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ABSTRACT Industry 4.0 utilizes the Internet of Things (IoT) to rise the efficiency in manufacturing and
automation where wireless sensor networks (WSNs) are crucial technologies for communication layer of
IoT. WSNs include hundreds of small sized sensor nodes that have the abilities of wireless transmission and
environmental sensing. Wireless transmission is prone to various attacks such as data manipulation since
data communication is achieved through transfer of radio packets. A countermeasure of this issue is link
monitoring by deploying secure points that can physically capture and inspect radio packets. Graph theory
plays a critical role to solve various problems in WSNSs. Finding minimum Vertex Cover (VC) is an important
NP-Hard graph theoretic problem in which the minimum set of nodes (vertices) is aimed to select in such
a way that each link should be incident to at least one node from this set. VC is a significant structure for
WSNs where it perfectly fits for link monitoring when nodes in VC are set as secure points (monitors). Since
sensor nodes are generally battery-powered and have limited transmission range, energy-efficient multi-hop
communication to the sink node is of utmost importance. In weighted connected VC (WCVC) structure,
subgraph induced by monitor nodes are connected where monitors are chosen according to their weights.
When weights of nodes are assigned as reciprocal of their energies, an energy-efficient virtual backbone can
be formed. We propose a novel metaheuristic WCVC algorithm for link monitoring and backbone formation
in WSNs modeled as undirected graphs. Our proposed algorithm integrates a genetic search with a greedy
heuristic to improve WCVC solution quality and decrease the search time. To evaluate the efficiencies of
greedy heuristics, we adopt three different heuristics for WCVC problem. We implement our algorithm
with its counterparts and reveal that the algorithm is favorable in terms of solution quality and resource
consumption.

INDEX TERMS Internet of Things, wireless sensor networks, link monitoring, vertex cover, metaheuristic
algorithm.

I. INTRODUCTION

New manufacturing, automation and production process
requirements brought by Industry 4.0 will boost the develop-
ment of Internet of Things (IoT) which is envisioned as a net-
work of billions of connected smart objects to increase safety,
efficiency and intelligence [1]-[3]. Application, communi-
cation and physical layers are IoT architecture layers from
top to bottom. Smart plants, factories and supply chain are
some well-known examples located in the application layer.
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Mobile phones, computing terminals and data centers are
some example devices belonging to the physical layer. Wire-
less sensor networks (WSNss) are indispensable networking
technologies used in the communication layer of IoT [4].
WSNs are composed of tiny sensor motes (sensor nodes)
which are embedded in the environment to sense various
events and transmit the sensed data through wireless trans-
mission making them applicable in a broad spectrum areas
such as habitat monitoring, outer space exploration, tar-
get tracking, miner safety, healthcare and military surveil-
lance [5]-[18]. Generally, motes are geographically dispersed
in a sensing area to accomplish these applications and they are
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programmed to operate in an autonomous way. A specialized
sink node plays the central data collector role of the network
where it achieves a gateway operation between ordinary sen-
sor nodes and users interested in sensed data. Although, star
topology and its similar variants are known as deployment
alternatives to achieve data transmission through single-hop
communication between the sink and ordinary nodes, they
have many defects. For example, in many real world sce-
narios, the maximum transmission range of motes can be
limited to transmit the sensed data, obstacles may be present
to interfere the wireless communication, energy conserva-
tion techniques can be applied to reduce the transmission
power to prolong the network lifetime. When at least one of
these cases is present, engineering multi-hop communication
where the sensed data is relayed through intermediate nodes,
is of paramount importance.

Wireless communication is known prone to various attacks
such as spoofing, jamming and eavesdropping due to its
inherent properties [19]-[22]. As an example, a successful
transmission between a sender and receiver node can be
physically overheard by other nodes in transmission range
of sender node. In this way, an adversary node can collect
various packets to learn the behaviour pattern of other legit-
imate nodes and may inject fake packets to misinform the
nodes in network. To detect and prevent these attacks, coun-
termeasures should be taken before WSN starts to operate.
Monitoring network traffic through secure points is one of the
most common methods to overcome this type of attacks [23].
When every data transmission is inspected by monitor nodes,
secure points in another words, adversely generated packets
may be detected and precautions can be taken. Although,
this countermeasure is a very effective strategy to detect and
prevent this type of misbehavior, monitor nodes can be costly
in terms of many parameters such as deployment time and
extra hardware cost, thus minimizing the number of these
nodes is of very important.

