
Received December 19, 2020, accepted January 3, 2021, date of publication January 11, 2021, date of current version January 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050922

Distributed Virtual Network Embedding for
Software-Defined Networks Using
Multiagent Systems
ALI AKBAR NASIRI 1, FARNAZ DERAKHSHAN 1,
AND SHAHRAM SHAH HEYDARI 2, (Senior Member, IEEE)
1Electrical and Computer Engineering Department, University of Tabriz, Tabriz 5166616471, Iran
2Faculty of Business and Information Technology, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada

Corresponding author: Ali Akbar Nasiri (ali_nasiri@tabrizu.ac.ir)

ABSTRACT Virtual Network Embedding (VNE), which provides methods to assign multiple Virtual
Networks (VN) to a single physical Substrate Network (SN), is an important task in network virtualization.
The main problem in VNE is the efficiency of assigning customers’ virtual network requests to the substrate
network. This problem is known to be a Non-deterministic Polynomial-time hard (NP-hard) and heuristic
solutions have been developed to solve this kind of problem. The current trend toward Software-Defined
Networking (SDN) has allowed new possibilities in virtual network embedding. In this work, we propose
a distributed virtual network embedding for SDNs called DVSDNE using multi-agent systems. This
framework could be used to run a centralizedVNE algorithm in a distributedmanner to scale these algorithms
with respect to network size. DVSDNE uses agents to spread the load across the substrate network. Our
simulation results show the effectiveness of the proposed algorithm. Results show that DVSDNE improves
execution time of embedding algorithms in large scale substrate networks, while embedding results such
as acceptance ratio, revenue to cost ratio, average latency to controller, and maximum latency to controller
remain comparable.

INDEX TERMS Graph partitioning, multi-agent systems, network virtualization, software-defined network-
ing (SDN), virtual network embedding.

I. INTRODUCTION
Over the past few decades, the Internet has provided a new
approach to transmit information based on the deployment
of packet switching network technology and its related appli-
cations. However, the traditional architecture of the Internet
was a barrier to future innovations such as cloud computing,
autonomous vehicles, and the Internet of Things, specifically,
because of the several Internet service providers. Therefore,
introducing new network architecture would not only need
changes in hosts and routers but also requires agreements
among Internet Service Providers. The large size of today’s
Internet made the extension of new network services a diffi-
cult and time-consuming challenge [1].

Network virtualization introduces an efficient approach to
address this problem. On-demand virtual network structures
that might contain various protocols are embedded in shared
physical infrastructure. This provides a powerful solution

The associate editor coordinating the review of this manuscript and

approving it for publication was Rentao Gu .

to expand the future Internet by running several network
services concurrently on a shared physical network [2].

Based on definitions, network virtualization includes leas-
ing and sharing of the Substrate Network (SN) or physical
network infrastructure, which consists of physical nodes and
links. Network virtualization aims to increase the usability of
physical resources and provides extensible and flexible net-
works for tenants. A Virtual Network (VN) includes a set of
virtual nodes connected by virtual links and forming a virtual
topology. A virtual node can be assigned to a substrate node
and interconnected by a collection of virtual links. Virtual
links may be embedded on multiple substrate links (path) [3].

With network virtualization, applications such as multi-
media streaming can make virtual networks that satisfy
application-specific constraints. However, the development
of efficient strategies for embedding a virtual network into
a physical substrate is challenging and remains an active area
of research [4].

The Virtual Network Embedding (VNE) problem focuses
on how to efficiently map virtual network requests to

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 12027

https://orcid.org/0000-0002-2433-2195
https://orcid.org/0000-0001-5155-0991
https://orcid.org/0000-0002-6107-7728
https://orcid.org/0000-0003-3183-2857

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

substrate resources. Therefore, efficient usage of substrate
resources depends on the VNE algorithms under limitations
such as node and link constraints. The node constraints
include factors such as CPU processing power and storage
capacity. The link constraints may include parameters such as
bandwidth (capacity), packet loss, and delay. Consequently,
virtual node mapping and virtual link mapping are two steps
of virtual network embedding. In the virtual node mapping
step, virtual nodes are mapped to substrate nodes, providing
enough resources. Similarly, in the virtual link mapping step,
the virtual links are mapped to substrate links, providing
enough resources. In general, finding a feasible embedding is
an NP-hard problem [5] and it can be reduced to a multi-way
separator problem [6].

