
Received October 15, 2020, accepted November 23, 2020, date of publication January 11, 2021,
date of current version January 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050882

Using Compression to Discover Interesting
Behaviours in a Hybrid Braitenberg Vehicle
NADIM AHMED AND WILLIAM J. TEAHAN
School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, U.K.

Corresponding author: William J. Teahan (w.j.teahan@bangor.ac.uk)

ABSTRACT The simple rules that govern the interactions between the different components of a complex
system often lead to interesting behaviours that are unexpected. The experiments described in this paper
involved creating a variation of a traditional Braitenberg Vehicle, by placing sensors on ten different
possible locations on a simulated vehicle, and incorporating an obstacle avoidance behaviour using a
subsumption-like architecture, which resulted in different unusual and unexpected behaviours being pro-
duced. The vehicle was allowed to explore a simulated environment which contained a single bright
light in the centre with walls on the border. By using a novel combination of the Prediction by Partial
Matching compression algorithm and k-means clustering, interesting emergent behaviours were effectively
discovered within a search space of over 10,000 simulations produced from a simple interaction of light and
proximity sensors on a vehicle and a single light source. The clustering algorithm discovered five distinct
behaviours: circling and spiralling behaviours; interesting behaviours creating intricate rose petal-like
structures; behaviours that create simple rose petal-like structures; behaviours with large movements and
low complexity; and behaviours with less movement. The novel algorithm demonstrated in this paper has
useful potential in the science of complex systems and modelling to help expedite the systematic exploration
of a substantial search space of simulations in order to discover interesting behaviours.

INDEX TERMS Entropy coding, robot motion, Braitenberg vehicles, subsumption architecture, prediction
by partial matching.

I. INTRODUCTION
This paper expands upon previous work on using compres-
sion to find interesting one-dimensional cellular automata [1]
by applying the same idea towards a model of a
behaviour-based robot based on the Braitenberg Vehicle.

A. MOTIVATION AND BACKGROUND
In this paper, the Braitenberg Vehicle [2] is examined as an
example of a robotic system. The idea was to investigate the
behaviour of one modified Braitenberg Vehicle, and to see
if it is possible to automatically discover if it produces any
interesting behaviours.

Braitenberg Vehicles have been heavily researched in
many different ways, such as creating robotic fish [3], snake
robots [4] or simulating ethical behaviour [5]. Much of the
research into Braitenberg Vehicles has used the classic Type
2 and Type 3 Vehicles with architectures that have a strong
resemblance to Braitenberg’s original diagram of rectangular

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

vehicles with two pronged sensors out of the front of the
vehicle [2].

A natural question arises as to what might happen if
the sensors were placed on a different part of the vehicle.
Another question concerns what would happen to the vehi-
cle’s behaviour if a subsumption-like architecture [6] was
used to prevent the vehicle from colliding with objects in
the environment, thus creating an internal struggle within
the vehicle. Would a variation of Braitenberg’s Vehicle coa-
lesced with Brooks’ subsumption architecture create interest-
ing behaviours?

Finding answers to these questions requires a large num-
ber of simulations to be performed, which means that an
automated method is needed to search through the different
configurations in order to find similar interesting behaviours.
Since the number of variations even for simple configura-
tions is essentially unbounded, an automated system would
be very useful to work through various possible configura-
tions and resulting simulations automatically to group similar
behaviours together in order to find the interesting ones.

11316 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9706-0197
https://orcid.org/0000-0003-3640-6750

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

A detailed discussion on the concept of interestingness
in relation to complex systems analysis has been given
before [1], [7]. One of the most commonly used measures
to calculate ‘‘interestingness’’ [8] is Shannon conditional
entropy [9] which can be estimated by using compression.
Higher compression code lengths generally indicate a higher
level of interestingness; however, this is not always the case.
The simulation output produced by a complex system with
repetitive patterns will be highly compressible and give a
low compression code length, while an output containing
substantially random noise will be difficult to compress and
therefore give a high compression code length. However, for
both these two cases, the simulation outputmay not be classed
as ‘‘interesting’’ [10]. Schmidhuber states that for something
to be called interesting, it must have an essence of beauty, and
therefore he also states that random noise is not ‘‘interesting’’
as a result [10].

The novelty introduced in this paper is how compres-
sion may be used in conjunction with clustering algorithms
to cluster similar types of behaviours of complex systems
together. From that it will help researchers discover the dif-
ferent types of behaviours that a complex system may exhibit
and help discover surprising or interesting ones.

The rest of this paper is organised as follows. In the next
section, Braitenberg Vehicles are introduced, followed by
a discussion of the subsumption architecture. The design
of a novel Braitenberg Vehicle combined with subsumption
architecture is then discussed in detail showing a random
selection of simulation outputs produced by the vehicle. The
paper then discusses how compression was used to assist in
clustering similar behaviours together in order to discover the
interesting ones.

B. RELATED WORK
1) BRAITENBERG VEHICLES
Braitenberg Vehicles are the brainchild of Valentino Brait-
enberg [2] who used them to describe thought experiments
to explore the concept of using simple ‘‘brains’’ to create
different behaviours. Braitenberg Vehicles are two wheeled
vehicles with sensors attached to each of the motors, with
sensorimotor coupling where each motor drives a wheel,
although they often have a free-moving castor that provides
stability to the front of the vehicle. Braitenberg came up
with the vehicles to explain how simple rules can create
complex behaviours. By changing which sensor is wired to
which motor, the vehicle behaves differently when it comes
across a stimulus that affects the sensor’s ‘‘value’’. The other
variations that can be carried out with the simple vehicles
is by changing the coupling; for example, the connection of
each sensor to the motor can be ‘‘positive’’ or ‘‘negative’’.
The four different standard Braitenberg Vehicles are shown
in Table 1.

The stimulus received by the sensors is directly propor-
tional to the output from the sensor; thus if a light sensor is
placed under bright lights, the output will exceed that of a

TABLE 1. Four different Braitenberg Vehicles showing the way sensors
are coupled to the motors. The sensors are the two ‘‘cup-like’’ devices on
the two prongs at the front, while the motor is connected to the wheels at
the back.

similar sensor in a dimly lit environment. With Vehicles 2a
and 2b, there is a positive coupling between each sensor and
the motors, such that a higher output from the sensor results
in the attached motors turning the wheels faster.