WSNs can be modeled with an undirected graph (UG)
G(V,E) in which V and E represent the set of nodes and
communication links (edges), respectively. Vertex cover (VC)
is one of the important graph theoretic structures which can
be used in various domains such as race condition detection
in parallel systems, camera deployment in traffic supervision,
phylogenetic tree construction and finally, the link monitor-
ing in WSNs [23], [24]. A VC set consists of nodes where
for each edge (i) in E at least one of i and j is in VC.
In another words, at least one endpoint of each edge is a node
in VC set. In this manner, the nodes in VC set can be assigned
as monitor nodes. For a given UG, finding the minimum
cardinality VC set is an NP-Hard problem. If each node pair
in VC is connected through path of only nodes in VC set, then
we call this structure as connected VC (CVC). CVC provides
a virtual backbone of monitor nodes where the collected data
by monitor nodes can be routed to the sink node through
CVC backbone. Obviously, same with VC problem, finding
minimum CVC for a given graph is NP-Hard. Since sensor
nodes are generally battery powered, energy conservation is
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very important where the transmission is the most energy
consuming factor [25]. So that, maximizing the energies
of CVC set is crucial to prolong the lifetime of backbone.
To accomplish this issue, weighted CVC (WCVC) can be
used in which weight of each node is assigned as reciprocal
of its energy. The objective of minimum WCVC problem is
to find a connected VC set having minimum total weight.
WCVC provides both link monitoring and energy-efficient
backbone formation operations for WSNs, so it is a crucial
structure. In this article, to address these challenges, we pro-
pose WCVC algorithms for link monitoring in WSNs. Our
contributions are listed as follows:

o As the main contribution of this article, we propose a
novel hybrid genetic WCVC algorithm for link moni-
toring in WSNs modeled as UG. Our novel approach
combines a greedy heuristic with a genetic search to
decrease the weights of WCVC solutions and to reduce
the time needed to search new solutions.

o« We adapt three different greedy heuristics to solve
WCVC problem. After extensive experiments, we find
the best heuristic and use it as the selection criteria of
our metaheuristic algorithm.

« We implement the proposed algorithm with its counter-
parts and find that our proposed algorithm outperforms
its competitors in terms of WCVC weight and monitor
count. We also reveal that our proposed algorithm finds
optimum results in small size instances while consuming
far less time than the brute force algorithm. These find-
ings show us that our algorithm is favorable in terms of
WCVC quality and resource consumption.

The rest of this article is organized as follows. In Section II,
we provide a detailed survey of the related studies. Prob-
lem formulation is given in Section III. Proposed metaheuris-
tic algorithm along with the adopted greedy heuristics are
elaborated in Section I'V. Section V presents extensive exper-
imental evaluations. Conclusions are drawn in VI.

Before ending this section, finally, we summarize the nota-
tions used throughout the paper in Table 1 to clarify and ease
the reading.

TABLE 1. The list of notations used in this article.

Notation | Description

Graph

Set of vertices (nodes)

Set of bidirectional links (edges)
Number of nodes

Number of edges

The edge between node u and v
Weight of node u

Open neighborhood of node
Closed neighborhood of node u
Neighbors of node v in color
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Il. RELATED WORK
In this section, we investigate studies related to vertex cover
and its varieties. In [26], isolation algorithm that is a heuristic
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method aiming to solve minimum VC problem has been pro-
posed. Measurements taken on widely used datasets revealed
that the proposed algorithm performs well when the graph
size is small. A VC algorithm has been given in [27] that is
based on two-stage exchange and edge weighting methods.
The first method aims to find two nodes to exchange and
the second method targets to decrease edge weights. By com-
bining these two methods, a local search approach has been
proposed and tested on widely used datasets. Caskurlu et al.
proposed a partial VC formulation considered for risk man-
agement and proved that the tackled problem is NP-hard [28].
In [29], a local search solver has been designed to enhance
best-picking strategy and it has been shown that although
this method has high complexity, it can be powerful to solve
problems. Hong et al. studied VC problem with various
constraints on hypergraphs and proposed a primal-dual algo-
rithm [30]. Cheung et al. proposed another study targeting the
same problem on hypergraphs [31]. A multi stage metaheuris-
tic approach in which a degree-based initialization method
and snowdrift game is used that aims to solve VC problem
has been designed in [32]. For other similar studies, we refer
the readers to [33], [34]. The algorithms mentioned so far do
not provide both weighted and connected VC whereas the
proposed algorithm in this article aims to construct WCVC
structure.

Xu et al. designed a WVC solver based on a primal-dual
algorithm [35]. Through performance evaluations, they
showed that their proposed solver is efficient. In [36], a list-
heuristic algorithm to solve WVC has been proposed. The
dual formulation of WVC and its usage has been studied
in [37]. Cai et al. designed two algorithms which improve
search process to solve WVC [38]. This algorithm has been
evaluated for map labeling and tested on massive graphs.
In [39], k-weighted VC problem has been studied in which
the weight of VC is bounded by k. Islam et. al has been
investigated vertex and edge weighted VC problem in which
a chemical reaction optimization approach has been pro-
posed to tackle this problem [40]. The algorithm has been
compared with other metaheuristic methods such as genetic
algorithm and tabu search. In [41], authors proposed a WVC
algorithm running on graphs whose maximum degrees are 3.
Li et al. proposed an algorithm to solve WVC based on reduc-
tion rules, configuration checking and self-adaptive node
removal [42]. The authors evaluated the proposed algorithm
on massive graphs and real-world instances. Although the
algorithms given in this paragraph produce weighted VC,
they do not aim to output CVC, thus they can not be used
for backbone formation.

