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ABSTRACT A convolutional neural network and deep autoencoder are used to predict Line Spectral
Frequencies, F0, and a voiced/unvoiced flag in singing data, using as input only ultrasound images of the
tongue and visual images of the lips. A novel convolutional vocoder to transform the learned parameters
into an audio signal is also presented. Spectral Distortion of predicted Line Spectral Frequencies is reduced
compared to that in an earlier study using handcrafted features and multilayer perceptrons on the same data
set; while predicted F0 and voiced/unvoiced flag predictions are found to be highly correlated with their
ground truth values. Comparison of the convolutional vocoder to standard vocoders is made. Results can be
of interest in the study of singing articulation as well as for silent speech interface research. Sample predicted
audio files are available online. Source code: https://github.com/TjuJianyu/SSI_DL.

INDEX TERMS Multimodal speech recognition, convolutional neural networks, ultrasound, line spectral
frequencies, silent speech interfaces, vocoder, rare singing.

I. INTRODUCTION
The past several years have seen a growing interest in mul-
timodal speech processing, for combining audio tracks with
video of the speaker to enhance speech recognition in noisy
environments [1], [2]; to perform lip reading [3], [4]; or in
Silent Speech Interface (SSI) applications [5]–[7]. As in
many fields, multimodal speech processing has taken advan-
tage of recent AI techniques such as Deep Autoencoders
(DAE), Deep Neural Network (DNN), and Convolutional
Neural Networks (CNN), for example in an ultrasound based
SSI, to classify phonemes, or extract spectral quantities like
F0 and Line Spectral Frequencies (LSF) [8]–[11].

A frequent a goal of multimodal speech processing is
audio synthesis, which may be obtained either by following
multimodal speech recognition with an HMM-based or other
synthesis step (e.g., [12]); or by coupling extracted acous-
tic parameters with a source-filter model (e.g., [11], [13],
[14]). Recently, so-called ‘‘neural’’ vocoders have begun
to appear as an alternative to source-filter synthesizers,
sometimes involving the use of the Generative Adversarial
Networks (GAN) [15]–[17] that are now widely used in
generation tasks [18]. Applications of neural vocoders to
multimodal speech synthesis have begun to appear [16],
[19]; however, results to date, although interesting, remain
preliminary. Indeed, it is difficult for today’s multimodal
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speech processing experiments to create the large data sets of
high-quality acoustic parameters necessary for training and
parameter-tuning of GAN-based and other neural vocoders.

In this work, a simpler alternative, more accessible to cur-
rent multimodal speech applications, combines CNN/DAE
with a multimodal source-filter synthesis module. In the
method (Figure 1), a CNN/DAE architecture first learns LSF,
F0, and voiced/unvoiced (U/V) flag from ultrasound tongue
and visual lip images, using ground truths derived from an
audio track. Subsequently, a ‘‘Convolutional Vocoder’’ uses
the predicted acoustic parameters to produce an acoustic
signal having properties similar to the raw audio input. The
method is applied to a ‘‘rare singing’’ data set, whose results
can be of importance both in the study of rare singing styles,
and as an exploratory study of acoustic parameter prediction
for an SSI. Spectral Distortion (SD) performance of LSF
prediction using the architecture is found to improve as com-
pared to an earlier study [11] on the same dataset; and F0
prediction, using only tongue and lip images, is excellent. The
performance of the convolutional vocoder compares favor-
ably to that of a standard MELP-MLSA (Mixed Excitation
Linear Prediction –Mel Log SpectrumApproximation) coder
[20], [21]. Example videos of the resulting CNN synthesis
and ground truth, illustrating the ultrasound tongue and visual
lip images used, are provided online at [22].

A historical overview of multimodal speech synthesis is
presented in the next section, followed by an outline of the
datasets used in section III. The training procedure and results
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FIGURE 1. Overall pipeline. It starts from extracting LSF coefficients, F0 and U/V flag from audio frames. Then tongue and lip images are used to
predict these three features separately by CNN (A dashed line indicates no back-propagation traverses it). Finally, the predicted features are used to
synthesize an input wave for a CNN vocoder, which predicts audio frames.

for the CNN appear in section IV.A, and vocoder develop-
ment with its results in section IV.B. Conclusions and future
perspectives are discussed in the section V.