With Vehicle 2a, if the left sensor detects more light than
the right sensor, then the left wheel turns faster than the right
one. When the left wheel turns faster, the vehicle will then
tend to turn to the right, and so move away from the light,
but slowing down as it moves further away. The initial high
velocity moving away from the light, slowing down when in
the dark, gives the appearance to an observer of ‘‘scared’’
behaviour.

With Vehicle 2b, if the left sensor detects more light than
the right sensor, due to the way the wires are crossed over,
the right wheel will turn faster than the left wheel. This will
make the vehicle move towards the light, gaining speed as it
gets closer, eventually colliding with it at full speed. It will
then rebound (due to the transfer of momentum between
the vehicle and the light source) and then the vehicle will
subsequently return to hit the light again. To an observer,
it may appear that the vehicle is aggressive towards the light
as it hits the light at full speed, then returning again for further
collisions.

With Vehicles 3a and 3b, the difference in the coupling
between the sensors and the motors involves ‘‘switching
the sign of the influence from positive to negative’’ [2].
Braitenberg clarifies this statement by explaining that the
connection is inhibitory, where a strong stimulus slows down
the vehicle, while a weak one increases the speed.

In neurology, the brain has neurons that transmit signals
to each other by using synapses. When a neuron transmits
a signal, a spike is produced, and a change in potential dif-
ference (voltage) occurs. For positive changes, the synapse
is excitatory, while for negative changes, the synapse is
inhibitory [11]. This explains the + signs on vehicles 2a and
2b while vehicles 3a and 3b have − signs. This changes the
behaviour such that Vehicle 3a now approaches the source
of the stimulus slowly in a way that can be described by an
observer that the vehicle ‘‘adores’’ the stimulus. In contrast,
Vehicle 3b departs the vicinity of the stimulus slowly, such
that to an observer it has the characteristics of ‘‘exploring’’
the environment.

VOLUME 9, 2021 11317

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

Braitenberg’s first three main vehicles have been explored
in detail [12] and replicated as physical hardware [3]. The
sensor positions have been well defined, with the only
changes being the way the sensors are coupled to the motors.
What has not been explored is how the behaviour would
change if, instead of the sensors being placed at the front
of the vehicle, they are placed instead at different locations
around the vehicle.

2) SUBSUMPTION ARCHITECTURE
Designing a robot to act autonomously is a difficult task
with many competing requirements. Robots can often have
multiple goals, with some that seem to be contradictory.
For example, a robot might have to avoid obstacles, while
still travelling towards a light. The robot may have multiple
sensors of different types, so for example may possess a small
number of proximity sensors, light detectors and temperature
sensors. The robot has to be robust enough such that if a
sensor fails, it can carry on with those sensors that are still
functioning, or if the environment changes, it should be able
to copewith the new conditions instead of becoming catatonic
or behaving in a reckless manner. Lastly, the robot must be
extensible; that is, when more sensors are added, then the
system can be upgraded easily.

The traditional way of designing robots involves decom-
posing a robot into a ‘‘sense, think, act’’ structure, where the
sensor inputs are read by a perception task, which leads to a
modelling task, then planning, which then leads to task execu-
tion which finally leads to motor control where the actuators
of the robots are manipulated. As Winston [13] mentions, for
a long time when using traditional approaches, robots were
not able to achieve much at all. Researchers would leave the
robot overnight to manoeuvre around a lab. However, by the
morning, it would havemoved only around 8metres (25 feet),
while avoiding a table [13]. Early robots would often take a
long time just to carry out a simple task, so Brooks devised a
different way of approaching this issue [13].

In 1986, Brooks described a new and easier approach to
designing robots with multiple sensors and goals [6], and
named it ‘‘subsumption architecture’’. Instead of having a
separate ‘‘sense, think, act’’ structure, the tasks are broken
into layers of ‘‘competence’’. The layers (or levels, as Brooks
uses these terms interchangeably) start with the absolute
minimum requirement of a robot. An example Brooks gives
is obstacle avoidance, which runs continuously, unaware of
any layers above it and is known as the ‘‘zeroth’’ layer.
When the layer’s performance has been verified and works
as expected, then it is to be left alone, and the next layer
is worked upon. The whole idea behind this architecture is
that higher levels subsume the lower levels, hence the name
‘‘subsumption architecture’’ [6], [14]. Another advantage of
using this architecture is that a working system is built early
on in the creation process [6]. Brooks also argues that it is
better to let a predetermined priority scheme to determine
how to deal with conflicts within the system [15].

To build using subsumption, the first step is to decide what
behaviours the robot should be capable of, which then need
to be decomposed into different layers. An example of the
layers are shown in Table 2. To build a layer, it may be such
that only some of the sensor data is required and also only
a subset of the behaviours should be implemented in each
layer. Different pairs of sensors and tasks are allowed to be
used for each layer [16]. Each layer can be built ‘‘from a set
of small processors’’ [16] while each processor is designed
using a finite state machine [16].

TABLE 2. The bottom four levels of Brooks’ subsumption architecture
levels taken from [6], [16].

The subsumption architecture has been used to createmany
different physical robots. The first robot, Allen [17], had
sensors on board (sonars and an odometer), while the sub-
sumption architecture was simulated in Lisp off board on a
separate machine. Three layers were used for this implemen-
tation, while the first layer made the robot avoid all obstacles,
the second allowed the robot to wander around in random
directions, while the final layer made it seek out distant places
with its sonar. With just the first layer, the robot would stay
motionless until approached, in which case it would then
scurry away. With the second layer added on, the robot would
wander around in random directions, but it would also avoid
obstacles. With the final layer, an odometer would generate a
heading, which often overrode the direction produced by the
wander layer. As a result, this was a simple robot that would
wander around the environment.

