storage
hardware is needed at the edge with respect to a centralized
cloud solution. According to [11], these energy savings in the
communication and storage are of the 25%.

VI. OPEN ISSUES AND FUTURE DIRECTIONS
In this work, we presented a comparison between central-
ized and distributed architectures for implementing two RAN
SON functionalities. The results highlight that the distributed
solutions are viable and cost-effective. However, several
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issues are still open on this field and need a proper investiga-
tion, both theoretical and applied, in order to efficiently use
ML models in a distributed manner. In the following, a few
fundamental research problems are presented and discussed.

A. SEQUENTIAL TRAINING
As seen in Section V-A, the GL presents good performance
in terms of prediction accuracy for the scenario considered.
However, the variation of the error during the training phase
suggests that the sequentially learning might suffer from
the problem of non-iid data sources. In this case, an ANN
experiences CF and tends to lose information from previously
learned data as information relevant to the new data are
incorporated. Continual Learning (CL) [55] is a branch of
ML aiming at handling this type of situation. CL investigates
the ability of ML models to learn consecutive tasks without
forgetting how to perform previously trained tasks. Therefore,
CL can apply not only to GL but also to KTL andMTL, when
the learning phase of the different tasks is performed at differ-
ent steps. The main idea of CL is remembering only essential
concepts and identifying the potential source of interference
in the data. In order to do this, CL implements different
memorization approaches that incorporate new knowledge
and protect them from modification, in detail:

• Dynamic Architecture: the ANNs create new weights
automatically that will learn new tasks, whereas trained
weights are frozen to protect memories.

• Rehearsal: this class of algorithms identifies a subset of
training data as memory, which maintains knowledge
from past learning experiences.

• Generative Replay: where the goal is to learn generative
models for generating artificial samples as memory of
past learning experiences.

• Regularization: the loss is defined to constrain weight
updates in order to retain knowledge from previous
tasks.

In the GL algorithm, CF can be addressed also through an
early-stop solution, which allows to interrupt the GL training
phase as soon as the desired level of error has been reached.
This may also increase the energy efficiency of the system.
To do so, the trade-off between the original GL algorithm,
where a single SGD is performed at each round, and the eval-
uated solution, where the entire local database is processed at
each round, should be evaluated in order to study the training
behavior of the different solution as function of the accuracy,
energy and communication performance.

The incremental paradigm of the sequential training phase
can be used also for managing more complex scenarios, i.e.,
with higher number of BSs and/or with data distribution
modifying in time (e.g., changes in scenario as new obstacles
or deployment of new BSs). In fact, CL based solutions aim
at finding working algorithms for agents which learn from
an evolving environment and that need to learn continually
to adapt to unseen situations and remember already learned
solutions to known situations.

Finally, also the local databases require a more in-
depth investigation of their iid properties so as to eval-
uate the GL training phase in terms of the energy and
accuracy. This will help to discover noisy data and
filter them accordingly for improving the final accu-
racy or implementing the rehearsal CL memorization
solution.

B. DISTRIBUTED ML SOLUTIONS
As presented in Section II, several ML solutions are avail-
able for distributing the training phase: FL is attracting the
attention, but KTL can be also an interesting field of research.
On this matter, it is of paramount importance to investigate on
the different performance of the distributed ML solutions in
terms of accuracy, latency, energy and communication KPIs
in order to be able to choose the proper solution for the
different applications. FL can help in having a stricter control
on the distributed training process thanks to its centralized
management of the model, thus facilitating the optimization
of accuracy and latency. However, the information exchanged
between nodes and the central entity is higher with respect to
GL and need more strict requirements in terms of latency and
reliability.

On the other hand, KTL can improve the energy effi-
ciency of the system by exploiting the transfer of the already
acquired knowledge. This is not always possible, as in many
cases it is impracticable to identify a source model since
the data stored at the nodes are of equal importance, or the
hierarchical distribution among the nodes is not known a-
priori.

Finally, all distributed ML solutions that implement a
sequential learning have to deal with the CF problem. Conse-
quently, all the challenges presented in Section VI-A have to
be properly evaluated for each solution.

C. DEEP REINFORCEMENT LEARNING SOLUTIONS
Reinforcement Learning (RL) based solutions also repre-
sent a viable approach to investigate, especially consider-
ing their extension through DL. In particular, Deep ANN
can be used as approximation function to solve the RL
problem when a huge number of variables has to be con-
sidered, as in our case. The main problem of DRL-based
solutions is represented by the training phase, in which the
algorithm needs to interact with the environment during its
learning process. To do this, the off-line paradigm imple-
ments the training in a model of the environment, e.g.,
with simulation tools. However, the model of the environ-
ment has to be carefully designed for having a limited gap
with respect to the real environment in order to be able
to perform a valuable training. On the other hand, in the
on-line training, the direct interactions with the environment
can jeopardize the system operations and consequently, the
exploration has to be carefully guided, such as with Upper
Confidence Bound (UCB) [56] and Exponential weight
algorithm for Exploration and Exploitation (EXP3) [57]
solutions.
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D. GREEN AI
The field of Green AI is very recent and still there is not a
common agreement among the researchers on how to perform
the energy assessment of the ML solutions, as presented
in [8]. MLEC and GA represent two valuable tools, but
provide energy figures which are hardware dependent, and,
thus, they do not allow for a fair comparison between different
models as well as to decouple the model contributions from
hardware improvements. Another usefulmetric is represented
by the Floating-Point Operations (FPO). FPO directly com-
putes the amount of work done by a machine and is agnostic
to the specific hardware, but it does not consider the imple-
mentation of the model and its memory consumption, which
may often lead to additional energy and monetary costs [58].

The number of parameters of the model (i.e., the internal
variables of the model whose values can be estimated from
data) is an important metric. In fact, it is independent from the
hardware and is highly correlated with the memory consump-
tion. However, different algorithms make a different use of
their parameters (e.g., deeper ANN and wider ANN), which
implies that a similar number of parameters might correspond
to a different amount of work. Finally, another aspect to
be considered is the model sensitivity to hyperparameters,
i.e., all the parameters related to the configuration that are
external to the model and whose value cannot be estimated
from data. An example of such analysis is the characterization
of the model tuning time, which could reveal inconsistencies
in time spent tuning baseline models compared to proposed
contributions. This sensibility is especially important when
proposing a model that has to be re-trained for its application,
such as re-training on a new domain or fine-tuning on a new
task.

VII. CONCLUSION
In this paper, we have presented distributed architectures for
two RAN SON functionalities based on multi-task and gossip
learning animated by the big data availability of BS statistics
at the edge. We considered the handover decision and the ini-
tialMCS selection use cases.We evaluated the proposed solu-
tions considering both their accuracy and consumed energy in
realistic scenarios. Results prove that the proposed distributed
implementations of the two RAN SON functionalities allow
to increase the energy-efficiency of the system while main-
taining the same network performance with respect to their
correspondent centralized versions. Finally, we have dis-
cussed some open research issues that have been identified
during this work and can be generalized to the emerging
interesting field of edge intelligence.
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