II. RELATED WORK
The interest of multimodal data for speech processing has
been recognized for many years. The first mention of lip
reading for speech synthesis appeared in [23] in 1985, and
a review of progress in lip image based speech processing
published in [24] in 2004. The first reference to ultrasound
tongue imaging for speech synthesis (also in 2004 [13])
used feed-forward neural networks to map ultrasound tongue
contours to acoustic parameters of a source-filter vocoder
employing a white-noise activation function. In 2010 [5],
a review of SSI applications exploiting a wide variety of
non-acoustic sensors as multimodal inputs appeared.

More recently, an experiment [25] (2015) using tongue and
lip mounted Electromagnetic Articulography coils (EMA)
as input made use of an MLSA vocoder with white noise
activation for synthesis. In 2017 [26], MLSA vocoder param-
eters were obtained from surface electromyographic (sEMG)
signals, where a predicted F0 activation gave improved intel-
ligibility compared to white noise input. In a 2019 experiment
[27], ECoG brain implant signals recorded during speech
were used to predict spectral quantities transformed into
speech with an MLSA vocoder, producing short sentences
with, in some cases, encouraging similarity to ground truth
sentences.

Concerning lip reading, most recent experiments have
made use of the GRID corpus [28], which constructs simply
structured sentences from a limited set of words. In [29],
syntheses performed using the STRAIGHT vocoder [30] with
a noise activation gave about 50% word accuracy in listening
tests. Increased performance on the same dataset, about 80%,
was reported in [31] using CNN to produce features from
lip images, and a noise-activated source/filter model. Further
GRID improvements were obtained in [49] using a DAE
to predict a cortically-inspired spectrogram representation
of spectral parameters that preserves some F0 information,

followed by direct transformation into a speech signal using
an analytical technique developed in [32].

An approach at the frontier between traditional techniques
and newer neural ones appears in [33], where a CNN trans-
forms ultrasound tongue images into a spectrogram that is
converted into speech using the Griffin-Lim algorithm [34].
Griffin-Lim is similar conceptually to the algorithm in [32],
and is also the synthesis technique employed in the generative
Tacotron vocoder [35]. In [33], word recognition rates for a
set of simple commands in automated listening tests were
about 60%. Finally, the generative vocoders Wavenet [15]
and WaveGlow [36], have been used, respectively, in [16]
(2018), to produce single-word speech outputs from ECoG
brain implant waveforms; and in [19], to synthesize a set of
test sentences from ultrasound images of the tongue.

In these last examples [16], [19], [33], as well as in
preliminary tests of our own using Griffin-Lim [37], the spec-
trograms predicted from sensor data, although globally cor-
rect, lack detailed harmonic structure, giving rise to speech
that, while interesting, has only moderate intelligibility.
Apparently, the new vocoders, however powerful, cannot
compensate for shortcomings encountered in the acoustic
parameter prediction phase. This observation is in accord
with the view [38] that neural vocoders may require detailed
input parameters (aperiodicity, for example) not accessible
in some applications; and that in [39], on singing voice syn-
thesis, that accurately predicting acoustic feature sequences
remains a key issue in vocoding. For these reasons, as well
as the requirement of very large training sets for neural
vocoders, we propose, in this work, an alternative approach
that affords both a simpler implementation and a more trans-
parent view of the effects of imperfect prediction of spectral
and acoustic vocoder parameters.

III. DATASETS AND PRE-PROCESSING
The dataset used consisted of 5 traditional Latin and Corsican
songs of 2 to 5 minutes each, for a total duration of 19 min-
utes [40]. The data were acquired as part of the i-Treasures
project [41] that proposed new technologies for conserving
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intangible cultural heritage, such as rare singing styles.
Singers were instrumented with a special helmet including,
besides a standard microphone: an ultrasound probe beneath
the chin to record tongue movement; a camera before the
mouth to capture lip movement; an electroglottograph at the
neck sensitive to glottal activity; accelerometers at the bridge
of the nose to measure nasality; as well as a special belt on
the torso to log the respiration rate. In addition to archiving
this rare cultural heritage, the data recorded by i-Treasures
sensors are useful for creating models of articulation in dif-
ferent singing styles [42], and have also served as input to
the i-Treasures Text-to-Song synthesis platform [41]. The
singing data are furthermore interesting for the development
speech synthesis systems for SSIs, as the longer duration
of phonetic events typical in singing data can be a useful
stepping stone towards more effective SSI systems.