So far, many algorithms have been proposed to solve
the virtual network assignment problem [7]–[9]. The virtual
network embedding algorithms may be implemented in a
centralized manner or a distributed manner. In the centralized
approach, a central entity receives virtual network requests
and maps virtual nodes to substrate nodes and virtual links to
substrate links. In order to make the right decisions, the entity
needs to hold up-to-date information about the physical net-
work. However, keeping latest information in a centralized
manner has serious challenges in terms of scalability, high
network latency, and delays in making decisions especially
when the capacity of the physical network is dynamic and
changing due to the creation or deletion of new virtual nodes
and networks [10]. In the distributed approach, multiple enti-
ties cooperate to map virtual networks to substrate networks.

Software-Defined Networking (SDN) is an enabling tech-
nology for virtual networking and has received significant
considerations [11]. SDN is a network architecture in which
the data plane and the control plane are separated in networks
and a central controller is responsible for making network
control decisions and transmitting them to data-forwarding
switches [12]. The network controller is responsible for man-
aging the entire network through a southbound interface such
as OpenFlow [13] which was introduced to standardize the
communication between the controller and the switches in an
SDN architecture.

Regardless of the topology, the network delay due to the
distance between the SDN controller and switches as well as
the workload on each controller are the parameters that affect
the performance of the controllers [14].

The industry is considering SDN as a solution to simplify
network control and the roll-out of new services while reduc-
ing hardware complexity and costs [15].

In OpenFlow architecture, each controller makes a TCP
connection with its switches to exchangemessages. The com-
munication between the control plane and data plane can
be implemented in two ways: 1) as in-band communication,
2) out-of-band communication. In-band communication uses
the same links to connect the controller to forwarding devices,
while out-of-band communication uses a separate network
infrastructure to connect the controller to forwarding devices.
Out-of-band signaling provides better isolation between

data and control messages at the extra cost of additional
hardware.

We also used in-band SDN in this work for two main
reasons[16]: first, feasibility and lower-cost of in-band SDN,
and second, link Failure Recovery.
• Feasibility and lower-cost of in-band SDN: Recently,
OpenFlow which is used for connection between
switches and its controller have got more attention in
WLANs, cellular, wireless mesh networks, etc. There-
fore, the need for a dedicated control plane network is
the primary reason that the Out-of-Band control plane
network becomes a costly solution for such networks.
Besides, it is not even practical to have another separate
network in such networks which nodes spread in a broad
geographic area. By using an In-Band control plane,
it is simple to connect distant switches to the controller
indirectly and without a separate network

• Link Failure Recovery: One shortcoming of the Out-
of-Band control plane is that there exists a unique path
from the switch to the controller paths due to using
separated and dedicated cabling and networks for the
control plane network. Thus, failure of the control path
will effectively remove that partition of the network from
the control of the SDN controller. In this situation, link
failure needs to be resolved manually to reconnect the
switch to the controller. On the contrary, in the In-Band
control plane, any link failure may affect both control
and data planes, due to the use of the same link for
data plane and control plane. However, the advantage
of In-Band compared to Out-of-Band control network
plane is the flexibility to modify the control traffic path
and the capability to apply automatic failure recovery
mechanisms.

Figure 1.a represents out-of-band communication and
Figure 1.b represents in-band communication. In this work,
in-band communication is used for embedding virtual net-
works. This would require considering both control traffic
and data traffic together in terms of bandwidth demand for
a virtual SDN network [1].

SDN allows for better optimization of routing policies and
simplifies network testing [17]. Developers can program the
network without considering the forwarding and the lower
level detail of packet processing in physical devices [18].

While some previous virtual network embedding algo-
rithms can be utilized for virtual network assignment
in an SDN environment, some inherent characteristics
of SDN, such as the location of the controller and
Controller-to-Switches traffics, require new definitions and
approaches [19].

Multi-agent systems consist of agents and their environ-
ment. In [20], an agent is considered as a computer system
that is placed in an environment and is able to perform
autonomous actions in this environment to reach its design
goals. In other words, agents are networked entities that can
carry out particular tasks and have a degree of intelligence
that allows them to do their tasks autonomously and to

12028 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 1. (a) Separate network for control and data traffic (Out-of-band control network). (b) Same network for both control and data traffic (In-band
control network).

interact with their environment. In [21], a multi-agent system
is considered as a system that consists of two or more agents,
which cooperate with each other to reach their goals. Multi-
agent systems can solve problems that are difficult for an
individual agent to solve.