Another robot, called Herbert [17] would wander around
the environment entering workspaces and taking empty drink
cans from tables while using wall following techniques and
obstacle avoidance. It was also able to use its laser triangula-
tion scanner [18] to recognise objects, such as cans of drinks.
There was no communication between the layers; instead,
each layer was connected to sensors, with the output going
to an ‘‘arbitration network’’ [17] which drove the actuators.
The laser based scanner was used to drive the robot so then
its arm was aligned in front of the drinks can. The arm
controller monitored the shaft encoders, so when there was no
morewheelmovement, the armmovements were commenced
which started other behaviours for picking up the can. This
kind of set up allows the robot to react to its environment,
such that if a can of drink is handed to the robot, or even if
it miraculously appears, the robot arm can just pick it up and
take it [19]. More recently, the subsumption architecture has
also been used to design iRobot’s Roomba robotic vacuum
cleaner [20].

11318 VOLUME 9, 2021

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

The subsumption architecture was the first iteration of
what would become ‘‘behaviour-based architecture’’ [21],
and Brooks first adopted behaviour-based architecture
in 1994 [22]. In an interview conducted in 2015 he
stated that subsumption architecture eventually became
behaviour-based programming [23]. In an article exploring
the story behind the subsumption architecture, Birrell quotes
a programmerwhoworkedwith Brooks who said the problem
with subsumption architecture was that it was able to do some
complex tasks, but it could not progress much further [24].
In an interview at the South by Southwest (SXSW) confer-
ence, Brooks stated that the idea behind subsumption archi-
tecture was to replicate insects and then move on from there
by building higher orders of animals, but the problem was
that it did not have the power to be as good as an insect [25].
Another issue is the difficulty in designing the interaction
between the different layers and the issue of how to design for
emergence [26] or other interesting phenomena. Overcoming
these issues have provided a primary motivation behind the
work in this paper.

II. DESIGN OF A NOVEL BRAITENBERG VEHICLE
This section looks at a model created in NetLogo [27] that
was used to simulate a novel vehicle based on Braitenberg’s
original vehicles that also adopts a simple subsumption archi-
tecture. The first subsection describes the overall design and
the research questions that will be investigated by the exper-
imental evaluation that was performed as described below.

A. VARIATIONS OF BRAITENBERG VEHICLES
The first change to the traditional Braitenberg Vehicle in our
design includes changing the position of the light sensor from
the front of the vehicle to arranging them in different positions
around the vehicle. The second change is that instead of just
using two light sensors coupled to the motors, two proximity
sensors are also coupled to the same motors. This means
that each motor will have one light and one proximity sensor
coupled to it, with two types of couplings, ‘‘positive’’ and
‘‘negative’’.

In addition to the changes mentioned above, a subsumption
architecture was used for the modified Braitenberg Vehicle
with an additional behaviour for obstacle avoidance. The
subsumption architecture uses proximity sensors to check for
any obstructions, such as lights or the walls, and then prevents
the vehicle from crashing into them. The idea is that when the
sensor coupling part of the vehicle moves the vehicle towards
obstacles, the subsumption layer will prevent it from collid-
ing, providing an interesting possibility for conflict between
the different behaviours.

A large number of simulation experiments described below
have been performed with this new design. The main purpose
of these experiments was to investigate the effectiveness of
using an automated system to examine the output and then
cluster similar behaviours together with the aim of discover-
ing interesting behaviours.

The specific research questions for these experiments are
as follows:

• Is it possible to create complex behaviours with the devi-
ations discussed above to the basic Braitenberg Vehicles
design?

• Can interesting behaviours be discovered when the con-
figuration of sensor locations are changed?

• Can automatic methods be created to discover these
interesting behaviours?

The next section describes the simulated environment in
which the vehicle operates

B. THE ENVIRONMENT
The simulation model was created in NetLogo [27] which
simulates the environment when a light is switched on and
simulates the vehicle as it moves around the environment.
The environment is a grid made up of patches (akin to tiles
on a floor), with a width and height of 151 patches. The odd
number was chosen so the light could be placed exactly in
the centre of the environment with the light emanating sym-
metrically from the centre of the environment. The lighting
was based upon the NetLogo Moth simulation [28] with the
only changes being made to the initial brightness of the light
and the visual look of the environment on the screen. The
light level diminishes the further away it is from the central
light source. The light levels on each patch are determined
in advance as the light’s position is fixed throughout the
simulation. These are stored using a patch variable which can
then be read directly by the vehicle as it moves around thereby
simulating the sensing action the robot performs.

Walls have been placed around the edge of the environ-
ment. In the NetLogo simulation, the environment has world
wrapping disabled in order to make the simulation more real-
istic. Each patch also stores the number of times the vehicle
visits the patch, which is updated at each tick (NetLogo’s time
interval).

Once the environment has been created, the next step is to
create the vehicle.

C. SENSORS
The simulation model simulates two types of sensors, light
and proximity. These sensors can be placed on different posi-
tions on the vehicle: 0◦, 30◦, 60◦, 120◦, 150◦, 180◦, 210◦,
240◦, 300◦ and 330◦, as shown in Figure 1. It is possible
to choose angles at a more finer grain such as at every 5◦;
however, this would substantially increase the search space,
so a compromise was set to every 30◦, apart from where the
wheels of the vehicle are placed.

The sensors also have settings that determine the length
and angle of its cone of vision, which represents its sen-
sitivity. To implement the sensor position within NetLogo,
the vehicle rotates to the left by the sensor position, then
uses the in-cone NetLogo keyword to simulate the sensor.
The vehicle reads the maximum value of the light luminosity
within its sensors’ cones of vision. Alternative simulations

VOLUME 9, 2021 11319

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

FIGURE 1. The new vehicle showing possible sensor locations in degrees.

using the mean or the minimum values within the vision cone
showed the vehicle having the same behaviour albeit need-
ing more ticks to reach the same position than when using
the maximum value. After the sensor retrieves its reading,
the vehicle returns to its original heading.

In order to closely simulate a Braitenberg Vehicle that
would be constructable in real-life, the sensors have similar
limitations to commercially available sensors. The light sen-
sors are based on general light dependent resistors (LDR);
however, data sheets do not generally give the sensor
cone-angle for LDRs, so a value of 30◦ has been used. A light
sensor’s cone-angle can be restricted by using a physical
cone around the LDR. The proximity sensor’s specification
is based on those for the HC-SR04 Ultrasonic sensor, which
has a cone angle of 15◦.