Data were logged using a real time data acquisition system
that recorded ultrasound tongue and visual lip images at
60 frames per second, as well as audio at 44.1 kHz (the other
sensors mentioned earlier are not used in this study). After
cleaning, 68,146 lip/tongue images and 50,087,310 audio
samples were retained. A set of 5000 images was set aside for
testing – identical to that used in [11] – while the rest of the
data was used for training and validation. Regions of Interest
(ROI) defined in the tongue and lip images were resized to
48× 48 pixels. A pre-emphasis filter (a=0.95) was applied
on the original audio as in [11]. Sound was downsampled to
16 kHz for the experiments; however, for the SD comparison
to [11], 11.025 kHz was used, as in that work. LSF values
were extracted using standard techniques and were verified
to be nearly identical to those in [11]. F0 was defined as the
frequency of the sine wave giving the best alignment with the
audio in each frame. U/V was set to zero for frames in which
the alignment procedure failed.

IV. MACHINE LEARNING ARCHITECTURES DEVELOPED,
WITH RESULTS
A. CNN FOR LSF, F0, AND U/V PREDICTIONS
1) CNN TRAINING
The training architecture is illustrated in Figure 2. Resized
lip and tongue ROIs feed a convolutional DAE whose central
bottleneck layer provides the features used to predict 12 LSF
values in parallel after a dropout layer and a dense layer.
In this work, the unsupervised convolutional DAE is actually
a representation learning. Due to the difficulty of obtaining
of large numbers of lip and tongue images, as is often the
case, unsupervised representation learning of images can
help supervised prediction, especially when there are shared
underlying causal factors between image reconstruction and
LSF prediction [43]. For instance, both unsupervised DAE
and supervised LSF coefficients prediction strongly rely on
the shape of the lips and tongue, a high-level feature. The
DAE learns the high-level representations from raw pixels.
A classification approach in which the LSF values are first
binned into 100 discrete levels was found to give superior per-
formance compared to predicting LSF values directly. In the

FIGURE 2. LSF training architecture. It contains: Encoder, Decoder and
Predictor. The Encoder and Decoder constitute a DAE acting on resized
tongue and lip ROIs, while the Predictor outputs the LSFs. For F0 and U/V
training the Decoder is not implemented. U/V prediction replaces twelve
100-class classification output layers by a binary classification layer. F0
prediction further replaces the classification output layer by three
regression output layers, which predict F0, Amplitude and DC offset of
audio waveforms, respectively.

TABLE 1. Performance of LSF, F0 and U/V prediction.

case of F0 and U/V, the Encoder and Predictor in with regres-
sion output and binary classification output, respectively,
are used for training to gain better performance. Training
was done using Tensorflow in Python. In Convolutional and
Pooling layers, parameters are listed in the form of: channels
@ kernel× kernel. By default, activation function and strides
are set to RELU and 1, respectively. Denoising dropout is
set to 0.2. Here we use Batchnorm and Dropout techniques
together because of the limited small dataset and the difficult
learning task.

In train mode, we use Adam optimizer [44] with learning
rate 1e-4, Glorot Uniform [45] weights initialization, batch
size 512 for LSF, F0 and U/V predictions. LSF prediction
uses weighted sum of MSE loss on reconstructed lips and
tongues (the weights is 1e-2 for both lips and tongues) and
cross entropy loss on discrete LSF levels (the weights is 1 for
each LSF coefficient). Then it is trained with 50 epochs.
F0 and U/V predictions use MSE loss and cross entropy loss,
respectively. Both F0 and U/V are trained with early stopping
on a 5% validation dataset to avoid overfitting. More details
can be found at: https://github.com/TjuJianyu/SSI_DL.

2) CNN RESULTS
The performance results for prediction of the LSF, F0, and
U/V flag are given in Table 1.

Performance of the LSF prediction is measured in dB of
Spectral Distortion, defined as the root mean square of the
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FIGURE 3. Real and predicted F0 versus frame number. Unvoiced frames,
where F0 is not defined, do not appear in the plot.

differences in dB, at a fixed set of frequencies, between the
LPC polynomials derived from the original and the learned
LSF values [14]. In the LSF entry of Table 1, a comparison is
made between the present work and [11], where DAE features
were selected manually for saliency before being used to train
a multilayer perceptron (MLP). The train and test datasets
and pre-processing procedure used in [11] and this work were
identical. An improvement of 0.8 dB is obtained using the
CNN/DAE approach of this work.