Solving computation tasks are becoming more compli-
cated as the size continues to increase. As a result, it is diffi-
cult to handle these tasks in centralized manners. Although
motivations to use of multi-agent systems in various areas
are different, the main benefits of applying multi-agent sys-
tems include [22]: (1) the specific nature and environment
of applications is considered; (2) local interactions can be
studied and modeled; and (3) difficulties in computation and
modeling are structured as components or parts. Therefore,
multi-agent systems provide a good solution to distributed
computational tasks. In addition, artificial intelligence meth-
ods can be applied.

The use of multi-agent systems on a particular area begins
by partitioning the problem into smaller components. A par-
ticular agent is assigned to each of these components to
perform particular tasks and reach its goals, thus making
problem-solving process easier [23].

Themotivation of this research was to develop a distributed
framework for assigning virtual networks to substrate net-
work resources in an SDN environment based on multi-agent
systems. Each virtual SDN on the substrate network has its
controller, and it needs special considerations that come with
the existence of this controller. The controller is responsi-
ble for determining and sending traffic policies and routing
updates. The controller needs to exchange information effi-
ciently to all the switches that are part of the SDN, there-
fore, any virtual SDN embedding effort needs to concern all
controller-to-switch delays.

Also, to reduce delays and improve scalability, at first,
we partition a substrate network into parts. Partitioning allows
the substrate network to be split into several smaller networks,
resulting in VNE algorithms running on fewer nodes and
links, which in turn reduces the execution time of VNE

algorithms. In other words, partitioning aims to spread the
computational load on several smaller parts. After parti-
tioning, a Hypervisor virtualization tool is assigned to each
part. Therefore, several Hypervisor virtualization tools are
used for the main substrate network. In turn, this shortens
the path between the switches and their controller, which
reduces latency. A Hypervisor virtualization tool such as
FlowVisor has been proposed for enabling virtualization in
the SDN environment and it makes a substrate network to
run multiple virtual networks. The Hypervisor allows each
virtual network to run its virtual controller. Finally, we assign
intelligent and autonomous agents to each part to manage
its part. These agents cooperate to carry out the distributed
VNmapping algorithms. AVNMapping Protocol is designed
and implemented to provide communications and facilitate
message exchange among agents in a distributed manner.
Agents at one level work independently of each other, and
each can run a VNE algorithm simultaneously. Therefore,
running VNE algorithms in this framework allows more VNs
to be embedded at a given time. On the contrary, agents on
different levels need to cooperate to map a VN request.

The remainder of this paper is organized as follows:
Section II presents a short review of related work in the
literature. In Section III, our contribution is presented.
In Section IV, the virtual network embedding model and
metrics are defined. Section V presents our distributed virtual
network embedding for software-defined networks using a
multi-agent systems framework called DVSDNE. Section VI
contains results, and Section VII ends up with a conclusion
and future works.

II. RELATED WORK
Existing work on assigning virtual private networks (VPNs)
is similar to the virtual network embedding problem. How-
ever, a VPN request considers only bandwidth constraints
without considering constraints on the nodes. As a result,
VPN algorithms just try to find paths between source and
destination nodes. Considering constraints on links and nodes

VOLUME 9, 2021 12029

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

are the subject of the virtual network embedding problem.
The virtual network embedding is a complex problem and
to decrease the complexity of it, current research simplifies
the problem space in different dimensions, including the
following [24]:

1. Considering specific topologies.
2. Considering only link or node restrictions.
3. Considering infinite resources of substrate links and

nodes.
Virtual network embedding solutions can be classified into

several types of underlying VNE problem as follows [24]:
1. Online or Offline. If virtual networks are mapped to

the substrate network when virtual networks arrive, this
class of embedding is called Online VNE [25], [26].
However, if all virtual networks remain in a queue for
an arbitrary amount of time, this class of embedding
is called Offline VNE 27]. This feature can be called
static or dynamic as well.

2. Concise or Redundant. In the concise approach,
the VNE algorithms use as many substrate resources
as required to assign virtual networks to the sub-
strate network [8]. However, in the redundant approach,
the VNE algorithms reserve extra resources for vir-
tual networks in case some substrate nodes may
fail [7], [28], [29].