D. SENSORIMOTOR COUPLING
A sensor can be connected to either of the two motors with
two types of coupling, the first being positive, and the second
being negative. The different couplings indicate the type of
connection, with positive being excitatory and negative being
inhibitory. When an excitatory connection is used, the higher
the sensor reading, the faster the motor will turn, while an
inhibitory connection will make the motor move slower when
the sensor reading is high. An inhibitory connection can be
simulated by using a quotient and adjusting the values as
required. However, it is important to anticipate for a division
by zero error in the quotient before it can occur by ensuring
that the denominator remains larger than zero.

E. USING SUBSUMPTION ARCHITECTURE
FOR THE VEHICLE
The vehicle is modelled using a simple subsumption archi-
tecture. The vehicle in the simulation has proximity sensors
to avoid collisions in order to protect itself from harm, and
therefore is at a high priority, so if there is a danger of collision
with either the wall or other objects, that behaviour will take
precedence. The wall detection routine checks to see if a wall
exists within a 45◦ vision cone in front of the vehicle, with
the length of the cone being the same length as the vehicle.
If a wall is detected, then the vehicle turns round by 180◦.

This behaviour can be reproduced in real-life using coloured
walls so that a simple colour sensor can be used for detecting
the wall.

For other obstacles, the vehicle checks its perimeter, and
if an obstacle exists within the perimeter, it turns round by
approximately 180◦ and moves forwards by two steps. When
trying to reproduce this in real-life, to turn the vehicle round
by 180◦, it is possible to have the sensors on a sensor board
placed on a servomotor connected to the base of the vehicle,
and use a servomotor to twist the sensor board accordingly.

Once the obstacles are no longer a threat, the subsumption
layer gives up control.

F. THE HYBRID BRAITENBERG VEHICLE
This subsection gives an outline of how the hybrid Brait-
enberg Vehicle simulation works. The overall behaviour of
the Braitenberg Vehicle is described in Algorithm 1 with the
obstacle-avoidance sub-behaviour described in Algorithm 2
and the Braitenberg sub-behaviour described in Algorithm 3.
To initialise, the power is cut from both motors, so they are
set to zero during the simulation setup. The overall behaviour
is to check for any obstacles; if any are detected, then the
obstacle avoidance sub-behaviour is activated (which simply
involves turning around and moving forward a small distance
if the obstacle is not a wall) otherwise the system defaults to
the Braitenberg sub-behaviour.

Algorithm 1 Algorithm Describing How the Hybrid
Braitenberg Vehicle Simulation Works

1 Function BraitenbergSubsumption (coupling)
2 possible-collision← Detect-Collision

3 if possible-collision = true then
4 CollisionAvoidanceBehaviour

5 else
6 BraitenburgBehaviour(coupling)

Algorithm 2 Algorithm Describing the Collision Avoid-
ance Sub-Behaviour Used for the Simulation
1 Function CollisionAvoidanceBehaviour
(possible-collision)

2 if possible-collision = ‘‘wall’’ then
3 turn-around by 180◦

4 else
5 turn-around by roughly 180◦

6 move-forward by 2 steps

For the Braitenberg sub-behaviour, the vehicle checks the
sensor readings and transfers the reading to themotor coupled
to the sensor. If the coupling is positive, the motor sensor
reading is added to the current velocity of the motor. With a
negative coupling, a quotient vR is used where v is the velocity
of the vehicle and R is the sensor reading. Using this formula

11320 VOLUME 9, 2021

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

Algorithm 3 Algorithm Describing the Braitenberg
Sub-Behaviour Used for the Simulation. Lines 9 and
10 Are Explained in Detail in the Text

1 Function BraitenbergBehaviour (coupling)
2 Read-Sensors

3 if coupling = positive then
4 left-motor-speed← left-motor-speed +

reading-from-sensor-coupled-to-left-
motor

5 right-motor-speed← right-motor-speed
+ reading-from-sensor-coupled-to-right-
motor

6 else
7 left-motor-speed← left-motor-speed +

(500/ reading-from-sensor-coupled-to-
left-motor)

8 right-motor-speed← right-motor-speed
+ (500 / reading-from-sensor-coupled-
to-right-motor)

9 turn-left right-motor-speed
10 turn-right left-motor-speed
11 move-forward by mean (left-motor-speed +

right-motor-speed) / highest (light value)

allows the vehicle to slow downwhen the light levels are high,
and to speed up when the levels are low.While experimenting
with the simulation, it was discovered that for the negative
coupling, a large value for v, such as 500, gave realistic speeds
for the simulation. If the numerator was too small, the vehicle
speed would be exceedingly slow, whereas if the numerator
was too large, the vehicle would travel too quickly. As the
use of the quotient for negative coupling involves a division,
to avoid division-by-zero errors and undesirable behaviour
when R is less than 1, the lowest value that was allowed for
R was set to 1.
After the motor speeds have been assigned, the vehicle

turns according to the ratio between the left and right motor,
so if the left motor has a higher ratio, the vehicle will turn
more to the left. It may seem counter-intuitive that the vehicle
turns left by the amount the right motor spins, but this can be
explained by the fact that when a vehicle’s right wheel turns
faster than the left, the vehicle will move left. The order the
vehicle turns does not affect the overall behaviour and in any
case does not matter, as it is commutative, so−45◦, followed
by +5◦ is the same as +5◦ followed by −45◦. The final task
is for the vehicle to proceed forward, which is determined
by how fast the motors are spinning, so the faster they spin,
the faster the vehicle moves.

III. THE EXPERIMENTAL SET-UP
The experimental simulations performed examine the
behaviour of the hybrid Braitenberg Vehicle combined with
a simple subsumption-like architecture mentioned above.
In order to explore different behaviours, several variables are

used: the positions of the sensors; the type of sensors used;
the sensitivity of the sensor, and the coupling. The sensor
sensitivity is determined by the angle of the vision cone
and its length, while the coupling identifies which motor the
sensor is connected to, and how the connection is made.

TABLE 3. Vehicle sensor variables set for each sensor used in the vehicle
simulation.