In [43], authors designed approximation algorithms for
CVC problem on 4-regular problems where this version of
CVC problem is in NP-hard same with the original CVC
problem. Krithika et al. studied the parameterized complex-
ity cases of CVC [44]. Johnson et al. concerned the CVC
problem for some special cases of graphs [45]. A two stage
algorithm has been given in [46] where a greedy algorithm
is used in construction stage and a configuration checking
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method is used in local search stage. In [47], CVC problem
on k-regular problems for constant k values where k > 4 is
studied. The algorithms listed in this paragraph construct
CVC but they do not use node weights,thus they do not target
to construct energy-efficient backbones.

Fan et al. proposed a polynomial-time approximation
scheme to solve WCVC problem on UDGs such that the input
graph is c-local [48]. Despite dealing with the WCVC prob-
lem, the underlying network model of this study is completely
different from our paper. Besides, UDG modeled WSNs may
lack modeling simple realistic problems such as the link
construction between nodes when obstacles are present in the
network [53]. Hence we study UG which is more realistic
model in this manner. We also left WCVC studies having
different constraints (such as every path consisting of k ver-
tices has one monitor node) [49], [50] that are out of our
scope.

A similar and very interesting problem is p-self-protection
in WSNs [51], [52]. This problem is finding the minimum
set of safe nodes for protecting other nodes in WSN. The
p-self-protection problem resembles our target problem in
this study (WCVC problem), but it is directly related to
dominating set problem. As a simple example, the network
givenin Figure 1 is a 1-self-protected WSN but not a VC since
edges (2,3), (2,4), (3,6), (4,5) and (5,6) are not covered by any
monitor node.

20

FIGURE 1. p-self-protection example (node 1 is monitor).

A table which categorizes all the reviewed works discussed
in this section along their main distinctive features such as
target problem, network model and algorithm type is given
in Table 2.

lll. PROBLEM FORMULATION

We model WSN as a node weighted UG G(V, E, w) in which
V represents the set of nodes, E is the set of edges and
w : V. — RT is a weight function. A sample network
model is given in Figure 2. In this model, each node’s unique
id is written inside it, each node’s weight is written near it
and node 0 is assigned as the sink node. Solid lines show
undirected links. There is a channel between node x and
node y if and only if there exists a link from node y to node x.
We assume that the nodes are not mobile to preserve the net-
work structure at least during the execution of the algorithm.
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TABLE 2. Summary of the related work.

Author(s) | Target Problem | Network Model Algorithm Type
Ugurlu [26] Vertex Cover Undirected Graph Heuristic

Cai et al. [27] Vertex Cover Undirected Graph Local Search
Caskurlu et al. [28] Partial Vertex Cover Bipartite Graph Approximation

Ma et al. [29] Vertex Cover Massive Graph Local Search

Hong and Kao [30] Vertex Cover Hypergraph Approximation
Cheung et al. [31] Vertex Cover Hypergraph Approximation

Wu et al. [32] Vertex Cover Undirected Graph Game-based Memetic
Witt [33] Vertex Cover Undirected Graph Iterated Local Search
Bazzi et al. [34] Vertex Cover Undirected Graph Approximation

Xu et al. [35] Weighted Vertex Cover Undirected Graph Approximation
Shimizu et al. [36] Weighted Vertex Cover Undirected Graph Heuristic

Pourhassan et al. [37] Weighted Vertex Cover Undirected Graph Evolutionary

Cai et al. [38] Weighted Vertex Cover Massive Graph Local Search

Xu et al. [39] k-Weighted Vertex Cover Undirected Graph Buss Reduction
Islam et al. [40] Generalized Vertex Cover Undirected Graph Metaheuristic

Tsur [41]

Lietal. [42]
Lietal. [43]
Krithika et al. [44]
Johnson et al. [45]
Zhang et al. [46]
Lietal. [47]

Fan et al. [48]
Wang et al. [49]
Ran et al. [50]
Wang et al. [51]
Mostafaei and Obaidat [52]

Weighted Vertex Cover

Weighted Vertex Cover
Connected Vertex Cover
Connected Vertex Cover
Connected Vertex Cover
Connected Vertex Cover
Connected Vertex Cover
Weighted Connected Vertex Cover

Weighted Connected 3-Path Vertex Cover
Weighted Connected 3-Path Vertex Cover

p-self-protection
p-self-protection

Graphs with 3 max degree

Exact

This Paper Weighted Connected Vertex Cover

Undirected Graph Local Search
4-regular Graph Approximation
Undirected Graph Approximation
(sP1+P5)-Free Graph Exact

Undirected Graph Heuristic

k-Regular Graph Approximation

Unit Disk Graph Approximation

Unit Disk Graph Approximation

Unit Disk Graph Approximation
Undirected Graph Approximation
Undirected Graph Learning Automaton
Undirected Graph Hybrid Genetic Algorithm

FIGURE 2. An example network.

In another words, we assume that the neighborhoods of nodes
(the input communication graph) do not change when the
proposed algorithm is executing. This is a fair assumption
which is widely used [54] to provide consistent operation by
preventing a change in the input graph during the execution
of the algorithm.

Our proposed algorithm in this article is executed by the
sink node. To provide central execution in the sink node,
the global network graph should be constructed. Many meth-
ods can be applied to accomplish the global construction
of the graph in the sink node. For example a distributed
spanning tree rooted at the sink node can be constructed,
then weight and neighbor list of each node can be transmitted
through this spanning tree to the sink node. We assume a sim-
ilar method is applied before the execution of our proposed
approach.