3. Uncoordinated or Coordinated. In the Uncoordinated
approach, virtual node mapping and virtual link map-
ping are accomplished in two distinct phases. In other
words, in the uncoordinated approach, at first, all vir-
tual nodes are mapped one by one and then all links
are mapped one by one according to some criteria.
However, in the Coordinated approach, the coordina-
tion between node mapping and link mapping is con-
sidered [30].

Also, the VNE algorithm can be done in a centralized
or distributed approach. In the centralized approach [31],
the VNE algorithm utilizes only one substrate network for
computing the embedding function. Centralized VNE algo-
rithms suffer from scalability problems and running in paral-
lel. From the scalability point of view, increasing network size
increases the complexity of the virtual network embedding
algorithm. Our solution handles scalability in a distributed
manner. From a parallel point of view, in centralized VNE
algorithms when multiple Virtual Network Request (VNR)
arrives at the same time, embedding is performed sequen-
tially, causing queuing delay in addition to high utilization
at the embedder nodes. In other words, centralized VNE
algorithms can only map a virtual network request simul-
taneously. Our solution solves this problem using multi
autonomous agents.

SDN is an appropriate environment for network virtualiza-
tions. For the first time, the authors in [19], try to solve virtual
network embedding when both virtual network and substrate
network in the form of SDN. However, they do not consider
the amount of CPU and bandwidth capacity of the substrate
network. They only consider stress on nodes and links which

is calculated based on how many virtual nodes or virtual
links are assigned to substrate nodes and substrate links to
solve the problem. Because the actual amount of CPU and
bandwidth resources are very important for VNE algorithms,
authors in [1] attempted to solve this problem by considering
CPU and bandwidth resources. We use these two algorithms
as centralized VNE algorithms to run in our framework and
analysis of the results.

III. OUR CONTRIBUTIONS
In this section, we describe the research gap and our contri-
butions.

Our main objective is to develop a distributed virtual net-
work mapping in an SDN environment based on multiagent
systems. Although there are some proposals and algorithms
to address the VN mapping problem using multi-agent sys-
tems [10], [32], the unique characteristic of SDN requires
new approaches, as discussed in Section II. In designing a
solution for VSDNE, heuristics take into account the path
between switches and the controller because the data plane
and control plane is separated in SDN networks. However,
in designing a solution for normal VNE, it does not need to
consider this path because the data plane and control plane is
not separated. We focus on scenarios in which the physical
network and virtual networks are all software-defined. The
infrastructures that we investigate may have many tenants
requesting virtual networks of varying sizes. The placement
of the vSDN controller is a significant factor that influences
the performance of the virtual networks. Besides, efficient
usage of substrate network resources, reliability, and fast
response are all interesting properties. To this end, our main
goal is to balance the load on the substrate network and
keep delay minimum between controllers and switches in all
virtual networks.

In this work, we design a distributed VNE algorithm that
has the following characteristics and assumptions:

1. In this paper, we design a distributed approach for map-
ping virtual networks to substrate networks based on
multi-agent systems, while most previous VNE algo-
rithms are executed in a centralized approach and the
virtual network assignment is performed by a central
entity. This central entity keeps the latest changes in
the substrate network. This approach suffers from scal-
ability, latency, and delays in making decisions.

2. To manage cooperation between agents, we design
and develop a communication protocol. Every
agent is responsible for some part of the substrate
network.

3. We use graph partition approaches to partition sub-
strate network into distinct parts and assign each part
a FlowVisor. Distinct parts along with its FlowVisor
are managed by a single agent. Partitioning substrate
network makes VNE problem space to be reduced
and makes the substrate network to be scalable. Also,
using multiple FlowVisor makes control traffic latency
between switches and its controller to be reduced.

12030 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 2. Mapping of vSDN. FlowVisor (F) connects Controller (C) to other vSDN nodes (V).

4. In our work, our algorithm does not reserve extra
resources for control traffic between switches and their
controllers. We use the same infrastructure for data and
control traffic. In other words, our network uses an
in-band control network.

5. In the distributed approach [33], [34], there are mul-
tiple substrate networks for computing the embedding
function. Our solution is distinguished from them as it
uses agents and runs in an SDN environment.