Two light and two proximity sensors were used in the
simulations, where there was one of each sensor connected
to each of the two wheels. The experimental variables were
set to appropriate values as listed in Table 3. The sensor type
variable defines whether the sensor used is a light or proxim-
ity sensor, with both being used for the different simulation
variations. The sensor location variable shows where the
sensor is placed on the vehicle (from a birds-eye perspective,
centred on the vehicle as shown in Figure 1). The sensor
angle variable and range variable define the cone of vision
for the sensor. The motor variable refers to which wheel
and motor the sensor is connected to, while the coupling
variable indicates how the sensor readings are interpreted
by the motor. Using four sensors, the various combinations
of the selected values for the variables results in a total
of 10,080 simulations: 10 possible locations × 9 remaining
locations× 8 remaining locations× 7 remaining locations×
2 different couplings = 10080 simulations.
Each patch in the NetLogo environment keeps a counter of

the number of times a vehicle visits. Each time a vehicle visits
the patch, the visit counter is incremented by 1. This means
that for those simulations where the vehicle visits many areas
of the environment, there will be many visit counters that are
greater than zero, whereas with those simulations where the
vehicle remains fairly stationary, then there will be large num-
bers of zero visit counters. After the simulation has completed
its run of 5,000 ticks (NetLogo’s unit of time), the list of visit
counters are then exported for processing.

A. RUNNING THE SIMULATION
As stated, each time the vehicle visits a patch in the envi-
ronment, the visit counter for that patch is incremented by 1.
Also mentioned before, each simulation used a maximum
of two light and two proximity sensors. All the vehicles
used proximity sensors within the subsumption architecture
to prevent the vehicle from crashing into the light or the walls.
The vehicle started in the same position, near the top centre
of the environment at location (0, 50) to reduce the chance
of a left/right bias of the vehicle. The vehicle’s pen had been
enabled in order to record the vehicle movements throughout
the 5,000 ticks for the separate output image produced.

VOLUME 9, 2021 11321

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

Table 5 illustrates the variety of behaviour that was pro-
duced by the different hybrid Braitenberg simulations with
40 randomly chosen outputs being shown from the pool
of 10,080. The outputs shown display the vehicle at the end
of each simulation along with the path taken by the vehicle
as recorded by it’s pen. To make identification of each sim-
ulation easier for this paper, a simulation number has been
allocated to each simulation shown in Table 4.

TABLE 4. The sensor positions and coupling for all the simulations
shown in this paper.

After the simulation has finished, all the patch visit coun-
ters for that simulation are exported for analysis. After the
completion of all simulations, a compression-based analysis
of robotic behaviour was carried out as described in the next
sub-section.

B. COMPRESSION-BASED ANALYSIS USING PREDICTION
BY PARTIAL MATCHING
Compression code length to used to help determine whether
the output observed is interesting or not for the simulations
in the previous sub-section. Compression code length is a

measure of how many bits are required for all symbols to
be represented in the compressed data, so a lower com-
pression code length indicates better compression has been
achieved. This sub-section explains how the compression
code lengths were calculated. The compression-based anal-
ysis of the simulation output uses the Tawa Toolkit [29] to
calculate the compression code lengths, using an adaptive
statistical compression algorithm called Prediction by Partial
Matching (PPM), which has been found to be one of the
best performing text compression algorithms [30]. Adaptive
statistical-based compression carries out two processes: mod-
elling and coding. The first process builds a table of prob-
abilities of all the previously encountered symbols in order
to anticipate what the next symbol will be while the second
coding process uses the probability distribution created from
the model to encode the symbol.

PPM is a Markov based system where the context (last
few symbols in the input stream) is used to forecast what the
next symbol will be. The order of a model is determined by
the number of symbols in the context, so a context length
of 1 means that PPM will use a single symbol to predict
the upcoming symbol. For the hybrid Braitenberg vehicle
output, a context of length 1 was found to give superior
compressed output. During the experimental process it was
observed that better compression of the output results in a
superior clustering of behaviours.

The probability distribution models for each order are con-
structed as each symbol is encoded, then they are blended
into a single model by using an escape mechanism. The
escape mechanism will use the highest order that has been
chosen to predict the upcoming symbol; so if the highest
order is set to 1, then the PPM modelling process will first
use order 1 to check if the symbol has been encountered
before. If the symbol has not been encountered before, then
the PPM escape mechanism will switch to a lower order
model. Asmentioned earlier, a maximumfixed order of 1 was
used for the compression-based analysis.

Equation 1 shows how the compression code length h for
encoding a symbol si in bits is calculated using an order
1 PPM model.

h(si) = −log2 P(si|si−1). (1)

(Note that for the purposes of the simulation analysis
described in this paper, the coding step which is usually
performed for compression purposes is unnecessary—the
Tawa toolkit allows modelling without coding, with reliable
compression code lengths estimated using Equation 1, since
the standard coder used for PPM, arithmetic coding, is known
to result in compressed output close to this theoretical
minimum.)

When using PPM for compression, the user sets the maxi-
mum order of the model, k . When a symbol that has not been
encountered before is detected, an escape symbol is encoded
which results in PPM decrementing the context order by
1 until the symbol is found in the model. If the context order
reaches -1 due to this escaping or ‘‘back-off’’ mechanism,

11322 VOLUME 9, 2021

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

TABLE 5. Output produced by 40 randomly chosen hybrid Braitenberg Vehicle simulations are shown along with their assigned simulation number.

the symbol is then given a probability of 1
|A| , where A refers

to the alphabet size. Since the experimental simulations run
for 5000 ticks, the maximum number of visits possible for
each patch of the environment is 5000, so the alphabet size
has been set to 5001.

PPM uses ‘‘full exclusion’’ where when the escape mecha-
nism is activated, all symbols previously predicted by higher
orders are excluded from the probability estimations for each
order.Moffat [31] introduced the novel idea of ‘‘update exclu-
sions’’ to PPM, which was unique to PPM, where the symbol
count for each context is incremented only when it has not
been predicted by higher order contexts.