For a given node weighted UG G(V,E,w : V — R™), let
Vi € V is the set of monitor nodes, VC in another words,
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where V,, = {v|V(@i,j) € E: (i € V)V ([§i € Vil
Also let G,,,(Vyy, Eyy, wi,) be the monitor induced subgraph.
Minimum WCVC problem is to find V,, such that G, is
connected and wy, is minimized.

In this article, we use N(v) for neighbor set of node v
where N(v) = {u | (u,v) € E}. We also call N(v) as the
open neighborhood of node v. Closed neighborhood of node
v includes open neighborhood and node v itself defined as
N[v] = {N(v) U {v}}. We use BLACK, GRAY and WHITE
colors to classify nodes in the graph. A BLACK node is a
monitor node, a GRAY node is not a monitor node but have
at least one monitor neighbor and a WHITE node is not a
monitor and does not have any BLACK neighbor. To clarify
colors, a sample coloring operation is shown in Figure 2.
node 5 is BLACK, its neighbors (Nodes 3, 4, 6 and 9) are
GRAY and the other nodes (Nodes 0, 1, 2, 7, 8 and 10) are
WHITE.

IV. PROPOSED ALGORITHMS

In this section, we first define three greedy heuristics to tackle
with the problem and to determine which selection strategy
produces WCDS having less weight. Secondly, we give the
detailed description of the proposed HGA. Lastly, we present
an example application of the proposed HGA on an
illustration.

A. GREEDY HEURISTICS

To deal with the WCVC problem on UG modeled WSNs,
we first define greedy heuristics. The design of our heuris-
tics are based on the ideas to solve weighted connected
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FIGURE 3. WCDS Heuristic Example.

dominating set (WCDS) problem given in [53]. In each
heuristic, all nodes are initially WHITE. When a node v
is selected, it is colored BLACK and its WHITE neighbors
are colored GRAY. When no WHITE node is left, the algo-
rithm terminates. The heuristics differentiate each other with
their node selection policy. The greedy degree (GD) heuris-
tic chooses node having the maximum WHITE neighbor
count: argmax, {v € V | N(v, WHITE)}. The greedy
weight (GW) heuristic selects the node having the minimum
weight: argmin,{v € V | w(v)}. The last heuristic, greedy
ratio (GR), chooses the node having the minimum value
calculated as: argmin {v € V | w(v)/ Z%N(V,WH]TE) w(u)}.
Although the heuristics given in [53] construct WCDS,
they can not guarantee to form WCVC, since two GRAY
nodes can be neighbors at the end of the algorithm, so they
are incapable to solve the target problem of this article. If at
least one edge exists that is incident to two GRAY nodes at
the end of the algorithm, then BLACK nodes do not constitute
a WCVC. In another words, if there is an edge between two
GRAY nodes, this edge is not covered. An example situation
where the heuristics given in [53] fail to construct is depicted
in Figure 3. In this figure nodes 1, 2 and 3 are selected to

construct a WCDS but edges (0,6), (0,7), (5,6), (7,8) and
(8,9) are not covered so WCVC can not be constructed.
To overcome this problem, our proposed heuristics choose
additional GRAY nodes having the smallest weight until there
is no uncovered edge. In this manner, all edges will be covered
by selected monitor nodes at the end of the algorithm and
WCVC is constructed.

Example operations of WCVC heuristics are given in
Figure 4 where execution of GD, GW and GR on sample
topology are illustrated in Figures 4a, 4b and 4c, respec-
tively. GD heuristic first chooses node 4 among all nodes
(initially all nodes are WHITE) because its degree is 5 that
is greater than all other nodes’ degrees. After node 4 is
selected, all neighbors of node 4 (nodes 0, 1, 2, 3 and 5) are
colored GRAY and all edges incident to node 4 are covered.
At the second step, node 5 having the maximum WHITE
neighbor count among GRAY nodes is colored BLACK and
its white neighbor, node 6, is colored GRAY. After that,
node 6 is chosen, it is colored BLACK and its WHITE
neighbors (nodes 7, 8 and 10) are colored GRAY. Following
this step, node 10 is colored BLACK and node 9 is colored
GRAY. From now on, there is no WHITE node left in the
network, so GRAY node having the smallest weight (node 9)
is chosen. Afterwards, nodes O, 1, 2 and 8 are chosen in
sequence.

GW heuristic first selects node 9 because it has the smallest
weight among all nodes. It is colored BLACK and its WHITE
neighbors (nodes 8 and 10) are colored GRAY. Among GRAY
nodes (nodes 8 and 10), since node 10’s weight is smaller than
node 8, node 10 is colored BLACK and node 6 is colored
GRAY. Following this, nodes 6, 5, 3,2, 1, 0 and 8 are colored
BLACK, sequentially.