6. Our current method differs from our previous
work [35], as the current work partitions the substrate
network, while our previous work [30] did not partition
the substrate network. Besides, in [35] agents cooperate
to map a VNR at the same time, however, in this paper
agents can embed multiple VNR at the same time.

IV. MODEL AND METRICS
In this section, we provide a detailed description of the prob-
lem of virtual network embedding with formula and also
the main performance metrics for evaluation of this network
embedding problem. In this work, we assume both virtual
networks and substrate networks are in the form of SDN.

A. MODEL
Virtual network embedding is shown in Figure 2. Figure 2a
shows a virtual SDN (vSDN) network request along with its
controller. In our work, we use the same network for data
and control traffic. Each switch uses an OpenFlow protocol
to connect with its controller. The substrate network along
with the position of FlowVisor is shown in Figure 2b. The
embedding phase is represented in Figure 2c. The dashed
lines represent virtual links assigned to physical links. During
virtual SDN network operation, the control traffic is only
transmitted via the physical paths, connecting the virtual SDN
switches on the substrate network with its controller through
the FlowVisor.

We model the substrate network as a weighted undirected
graph GS (VS ,ES), where VS represents the set of substrate
nodes, and ES represents the set of substrate links. Also,
a high-performance server hosting a hypervisor software
and consequently virtual SDNs’ controllers, is located on
the substrate node Hypervisor, where Hypervisor ∈VS . Like-
wise, a virtual SDN (vSDN) request is modeled as a triplet
�(GR,CR,LC). Here the undirected graph GR (VR,ER) rep-
resents data plane of the vSDN, where VR represents the set
of virtual nodes and ER represents the set of virtual links.
There is a single software controller CR for the vSDN. The
controller CR connects with every vR∈VR through the vir-
tual control links lc(CR, vR)∈LC , where LC represents the
set of lc. Since the control flow is much smaller than data
flow, here the bandwidth demand of lc(CR, vR) is neglected.
We suppose CR runs on the same server with hypervisor soft-
ware. As the communication latency in the internal server is
much lower than network latency transmission, the controller
to switch latency is equal to the network transmission delay
from vR to Hypervisor.

The VN embedding problem can be represented as a map-
ping from GR to GS:

M (GR) : GR→ GS (1)

The mapping can be accomplished through two distinct
phases: 1) node mapping 2) link mapping.

(1) Node mapping: Each virtual node is mapped to a sub-
strate node that fulfills the node resource requirements. The
nodemapping function is defined by amappingMN:VR→VS
from virtual nodes to substrate nodes such that,

∀vR∈VR,MN (vR)∈VS (2)

∀vR, uR∈VR,MN (vR) = MN (uR) , if fvR = uR (3)

∀vR∈VR,C
R,V
CPU (vR) ≤ RCPU (MN (vR)) (4)

(2) Link mapping: Based on the result of node mapping,
each virtual link is mapped to a loop-free substrate path

VOLUME 9, 2021 12031

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 3. The assigning of two VN requests onto a substrate network.

that fulfills the link resource requirements. The link mapping
function is defined by a mapping ML:ER→PS from virtual
links to substrate paths such that,

∀ (i, j)∈ ER,ML (i, j)∈PS (MN (i) ,MN (j)) (5)

∀ (i, j)∈ ER,C
R,E
BW (i, j) ≤ RBW(ML (i, j) (6)

where PS defines the set of all loop-free paths in the substrate
network and PS(i, j) defines the set of all loop-free paths from
the source node i to the destination node j.

Each virtual node must be mapped to one substrate node,
and a substrate node must not host more than one virtual
node of the same vSDN. Eq. (2) and (3) guarantee these
requirements.

Eq. (4) guarantees that the available CPU resource of the
substrate node satisfies the CPU requirement of a virtual
node.