Two main variations of the PPM algorithm exist which use
contrasting equations for calculating the escape and symbol
probabilities: PPMC (method C) and PPMD (method D).
These calculate the escape probability, e and the probability
of a symbol occurring, p(s), with the PPMC calculations
shown in Equations 2 and 3, while the PPMD calculations
are shown in Equations 4 and 5:

ePPMC =
t

n+ t
(2)

p(s)PPMC =
c(s)
n+ t

(3)

ePPMD =
t
2n

(4)

p(s)PPMD =
2c(s)− 1

2n
(5)

where:

• t is the number of types (unique symbols) that follow the
context;

• n is the number of times a context has occurred; and
• c(s) is the number of times a context was followed by
the symbol s.

PPMC estimates each symbol’s probability by using its
frequency of occurrence and assigns the number of types t to
the escape count in order to estimate the probability that an
escape will occur when a forthcoming symbol is absent from
the context. When a previously seen symbol is confronted,
PPMD increases the symbol counter by 2, but when symbols
have not been observed before, it increments the escape count
by 1 and allocates an initial symbol count of 1. In many
experiments, including the prior work on cellular automata,
PPMDoften outperforms PPMC for compression, and for this
reason, PPMDwas used to compress the output data produced
by the hybrid Braitenberg vehicle.

Table 7 shows the output of the trie data structure that was
constructed by the Tawa toolkit after reading the first 50 rows
of the output (i.e. after processing 7550 visit counters as they
appear in the environment reading from top to bottom and
from left to right). A trie is a type of search tree where the
nodes are symbols found in the search keys and the paths
down through the tree represent unique prefixes in those keys.
A trie data structure is often used in PPM implementations to

VOLUME 9, 2021 11323

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

TABLE 6. Placement of sensors for the hybrid Braitenberg vehicle used to
demonstrate the workings of PPM compression.

TABLE 7. Dump of dynamic PPM trie built from the first 50 rows of the
output visit count data produced by the hybrid Braitenberg Vehicle
described in Table 6 showing the counts for both order 1 models PPMC′

(PPM using escape method C without update exclusions) and PPMD (PPM
using escape method D with update exclusions, i.e. standard PPMD).

efficiently store the frequency counts for each of the contexts
and their predictions. The depth column in the table shows
the depth of the trie data structure, and since a PPM model
of order 1 is being used, the maximum depth is 2, with a
depth of 0 for the root node of the trie. The table shows
the PPMC′ (PPM using escape method C without update
exclusions) and PPMD counts calculated by these algorithms
for the values given along with the path to the trie node
(with ‘‘.’’ presenting the root node of the trie, and the path to
child nodes, labelled with their respective symbols, shown by
using→). The relationship between the PPMC′ and PPMD
counts for the path to the trie node with a depth of 2 can
be summarised by the numerators of Equations 3 and 5. For
PPMC, the count is represented by c(s), whereas for PPMD,
it is 2c(s)− 1. For example, the PPMC′ count in the table for
the ‘‘. → 0 → 1’’ path is 398, while for PPMD, it is 795,
which is equal to 2 × 398 − 1. This reflects that there were
398 occasions when a ‘‘1’’ visit count followed a ‘‘0’’ visit
count in the output data for this simulation. Figure 2 shows
the corresponding trie structure with the root trie node on the
left, which has a depth of 0, with the depth increasing towards
the right of the diagram.

IV. COMPRESSION-BASED ANALYSIS OF ROBOTIC
BEHAVIOUR
After the simulations were completed, the first task was to
find out which PPM order gave the best compression by
compressing the output from the simulation with PPM and
collecting the code length values for all the simulations, and
then calculating themean. As the data produced is the number

FIGURE 2. The trie structure retrieved from the dump of the dynamic PPM
trie shown in Table 7 for the model configuration described in Table 6.

TABLE 8. The Average Silhouette Width for the different number of
clusters. The highest Average Silhouette Width occurred when 5 clusters
were created.

of visits each patch receives over the whole simulation period
of 5,000 ticks, it is impossible for a patch to receive in excess
of 5,000 visits by one vehicle, and thus the alphabet size was
set to 5,001. It was found that the best overall compression
was achieved by using an order model 1, with higher orders
resulting in higher code length values (i.e. less compression).

For each simulation, the code length of each row of the
environment is calculated and is then exported to calculate
the first difference of cross entropy as below.

A. FIRST DIFFERENCE OF CROSS ENTROPY CALCULATION
The next stage was to create the first difference of cross
entropy values by using Tawa Toolkit’s codelength appli-
cation which calculates the code length of the data stream
after compressingwith the PPMalgorithm. The cross-entropy
H (r) for each row r is calculated using Equation 6, with
the code length required to encode each row divided by the

11324 VOLUME 9, 2021

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

TABLE 9. Clustered output of the images shown in Table 5 with each cluster arranged in code length order. The simulation number followed by the
compression code length is shown below each of the images.

number of symbols c in each row, which is 151 in this case:

H (r) =
1
c

c(r+1)−1∑
i=cr

hi(r). (6)

The codelength application can return the code length
at any point of data compression, so the code lengths were
retrieved for each row of patches. These were then subtracted
from each row, dividing it by the number of patches per row
to calculate the ‘‘first difference in cross entropy’’ for each
row r , 1H (r), defined as follows:

1H (r) = H (r)− H (r − 1). (7)

Each simulation resulted in 150 first difference of cross
entropy values, which were then used to cluster similar
behaviours together.

V. CLUSTERING ROBOT MOTION BEHAVIOUR
As mentioned earlier in section I-A, the easiest way to find
interesting behaviours was by assuming that more interesting
behaviour results in higher entropy values. However, this
was not sufficient in distinguishing between the different
behaviours that occur, and for that, a clustering step was
required. To check the performance of a cluster, and to deter-
mine the best number of clusters to use, the Average Silhou-
ette Width [32] metric was used because a gold standard was
not available, since Average Silhouette Width has been found
to be suitable in these cases [33]. An Average Silhouette
Width of 1 indicates perfect clustering, while 0 indicates that
in some clusters, a cluster member is on the boundary of
a different cluster. When clustering the first difference of
cross entropy data, it was discovered that by using k-means
clustering [34], the highest Average Silhouette Width was

VOLUME 9, 2021 11325

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

obtained, 0.2925, with four clusters, which indicates that
for some of the clusters, there are some members that are
borderline members of different clusters.