When GR heuristic is applied on the example topology,
node 6 is chosen at the first step, because its ratio equals to

(b) Greedy weight

(c) Greedy ratio

FIGURE 4. Example WCVC solutions produced after executing greedy heuristics (Initially all nodes are WHITE).
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20/(20+50+80+90+100)=0.06 that is the minimum among
others. In this manner, node 6 is colored BLACK and its
WHITE neighbors (nodes 5, 7, 8 and 10) are colored GRAY.
At the second step, node 5 which has the smallest ratio
among other GRAY nodes is chosen and its WHITE neighbor
(node 4) is colored GRAY. Following this, nodes 3, 2, 1, 0,
8 and 9 are chosen sequentially. Among greedy heuristics
implemented in this example, GR has the best performance.
To measure and evaluate the effectiveness of the heuristics in
a broad and accurate manner, we implement these heuristics
on a dataset including various graphs having different node
counts and degrees in Section V. From extensive evaluations,
we reveal that GR generally produces WCVCs having less
weight than the other heuristics. Hence, we use GR as the
greedy heuristic in our proposed HGA described in the fol-
lowing section.

B. DESCRIPTION OF THE PROPOSED ALGORITHM

We propose a hybrid steady state genetic algorithm for min-
imum WCVC problem. The proposed algorithm combines
genetic approach and greedy heuristic to provide a feasible
solution.

The detailed description of proposed algorithm is given in
Algorithm 1. The algorithm starts by detecting cut vertices
whose removal breaks the input topology into one or more
components (Line 2). These critical nodes will definitely be in
WCVC solution at the end of the algorithm to connect graph
components. So that, we define them at the beginning of the
algorithm. For cut vertex detection procedure, we use Tarjan’s
depth-first search based algorithm by taking node weighted
graph G as the input [55]. After detecting cut vertices, we gen-
erate initial population having size members (Line 3). The
first member of the topology is the solution produced by GR
heuristic. The rest of the chromosome members are generated
randomly. We represent the chromosomes with a bit vector of
size equals to n (node count in graph). An example chromo-
some structure is given in Figure 5 with a bit vector of the
length n where each value of 1 indicates monitors. Following
that, the main loop of the algorithm that will be iterated
for input 4, times begins (Line 4). Afterwards, a new

FIGURE 5. Chromosome representation.
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Algorithm 1 Proposed HGA

input : pr. — probability of crossover

prs — probability of selection

prm — probability of mutation

pr;i — probability of minimization

pr. — probability of repair

size — population size

I nax — maximum iteration

G(V, E,w)—node weighted graph
output: weight — weight of the best member

1 begin

2 C :=DetectCutVertices (G)

3 P := GeneratePopulation (size)

4 while 7,,,,, > 0 do

5 pr: ‘=GenerateFloatNumber (0, 1)
6 if pr; < pr. then

7 parent] := SelectParent (pry)
8 parenty := SelectParent (pry)
9 child == Crossover (parenty,

parenty)

10 child == Mutate (child, pry)

1 end

12 else

13 ‘ child := GenerateChromosome ()
14 end

15 child := RepairChromosome (pre,

child)
16 child :==MinimizeChromosome (C,
pri, child)

17 if child ¢ P then

18 Add (child)

19 RemoveChromosome (P [size-1])
20 end
21 Lnax = Lnax-1
22 end
23 return Weight (P[0])
24 end

chromosome is generated either by genetic operations or by
generating randomly (Lines 5-14) with respect to probability
of crossover input (pr.). If the genetic operations are selected
(if control in Line 6 is true), a new child is constructed by
first selecting two parents by applying binary tournament
with respect to prs (Lines 7-8). A child chromosome is gen-
erated by applying a fitness based crossover operation on
selected parents (Line 9) and this chromosome is mutated
with respect to probability of mutation (pr,,). Fitness value
of a chromosome equals to reciprocal of total monitor weight.
If random chromosome generation is selected (else control in
Line 12 is true), a random chromosome is generated. After
child chromosome is constructed, repair and minimize oper-
ations given in Algorithms 2 and 4 are applied sequentially
(Lines 15 and 16). These operations will be described in detail
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Algorithm 2 RepairChromosome Algorithm

Algorithm 3 SetNodeToMonitor Algorithm

input : G(V, E, w) — node weighted graph
pre — probability of repair
chr — chromosome

output: chr — repaired chromosome

1 begin
2 if CheckWCVC (G, chr) = true then
3 return chr
4 end
5 while CheckWCVC (G, chr) = true do
6 monitors
:=GetMonitorVertices (chr)
7 pr: :==GenerateFloatNumber (0, 1)
8 if pr; > pr. then
v:= ChooseRandomVertex (G \
monitors)
10 end
n else
12 ‘ v := GetBestVertex (G \ monitors)
13 end
14 chr ;= SetNodeToMonitor (G, chr, v)
15 end
16 return chr
17 end

in following paragraphs. When newly generated individual
reaches its final form, we check the population whether it
includes this chromosome (Line 17). If the new individual
does not exist in the population, we add it to the popu-
lation (Line 18) and remove the worst (having the lowest
fitness value) chromosome member of the population. I,y
is decremented (Line 21) and described operations (Lines
between 4-22) are again executed until /,,,,, equals to 0. The
weight of the best member of the population is returned at the
end of the algorithm (Line 23).