Eq. (5) shows that each virtual link must be mapped to
a substrate path between the substrate nodes that node i
and node j are mapped on them. A substrate path consists
of one or more physical links. Eq. (6) guarantees that the
available bandwidth resource of the substrate path satisfies
the bandwidth requirement of a virtual link. The available
bandwidth resource of a substrate path P ∈PS is defined as
follows:

RBW (P) = min
(u,v∈P)

RBW (u, v) (7)

RCPU (v) and RBW (u, v) in Eq. (4) and (7) show residual
CPU and Bandwidth resources respectively and is defined as
follows:

RCPU (v) = CS,V
CPU (v)−

∑
v′→v:v′∈VR:VNRaccepted

CR,V
CPU

(
v′
)

(8)

where CS,V
CPU (v) represents CPU resource of a substrate node

v and CR,V
CPU

(
v
′
)
represents CPU requirement of a virtual

node v′. The second part of the equation is the sum of the

CPU requirements of all virtual nodes assigned to the node v
of all accepted VN requests.

RBW (u, v)

= CS,E
BW (u, v)

−

∑
(
u′ ,v′

)
→(u,v):(u

′
,v′)∈ER:VNRaccepted

CR,V
BW

(
u
′

, v
′
)

(9)

where CS,E
BW (u, v) represents bandwidth resource of a sub-

strate link (u, v) and CR,V
BW

(
u
′

, v′
)
represents the bandwidth

requirement of a virtual link (u′,v′). The second part of
the equation is the sum of the bandwidth requirements of
all virtual links assigned to the link (u, v) of all accepted
VN requests.

Figure 3 shows the assigning results of vSDN for vir-
tual network requests1 and 2. For the substrate network,
the CPU resource is located in a rectangular box near the
substrate node and a number located directly along the edge
shows bandwidth resource. Similarly, for the virtual network,
the CPU requirement is located in a rectangular box near the
virtual node and a number located directly along the edge
shows bandwidth requirement. For vSDN request 1 and 2,
the controller is determined by C1 and C2 respectively.

As shown in Figure 3 for request 1, the virtual nodes a, b,
c, and C1 are assigned to the substrate nodes A, D, C, and
F respectively, and the virtual links (a, b), (a, c), (b, c) and
(a, C1) are assigned to the substrate paths (A, D), (A, C),
(D, C) and (A, HyperVisor, F) respectively. Note that the CPU
resources of these substrate nodes and bandwidth resources of
these substrate paths fulfill the CPU requirements of the cor-
responding virtual nodes and virtual links. Also, for request 2,
the virtual nodes e, f, and C2 are mapped to the substrate node
B, E and G respectively and virtual links (e, f) and (e, C2) are
mapped to the substrate path (B, E) and (B, HyperVisor, G)
respectively. Another embedding action for request 2 is that
the virtual nodes e, f, and C2 are mapped to the substrate node

12032 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

B, D, and G respectively and virtual links (e, f) and (e, C2) are
mapped to the substrate path (B, E, D) and (B, HyperVisor, G)
respectively. As shown here, each virtual request may have
many assignments, and each imposes different utilization of
resources. Therefore, VNE needs to apply an algorithm that
minimizes the utilization of resources.

B. METRICS
The optimization goal of VNE is to use the physical net-
work resources efficiently. Acceptance ratio and revenue to
cost ratio are two evaluation measurement techniques for the
effectiveness of the VNE algorithms[1]. In the following,
we provide the relevant formula for the calculation of these
metrics. Also, we provide the formula for another metric
called Controller-to-switch delay.
The acceptance ratio shows the number of VNRs that

could be mapped by a VNE algorithm and is measured by
the following equation.

AcceptanceRatio =

∑T
t=0 VNR

S∑T
t=0 VNR

(10)

where VNRS shows the number of the virtual network
requests which aremapped successfully at time t, VNR shows
the number of virtual network requests at time t, and T is total
runtime.
TheRevenue tocost ratiometric is related to the acceptance

ratio, as it shows the number of resources used by a VNE
algorithm to map VN requests.
TheRevenue of a VN request is measured by the sum of

CPU and bandwidth of the VN requests:

Revenue
(
VNRi

)
=α ∗

∑
v∈VNRi

CR,V
CPU (v)+β ∗

∑
e∈VNRi

CR,E
bw (e)

(11)

where CR,V
CPU(v) are the CPU requirements for the virtual node

v ∈VNRi and CR,E
bw (e) are the bandwidth requirements for the

virtual link e ∈VNRi. The value α and β reflect the rela-
tive importance of CPU resources and bandwidth resources,
respectively, to the revenue.
TheCost is measured by the sum of the substrate resources

used to map VN request:

Cost
(
VNRi

)
= α ∗

∑
v∈VNRi

CR,V
CPU (v)