The output from all the 10,080 simulations were clustered
using this approach. In order to illustrate the clusters that
were produced, the same 40 randomly chosen outputs shown
in Table 5 have been arranged in Table 9 into the clusters
they were allocated by this clustering operation. The images
within each of the five clusters shown in the table have
been sorted in ascending order of compression code length.
A visual analysis of these clusters shows that the clustering
algorithm has been very effective at placing the different sim-
ulation outputs into clusters with similar behaviour, at least
for the sample of 40 randomly chosen simulations shown
here. A similar result is achieved if a different randomly
chosen sample is used instead.

A. FINDING INTERESTING BEHAVIOURS
When similar behaviours are clustered using the compression-
based analysis as described above, it is easier to get a better
understanding for the range of behaviours that is produced by
the system, as shown in Table 9. It is evident that cluster A has
simulations which caused the vehicle to traverse much of the
environment, with more complex patterns towards the end of
the table row, while the vehicles in the simulations in cluster
B on the other hand did not explore much of the environment
at all. The simulations in cluster C have complex intricate
patterns in their output, whereas those in cluster D have a
circular pattern with some intricacies, especially simulation
number 7412. In contrast, the output from the simulations in
cluster E also show that the vehicle has not explored much of
the environment.

Note that the compression code lengths of the output in
clusters A, C and D are in general much higher than those in
clusters B and most of cluster E. It was found that those simu-
lations producing output with intricate patterns and covering
large areas of the environment tended to have compression
code lengths greater than 1000 bits/symbol. The sensor loca-
tions and their coupling for the simulations from the selection
mentioned in Table 9 which produced compression code
lengths that are greater than 1000 bits/symbol are shown
in Table 10.
The experimental results show that changing the posi-

tion of the sensors on the vehicle and adding a subsump-
tion architecture has produced some unusual and interest-
ing behaviours. When proximity sensors were attached to
the motors, some of the behaviours observed were so sur-
prising that it was necessary to manually enter the param-
eters and observe the vehicle in the simulation travelling
along the same path to confirm the result. Clearly, this
is an example where emergent behaviour has arisen from
simple rules creating complex patterns resembling intricate
petal-like structures (especially in cluster C) and many other
different patterns. Some of these patterns may not have been
discovered if it was not for the algorithm which saved the

TABLE 10. The sensor positions and coupling for the simulations where
the compression code length was greater than 1000 bits/symbol.

need to laboriously manually examine over 10,000 images to
find which of the patterns were interesting.

VI. FUTURE WORK
The current system is being adapted for a real life modified
Braitenberg Vehicle which will explore how the simulation
can be moved into the real world. It will allow the validation
of the findings from the simulations to see whether the ‘‘inter-
esting’’ configurations are able to produce similar results
in real life despite the effects of friction and other physical
effects that have not been factored into the simulations.

VII. CONCLUSION
In this paper, a modified variant of the Braitenberg Vehicle
that was combined with obstacle avoidance behaviour within
a subsumption architecture was discussed, where both light
sensors were used accompanied by proximity sensors. The
subsumption architecture was there to prevent the vehicle
from crashing into the wall or other objects within the envi-
ronment, and was chosen to cause an internal conflict to
the vehicle in some situations. By changing the location
of the light and proximity sensors on the vehicle, different
behaviours occurred from this conflict creating intricate pat-
terns around the light source in some of the simulations. The
output was then compressed using PPM compression and the
difference in cross entropy between the rows estimated using
PPM was then calculated. From this data, it was possible
to run the k-means clustering algorithm to cluster similar
behaviours together. This then allowed interesting behaviours
to be effectively discovered.

This paper examined a synthetic system that was not
geared towards bio-inspired complex systems. However,
the approach used for clustering behaviours of a com-
plex system has far-reaching capabilities to discover sur-
prising behaviours in different complex systems including
bio-inspired ones.

REFERENCES
[1] N. Ahmed and W. J. Teahan, ‘‘Using compression to find interesting one-

dimensional cellular automata,’’ in Complex Intelligent Systems. Springer,
Sep. 2019.

[2] V. Braitenberg, Vehicles. Cambridge, MA, USA: MIT Press, 1984.

11326 VOLUME 9, 2021

N. Ahmed, W. J. Teahan: Using Compression to Discover Interesting Behaviours in a Hybrid Braitenberg Vehicle

[3] T. Salumae, I. Rano, O. Akanyeti, and M. Kruusmaa, ‘‘Against the flow:
A braitenberg controller for a fish robot,’’ in Proc. IEEE Int. Conf. Robot.
Autom., May 2012, pp. 4210–4215.

[4] I. Rano, A. G. Eguiluz, and F. Sanfilippo, ‘‘Bridging the gap between
bio-inspired steering and locomotion: A Braitenberg 3a Snake robot,’’ in
Proc. 15th Int. Conf. Control, Autom., Robot. Vis. (ICARCV), Nov. 2018,
pp. 1394–1399.

[5] C. J. Headleand and W. Teahan, ‘‘Towards ethical robots: Revisiting
Braitenberg’s vehicles,’’ in Proc. SAI Comput. Conf. (SAI), Jul. 2016,
pp. 469–477.

[6] R. Brooks, ‘‘A robust layered control system for a mobile robot,’’ IEEE
J. Robot. Autom., vol. 2, no. 1, pp. 14–23, 1986.

[7] N. Ahmed, ‘‘Discovering interesting behaviours in complex systems,’’
Ph.D. dissertation, School Comput. Sci. Electron. Eng., Bangor Univ.,
Bangor, U.K., Nov. 2019.

[8] P. Hall and S. C. Morton, ‘‘On the estimation of entropy,’’ Ann. Inst. Statist.
Math., vol. 45, no. 1, pp. 69–88, 1993.

[9] J. Blanchard, F. Guillet, R. Gras, and H. Briand, ‘‘Using information-
theoretic measures to assess association rule interestingness,’’ in Proc. 5th
IEEE Int. Conf. Data Mining (ICDM), Nov. 2005, p. 8.