Repair operation given in Algorithm 2 starts by check-
ing the chromosome that whether monitor nodes cover all
edges to constitute a WCVC (Line 2). If this control is true
then chromosome is immediately returned without any extra
operation (Line 3). If the monitor nodes in input chromo-
some do not constitute a WCVC, monitor node selection
procedures are applied (Lines 5-15). First, monitor nodes are
extracted from the input chromosome (Line 6). Afterwards,
a new monitor node is added whether by random choos-
ing from non monitor nodes (Lines 8-10) or selecting the
non monitor node having the lowest ratio by applying GR
heuristic (Lines 11-13). Following monitor node selection,
it is added to chromosome and its status is changed in graph
(Line 14). As given in Algorithm 3, node’s corresponding bit
in the chromosome is set to 1, its color is set to BLACK,
its WHITE neighbors’ color is set to GRAY and its uncov-
ered edges are turned to covered status. Repair operation in
Algorithm 2 ends when monitor nodes construct a WCVC.
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input : G(V, E, w) — node weighted graph
chr — chromosome
v — vertex id

output: chr — chromosome

1 begin

2 chr [v] =1

3 Color (v) := BLACK

4 Color (N (v, WHITE) ) := GRAY
5 Cover (UncoveredEdges (v) )
6 return chr

7 end

Algorithm 4 MinimizeChromosome Algorithm

input : G(V, E, w) — node weighted graph
C — cut vertices
pr;i — probability of minimization
chr — chromosome

output: chr — minimized chromosome

1 begin

2 R :=FindRedundant (G, C, chr)

3 while SizeOf (R) #0do

4 pr; :=GenerateFloatNumber (0, 1)
5 if pr; < pr; then

6 ‘ v := GetWorstVertex (R)

7 end

8 else

9 ‘ v := GetRandomVertex (R)

10 end

1 Color (v) := GRAY

12 chr [v] =0

13 UncoverEdges (v)

14 foreach u € (N (v, WHITE) \ monitors) do
15 ‘ SetNodeToMonitor (u)

16 end

17 R :=FindRedundant (G, C, chr)

18 end

19 return chr
20 end

At the end of this algorithm, the chromosome is returned
(Line 23).

Minimize algorithm given in Algorithm 4 begins by find-
ing redundant monitor nodes (Line 2). This operation will be
described in detail in following paragraph. After redundant
nodes are found, they are removed from the chromosome
(Lines 3-18). A redundant monitor node is selected from
the set of redundant nodes (R) either by choosing the worst
member (Lines 5-7) or by random selection (Lines 8-10)
with respect to minimization probability (pr;). Following
redundant monitor node selection, its color is set to GRAY,
its corresponding bit is set to 0, its edges are uncovered
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(Lines 11-13). Also its WHITE neighbors are assigned as
monitors to the uncovered edges of the redundant monitor
by Algorithm 3 (Lines 14-16). At the last step of the main
loop, redundant nodes are again identified (Line 17). When
the loop terminates, the minimized chromosome is returned
(Line 19).

Algorithm 5 FindRedundant Algorithm
input : G(V, E, w) — node weighted graph
C — cut vertices
chr — chromosome
output: R — set of redundant vertices

1 begin
2 BC :=DetectBlackCutVertices (G,chr)
3 monitors :=GetMonitorVertices (chr)
4 foreach v € monitors do
5 if Weight (N (v, GRAY)) <Weight (v)
Av ¢ BC Av ¢ C then
| R:=RUv
end

6
7
8 end
9 return R
10 end

To minimize the chromosome, redundant nodes should be
identified as aforementioned in previous paragraph. Find-
ing the set of redundant monitors algorithm is given in
Algorithm 5. First, cut vertices in monitor nodes induced sub-
graph are identified (Line 2). In another words, cut vertices
are identified on the subgraph only consisting of monitor
nodes (BLACK nodes) with their incident edges. We call this
special set of cut vertices as black cut vertices (BC). Follow-
ing this, monitors are extracted from the input chromosome
(Line 3). A monitor node v is added to the set of redundant
vertices (R), if node v’s weight is greater than the total weight
of its non monitor neighbors’ (neighbors having GRAY color)
and node v is not in both sets of BC and C (Lines 5 and 6).
At the end of the algorithm, the list of redundant nodes are
returned (Line 9).

The computational complexity of the Algorithm 5 equals
to O(n+m)=0(m) (considering the network is connected)
that is equal to the complexity of detecting black cut vertices
algorithm in which depth-first search (DFS) based approach
is used. The computational complexity of the Algorithm 3
is dominated by Lines 4 and 5 which are equal to O(n).
Algorithm 4 takes O(n)xO(m)=O0(nm) time consider-
ing the loop between Lines 3-18 iterates for O(n) and
Lines 14-17 take O(m) time. The computational complexity
of Algorithm 2 is O(m?) since Lines 5-15 iterate for O(m)
times and Line 12 executes for O(m). Generating the initial
population in Line 3 of Algorithm 1 finishes in O(size x nm)
times since size number of chromosomes are generated and
repaired. The loop between Lines 4-22 in Algorithm 1 exe-
cutes for I, times. Repairing each individual in Line 15
finishes in O({;,4x X nm). The uniqueness control in Line 17
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of Algorithm 1 takes O([;qx X size X n) times. So the
total computational complexity of the proposed algorithm is
O((Ingx +size)ymn—+Ip,y size n ). In following section, we will
illustrate the operation of the proposed algorithm on a sample
topology.