For F0, a Pearson correlation score of 0.936 and Normal-
ized Mean Squared Error (NMSE) of 0.008 were obtained.
TheNMSE is defined as themean squared difference between
the true and predicted values, divided by the means of the
true values and of the predicted values. A high degree of
F0 correlation was also observed in [10] (Pearson of 0.7 and
NMSE of 0.5) where a DNN mapped tongue (only) images
to F0. A plot of real and predicted F0 values from the test set
of the present work appears in Figure 3.

The U/V binary classifier results are expressed in terms of
ROC AUC and Accuracy. ROC AUC ranges from 0.5 to 1,
with 0.5 corresponding to random guessing. An ROC AUC
of 0.969 is interpreted as a 96.9% probability that a randomly
chosen positive example is ranked higher than a randomly
chosen negative one; while 0.930 Accuracy means an 93.0%
probability of giving the correct classification result.

B. CONVOLUTIONAL VOCODER
1) VOCODER TRAINING
For multimodal synthesis applications, predicted acoustic
parameters can be used to produce an audio output sig-
nal. Although LSF/LPC based vocoding works well when
ground truth residuals are used as input to the synthesis step,
obtaining realistic sounding vocalizations using artificial acti-
vation functions is more problematical. In [11], numerous
experiments based on real and synthetic electroglottograph
signals (EGG) were carried out in order to obtain reasonable
sounding reproductions of the original singing audio. In this
work, a CNN-based approach was used to learn to produce
an output resembling the original audio. This ‘‘convolutional
vocoder’’ works in the following way.

First, a ‘‘bare’’ audio signal is produced from the original,
measured LSF, F0, signal phase, and U/V values. In each
frame, this signal consists of a known-phase sine wave at
F0, for voiced frames, or a flat waveform for unvoiced ones,

FIGURE 4. CNN vocoder architecture. Input and output are ‘‘raw’’ and
original audio waveform, respectively, from one frame. Strides of
MaxPool is set to 2, dropout to 0.1.

to which white noise is added before filtering by the LSF
filter. A 1-dimensional CNN is then trained to ‘‘dress’’ the
bare signal until it resembles as much as possible the original
audio of the corresponding frame. A CNN autoencoder with
a local spatial property is commonly used in audio-related
tasks, such as speech enhancement [46]. In this work, we use a
CNN autoencoder (Figure 4) to generate audios. For training,
we use a distortion loss (MSE) as the objective function dur-
ing the training of the vocoder, while other objective function,
such as adversarial loss, can also be used here. An autoen-
coder architecture is used to synthesize audio signals from
the ‘‘bare’’ audio signals. The activation functions are RELU
except the last layer with a linear activation function.

In train mode, we use Adam optimizer with learning rate
1e-4, batch size 512, Glorot Uniform weights initialization,
and 5000 epochs to train the neural network. More details of
the neural network and the training process can be found at:
https://github.com/TjuJianyu/SSI_DL.

In test mode, the predicted LSF, F0, and U/V flags are used
to create the raw waveform. Signal phase at this point is of
course unknown, but is not relevant perceptually, as long as
phase continuity is assured at frame boundaries.

2) VOCODER RESULTS
This section compares the CNN vocoder to two baseline
methods:
• MELP-MLSA: MLSA [47] is a filter based on
Mel-cepstral coefficients. During the synthesis of audio,
MLSA is applied to Dirac pulse trains generated at F0.
Here, modified Dirac pulse activations fromMELP [21]
are used to improve the quality of the synthesized audio.
Mel-cepstral coefficients are approximated from LPC as
in [20].

• MELP-LPC: An LPC filter is used on the same pulse
activations as in MELP-MLSA.