[10] J. Schmidhuber, ‘‘Driven by compression progress: A simple principle
explains essential aspects of subjective beauty, novelty, surprise, inter-
estingness, attention, curiosity, creativity, art, science, music, jokes,’’ in
Anticipatory Behavior in Adaptive Learning Systems. Berlin, Germany:
Springer, 2009, pp. 48–76.

[11] W. Gerstner, W.M. Kistler, R. Naud, and L. Paninski,Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge,
U.K.: Cambridge Univ. Press, 2014.

[12] I. Rano, ‘‘A model and formal analysis of braitenberg vehicles 2 and 3,’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2012, pp. 910–915.

[13] P. H. Winston. (2010). Lecture 19: Architectures: GPS, SOAR,
Subsumption, Society of Mind. Accessed: Jan. 1, 2019. [Online]. Available:
https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-
19-architectures-gps-soar-subsumption-society-of-mind/

[14] R. Pfeifer and C. Scheier, Understanding Intelligence, 1st ed. Cambridge,
MA, USA: MIT Press, 2001.

[15] R. A. Brooks, ‘‘How to build complete creatures rather than isolated
cognitive simulators,’’ in Architectures for Intelligence, K. V. Lehn, Ed.
East Sussex, U.K.: Psychology Press, 2014.

[16] R. Brooks, ‘‘A hardware retargetable distributed layered architecture for
mobile robot control,’’ in Proc. IEEE Int. Conf. Robot. Autom., Mar. 1987,
pp. 106–110.

[17] R. A. Brooks, ‘‘Elephants Don’t Play Chess,’’ Robot. Auto. Syst., vol. 6,
nos. 1–2, pp. 3–15, Jun. 1990.

[18] R. A. Brooks, J. H. Connell, and P. Ning, ‘‘Herbert: A Second Generation
Mobile Robot,’’ Cambridge, MA, USA:MIT Press, Tech. Rep. AIM-1016,
1988.

[19] J. Connell. (1987). Soda Can Collecting Robot. Accessed: May 10, 2019.
[Online]. Available: https://www.youtube.com/watch?v=YtNKuwiVYm0

[20] T. E. Kurt, Hacking Roomba. Hoboken, NJ, USA: Wiley, 2006.
[21] C. Flanagan, D. Toal, and M. Leyden, ‘‘Subsumption and fuzzy-logic,

experiments in behavior-based control of mobile robots,’’ Int. J. Smart Eng.
Syst. Des., vol. 5, no. 3, pp. 161–175, Jan. 2003.

[22] R. A. Brooks and L. A. Stein, ‘‘Building brains for bodies,’’ Auto. Robot.,
vol. 1, no. 1, pp. 7–25, 1994.

[23] Create. (2018). Rethink Robotics Revisited: A Look Back at the Collab-
orative Robots Pioneer. Accessed: Apr. 1, 2020. [Online]. Available:
https://www.createdigital.org.au/rethink-robotics-collaborative-robots-
pioneer/

[24] S. Birrell. (Jun. 7, 2016) Robot Mind or Robot Body: Whatever Hap-
pened to the Subsumption Architecture. Accessed: Apr. 1, 2020. [Online].
Available: http://www.artificialhumancompanions.com/robot-mind-robot-
body-whatever-happened-subsumption-architecture/

[25] SXSW Interactive. (Mar. 17, 2016). Rodney Brooks in Conversation
with Nick Thompson. Accessed: Apr. 1, 2020. [Online]. Available:
https://www.youtube.com/ watch?v=k3_AFg2922Y

[26] R. Pfeifer and J. Bongard,How the Body Shapes the Way We Think: A New
View of Intelligence, 1st ed. Cambridge, MA, USA: MIT Press, 2006.

[27] U.Wilensky. (1999).NetLogo. Accessed: Jun. 1, 2019. [Online]. Available:
http://ccl.northwestern.edu/netlogo/

[28] U. Wilensky. (2005). Netlogo Moths Model. Accessed: Nov. 1, 2019.
[Online]. Available: https://ccl.northwestern.edu/netlogo/models/Moths

[29] W. Teahan, ‘‘A compression-based toolkit for modelling and processing
natural language text,’’ Information, vol. 9, no. 12, p. 294, Nov. 2018.

[30] M.Mahoney. (Nov. 2016). Large Text Compression Benchmark. Accessed:
Jan. 15, 2018. [Online]. Available: http://mattmahoney.net/dc/text.html

[31] A. Moffat, ‘‘Implementing the PPM data compression scheme,’’ IEEE
Trans. Commun., vol. 38, no. 11, pp. 1917–1921, Nov. 1990.

[32] P. J. Rousseeuw, ‘‘Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,’’ J. Comput. Appl. Math., vol. 20, pp. 53–65,
Nov. 1987.

[33] S. S. im Walde, ‘‘Experiments on the automatic induction of german
semantic verb classes,’’ Comput. Linguistics, vol. 32, no. 2, pp. 159–194,
Jun. 2006.

[34] J. A. Hartigan andM. A.Wong, ‘‘AlgorithmAS 136: AK-means clustering
algorithm,’’ Appl. Statist., vol. 28, no. 1, pp. 100–108, 1979.

NADIM AHMED received the Ph.D. degree in
computer science from Bangor University, Wales,
U.K., in 2019. He has worked as a Computer Sci-
ence Lecturer with Soran University, Erbil, Iraq.
His research interests include artificial intelligence
and robotics.

WILLIAM J. TEAHAN received the Ph.D. degree
in applying text compression models to the prob-
lem of modeling English text from the University
of Waikato, in 1998. He was a Research Assistant
with the Machine Learning and Digital Libraries
Labs, University of Waikato, New Zealand,
in 1998. From 1999 to 2000, he was a Research
Fellow with the Information Retrieval Group, The
Robert Gordon University in Aberdeen, Scotland,
under Prof. David Harper. He was an Invited

Researcher with the Information Theory Department, Lund University,
Sweden, in 1999. He is currently a Senior Lecturer with the School of
Computer Science and Electronic Engineering, Bangor University. His work
involves research into artificial intelligence and intelligent agents. Ongoing
research has also specifically focused on applying text compression-based
language models to natural language processing (NLP), information retrieval
(IR), and text mining.

VOLUME 9, 2021 11327