C. AN EXAMPLE OPERATION

In this section, we present an example operation of the pro-
posed HGA on a topology which has 10 nodes 14 edges as
given in Figure 6.

In the first step, we first generate two random chro-
mosomes as [0110000000] and [0000001110]. Representa-
tions of the generated chromosomes on the graph are given
in Figures 6a and 6b. In the first graph shown in Figure 6a,
nodes 1 and 2 are monitors and 5 out of 14 edges are cov-
ered. Similarly, nodes 6, 7 and 8 are monitors in Figure 6b
and 6 out of 14 edges are covered. These chromosomes are
parents used in crossover operation to generate a new child
given in Figure 6¢. Since we use a fitness based probabilistic
crossover, the outputs of this operation may vary. We accom-
plish our crossover operation by copying each parent’s 1 bit
to the child in this example. Following crossover, a muta-
tion operation is applied on the child chromosome where
node 9 changes its color from WHITE to BLACK as given
in Figure 6d. After the child is constructed and the mutation
is applied, no WHITE node is left in the graph. However
edges (3,4), (3,5) and (4,5) are uncovered. So, we repair the
topology by firstly selecting node 4 due to its lower ratio than
the other candidates (nodes 3 and 5). After node 4 is colored
BLACK, only edges (3,5) is left uncovered. At the second
step of the repair operation, node 5 is colored BLACK to
cover the last uncovered edge. When the repair operation is
finished, 8 out of 10 nodes constitute a WCVC in Figure 6e.
After than, we make a minimization operation on the given
graph. Since the edges of BLACK nodes 6 and 9 are covered
by others, they are not cut vertices and also not black cut
vertices (nodes 5 and 8 are cut vertices, nodes 2, 4, 5 and
8 are black cut vertices), these nodes are redundant. So they
are colored GRAY and removed from the set of monitors.
Finally, monitors are assigned as nodes 2, 4, 5, 7, and 8
in Figure 6f.

V. PERFORMANCE EVALUATIONS

We implement the proposed algorithm in Java to test its
performance against varying parameters. To compare the pro-
posed HGA, three greedy algorithms with a brute force (BF)
algorithm is implemented. BF algorithm checks all possible
power set of nodes (2") and outputs the WCVC solution
having the smallest weight. The algorithms are tested on
dataset used in [53], [56]. This dataset is randomly gener-
ated to test graph theoretic problems on WSNs [53]. It is
composed of the communication graphs having undirected
edges and weighted vertices where the weight of each vertex
is set as reciprocal of its energy. The dataset is divided into
small, moderate (medium) and large scale WSN topologies
regarding node counts in the communication graphs.
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(e) After repair

FIGURE 6. An example operation.

Node counts are 10, 15, 20 and 25 in small scale; 50, 100,
150 and 200 in moderate scale; 250, 500, 750 and 1000 in
large scale WSN topologies. Besides, edge counts are var-
ied to construct WSN topologies with different connectivity
properties. Edges counts are defined as e x n for each
topology where n is node count and e € {2, 4, 6, 8}. Since
BF is an exponential time algorithm, its execution time is
unacceptably long for medium and large scale topologies.
In this manner, we did not execute BF algorithm in these
topologies.

We set the parameters of the proposed HGA according
to the extensive experimental evaluations given in recent
studies [53], [56], [S7]. In this manner, the population size
(size), the maximum iteration count (I, ), crossover prob-
ability (pr.), selection probability (prs), mutation probability
(pri), repair probability (pr.) and minimization probability
(pr;) are given as 100, 200, 0.9, 0.9, 0.8, 0.005, 0.7 and 0.6,
respectively. Simulation related items such as implemented
algorithms, parameters and dataset properties are summa-
rized in Table 3.

As aforementioned, minimizing the total weight of the
WCVC is of utmost importance to construct energy-
efficient monitoring infrastructure. In this manner, we mea-
sure the total weight of the WCVCs produced by the
implemented algorithms against varying node count and
average connectivity. Total weight values of the algorithms
in small, medium and large scale topologies are given
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(f) After minimization

TABLE 3. Simulation parameters.

Parameter [ Values

Implemented Algorithms HGA, GR, GD, GW, BF

Node Count {10, 15, 20, 25}, {50, 100, 150, 200},
{250, 500, 750, 1000}

Average Connectivity 2,4,6,8

Population size (stze) 100

Maximum Iteration (I1nqz) 200

Crossover Probability (prc) 0.9

Selection Probability (prs) 0.8

Mutation Probability (pr,) 0.005

Repair Probability (pre) 0.7

Minimization Probability (pr;) | 0.6

in Figures 7a, 7b and 7c, respectively. As node count
increases, the weights of WCVCs produced by the algorithms
increase linearly. GW has the worst performance among all
algorithms regardless of the topology type. Although GD
performs much better than GW, it has the second worst perfor-
mance. GR produces the best WCVCs among implemented
greedy approaches running on graphs having various node
counts. For small scale topologies, the performances of the
proposed HGA and BF are the same. This means that our
proposed algorithm finds the optimum solution for given
small scale topologies. Moreover, its time consumption is
far more better than BF as we will discuss in following
paragraphs. For medium and large scale topologies, again the
proposed HGA outperforms the other algorithms in terms of
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FIGURE 9. Monitor count values against node count.