Another possibility would be a generative approach. The
main difference between the adversarial loss in GAN and
distortion loss (e.g. Mean Squared Error, or MSE) is the
definition of salience. The adversarial loss connects salience
with recognition ability (recognizing a true or synthesized
example), while the distortion loss defines salience as total
pointwise distortion between true and synthesized exam-
ples. Both adversarial loss and distortion loss can be applied
based on different definitions of salience. As mentioned in
section II, however, we prefer not to test generative architec-
tures at this point. These techniques require very big datasets
and significant parameter tuning to use. Based on the small
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FIGURE 5. Waveforms comparison of ground truth, MELP-MLSA, CNN,
MELP-LPC on frames No. 500, No. 2500, No. 3000 and No. 4000.

silent speech dataset, WaveNet for example could not be well
trained and thus we do not compare with it in this project.

Figure 5 shows the comparison of CNN vocoder,
MELP-MLSA, MELP-LPC and ground truth on four frames.
In unvoiced frames (e.g. Frame No. 500), the methods are
almost identical, while in voiced frames, the CNN vocoder
waveform appears to most nearly resemble ground truth,
on phones /a:/ in Frame No. 2500 and No. 3000, and /i:/
in Frame No. 4000. We note that the predicted waveforms’
glottal pulses, being derived from predicted F0, should not
be expected to align perfectly with ground truth.

A video of one song, showing ultrasound and lip camera
modalities and using the proposed vocoder, is given in [17],
and an example comparison of the CNN synthesized audio
(.wav) with the baseline methods appears in [48], including a
result from pure MELP [47] without LPC or MLSA filtering.
It is important to remember that the predicted clips are created
using exclusively ultrasound tongue and visual lip images as
input. The behavior of the F0 prediction in Figure 3 suggests

TABLE 2. Shifted cosine similarity SCS comparison of CNN, MELP-MLSA,
MELP-LPC and white noise.

that we cannot, at this stage, expect a result that closely
resembles the beautiful original song. Indeed a too-low F0 in
certain passages makes it difficult to follow parts of the song.
Errors in the U/V flag prediction as well as discontinuities in
LSF values can also produce artefacts that degrade listening
quality. Nonetheless it is an important first step to have pro-
duced, using the convolutional vocoder, a signal that sounds
as if it might have human origin, particularly as compared
with the ‘‘buzzy’’ quality of the MELP vocoders. Indeed the
results suggest that better control of the predicted spectral
parameters could lead to a much improved result. In Figure 3,
for example, appropriate smoothing of F0 could produce
a much less chaotic-sounding result, even if the prediction
in some frames remains far from the target value. Similar
procedures on the LSFs and U/V flag might also be fruitful.

We further compare the correlation between ground truth
and synthesized waveforms. As discussed in section 5,
the precise positions of glottal closures cannot be reproduced
exactly. We thus compare the correlation between waveforms
with a Shifted Cosine Similarity, SCS, method on frame i as
follows:

SCSi = max
β

cosine(yi×f :(i+1)×f ,ŷi×f+β:(i+1)×f+β ) (1)

cosine (a, b) =
a · b
|a| |b|

(2)

where f indicates frame size, β(|β|< 0.1f) is a shift on
the synthesized audio frame ŷi×f:(i+1)×f, and yi×f:(i+1)×f is
the ground truth audio frame. By adjusting β to maximize
cosine similarity, SCS can measure the correlation between
waveforms regardless of the positions of glottal closures.
We constrain |β| within a small range, 10% frame size, and
present cosine similarity performances in V, which shows
that the CNN method outperforms the baseline methods.

V. DISCUSSION AND CONCLUSION
A CNN combined with a DAE has been used to predict
LSF, F0, and U/V flag from ultrasound tongue and visual
lip images of a rare singing performance. Accuracy on
LSF prediction is significantly improved compared to an
existing benchmark on the same data set [11] that uses
hand-engineered DAE features and MLPs. As has also been
observed in other studies, [10], [13], F0 and U/V can be
predicted with good accuracy from ultrasound and visual
data of the vocal tract. These results can be of interest in
singing articulation studies and suggest techniques that may
also be applicable in the development of SSIs for ordinary
speech. Finally, a convolutional vocoder trained on the orig-
inal audio signal produces reasonable-sounding vocoding on
test-set vocalizations [16], [48] and compares favorably to
MELP benchmarks. Despite the improvements, the fidelity of
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the resulting audio remains low. It is suggested that smooth-
ing of predicted quantities could provide better performance.
When parameter estimation is better controlled, extensions
to some of the more recent types of vocoders [15], [36], [50]
could be undertaken.
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