WCVC weight. Total weight values of the algorithms against
average network connectivity are given in Figures 8a, 8b and
8c. As network density increases, the weights of WCVCs
produced by the algorithms generally increase. The reason of
this increase is when the total edge count rises, more monitor
nodes may be needed to cover the newly added edges. Similar
with the measurements given in previous figures, the pro-
posed HGA has the best performance among the other algo-
rithms. For small scale graphs, again HGA and BF produce
same results. The performance order of the remaining algo-
rithms is GR, GD and GW. For medium size and large size
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instances, this performance order does not change and our
algorithm outperforms other algorithms in terms of WCVC
weight.

Although minimizing weight is the first objective of
WCVC problem, solving the problem with less monitor count
is also significant. With regarding this, monitor counts of
the algorithms with respect to varying network parameters
such as average connectivity and total node count are mea-
sured. Figures 9a, 9b and 9c show the monitor count values
against the node count for small, medium and large scale
topologies, respectively. Monitor counts produced by the
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FIGURE 10. Monitor count values against node connectivity.

algorithms increase linearly with respect to increasing node
count values. GW has the worst performance similar to the
previous measurements so far. GD performs better than GR
against increasing average connectivity values since GD aims
to assign monitor nodes according to their degrees which
produces less monitors. BF algorithm guarantees to find opti-
mum WCVC in terms of weight, but this does not mean that
BF algorithm minimizes the monitor count values. Although,
for small scale graph instances, the performances of GD,
BF and the proposed HGA are very close. Similarly, GD and
the proposed HGA perform nearly same for the medium
scale topologies. GD has the best results and the proposed
HGA performs better than the other remaining algorithms
in large scale instances. Monitor counts of the algorithms
against average connectivity values are given in Figures 10a,
10b and 10c. As aforementioned, when network connec-
tivity rises, counts of monitor nodes generally increase to
cover newly added edges. Same with the previous results,
GW has the worst and GR has the second worst performance
among implemented algorithms for all datasets. For small
scale instances when average connectivity value equals to 2,
the proposed HGA and GD perform nearly same. For small
scale instances, GD has the best results when average connec-
tivity value equals to 4 and 6, but our algorithm outperforms
GD when average connectivity value equals to 8. Our pro-
posed HGA again produces better results than GD on medium
scale instances. GD algorithm has the best measurements
on large size graphs, on the other side the gap between our
proposed HGA and GD algorithm decreases for increasing
average connectivity. In other words, the increase rate of GD
is greater than that of HGA as graph density increases.

Time consumption of the algorithms on the sink node
can be an important metric if WSN executes a time critical
operation such as a military surveillance application. Consid-
ering this fact, we measure the wallclock time of the algo-
rithms against node count and average connectivity. Since
GD, GR and GW execute to find an only single solution
without improving it, their wallclock times are generally very
small compared to population based solutions [53]. So that
we compare BF and our proposed HGA against network size
and density. For node count equals to 10, average connectivity
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values 6 and 8 are not applicable, since a graph having
10 nodes can have maximum 45 edges. Same situation is valid
for node count and edge count equal to 15 and 8, respectively.
For all node counts except 10, our proposed HGA is better
than the BF algorithm. Moreover, for all connectivity values,
when node count increases, wallclock times of our proposed
HGA grow much more slower than the BF algorithm.

VI. CONCLUSION
In this article, we propose a metaheuristic to solve minimum
WCVC problem to monitor links and form a virtual backbone
for WSNs which are vital technologies located at the commu-
nication layer of IoT. We adopt three heuristics, namely GD,
GW and GR to evaluate the effectiveness of different monitor
selection strategies. Our proposed HGA is a population based
metaheuristic that uses genetic search and GR heuristic to
increase solution quality. Our proposed algorithm prevents
the removal of cut vertices to decrease the execution time.
Measurements obtained from extensive experiments reveal
that the proposed HGA outperforms other greedy algorithms
in terms of total WCVC weights against varying node count
and average connectivity values. Besides, although the main
objective of our target problem is to minimize the weight of
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WCVC to provide energy efficiency, the results show that the
monitor counts produced by our algorithm is very promising
for most of the cases. Moreover, the execution time of our
algorithm is far more better than BF algorithm at the same
producing optimum solution for small size instances against
varying network sizes and densities. These findings show us
that our algorithm is favorable in terms of resource efficient
WCVC construction for WSNs.

In future, we plan to design distributed WCVC algorithms
for providing fully autonomous execution of sensor nodes.
In this algorithm each node should decide based on its energy
and its neighbors’ states. We also plan to model WSNs with
graph convolutional networks to implement deep learning
approaches. The capacitated version of the problem is open in
which each monitor listens at most k links where k is a prede-
fined parameter. This parameter will be based on the energies
of the monitor nodes to provide energy-efficient link mon-
itoring. Another potential research topic is self-stabilizing
WCVC construction in which the network stabilizes in finite
number of executions when transient faults are present.
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