+β ∗
∑

e∈VNRi

(CR,E
bw (e) ∗ Length(P(e))) (12)

where P (e) is the assigned substrate path of a virtual link
e ∈ ER, and Length(P(e)) is the length of that path. For exam-
ple, as shown in Figure 3, virtual link (e, f) is mapped to the
substrate path (B, E, D). Therefore, P (e, f) = (B, E, D) and
Length (P (e, f)) = Length (B, E, D) = 2.
Therefore, the revenue to cost ratio is measured by the

division of revenue and cost:

R
C

(
VNRi

)
=
Revenue

(
VNRi

)
Cost

(
VNRi

) (13)

In general, for revenue to cost ratio, a higher value is better.
The lower value means that a VNE algorithm uses more
resources to embedVN requests. A value of 1 whichwould be
optimal means that the amount of required resources equals
the number of used resources.
Controller-to-switch delay measures the latency between

the controller and the switches for each vSDN. For a network
graph G (V, E) with vertex set V and edge set E, where
number along edge represents propagation latencies, d(v, f,
c) represents the shortest path from node v ∈ V to controller
c passing through FlowVisor (f), and n = |V | represents the
number of nodes, the average propagation latency is defined
as follows[36]:

DelayAvg =
1
n

∑
v∈V

d (v, f , c) (14)

Also,Maximum latency considers themaximum controller-
to-switch delay and is defined as follows [31]:

DelayMaximum = maxv∈V d (v, f , c) (15)

V. OUR PROPOSED FRAMEWORK: DVSDNE
In this section, we introduce our method named Distributed
Virtual Software-Defined Network Embedding (DVSDNE).

The algorithmworks as follows: first, the substrate network
is hierarchically structured into smaller partitions (Initializa-
tion Step). Second, an agent is assigned to each partition
that aims to cooperate with other agents and provides virtual
network embedding within that partition (Embedding Step).
Partitioning the substrate network into smaller sections in the
initialization step reduces the problem size and leads to better
scalability and improved runtimes. In the embedding step,
DVSDNE can run any centralized VNE algorithms which
are designed for software-defined networks in a distributed
manner. In other words, DVSDNE uses any centralized
VNE algorithm within any given partition to perform actual
embedding.

Unlike centralized approaches that depend on a single
node to compute virtual network embedding, our framework
distributes load to multiple nodes (agents) which works inde-
pendently at each level in a hierarchical structure. Multiagent
systems require a protocol to cooperate. This protocol pro-
vides the transfer of virtual networks and coordination among
partitions.

Upon the arrival of the virtual network request, DVSDNE
evaluates which partition is suitable to embed a new arriving
virtual network. After determining which partition provides
sufficient network resources for embedding, DVSDNE trans-
fers the request to the agent assigned to that partition. If the
specified agent cannot embed a virtual network request, DVS-
DNE consecutively transfers it to larger partitions until the
root partition is reached or an agent can embed the virtual
network request. In the case of reaching root partition, if root
partition cannot embed the virtual network, our algorithm
rejects embedding this virtual network.

VOLUME 9, 2021 12033

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

In the following, the Initialization Step and the Embedding
Step of the DVSDNE framework are explained inmore detail.

A. INITIALIZATION STEP
DVSDNE runs the Initialization Step to divide the substrate
network into smaller partitions. This step is performed before
receiving the first virtual network embedding request and
occurs only once for a substrate network.

DVSDNE organizes the substrate network into hierarchi-
cal partitions in such a way that in each layer a set of
non-overlapping partitions is constructed. Many algorithms
can be used to partition a graph [37]. DVSDNE uses a mul-
tilevel k-way partitioning algorithm [38]. The k-way graph
partitioning problem is defined as follows: Given a graph G
= (V, E) with vertex set V and edge set E, divide V into k
subsets V1, V2, . . . , Vk such that the subsets are disjoint and
cover V, i.e., Vi∩Vj = ϕ and∪Vi =V. The algorithm aims to
minimize the number of edges of E whose incident vertices
belong to different partitions. In other words, the algorithm
tries to group vertices that are highly interconnected. The
basic structure of this algorithm is straightforward. At first,
a sequence of smaller subgraphs Gi = (Vi, Ei) is constructed
from the main graph, through a process called the Coars-
ening Phase. Secondly, a k-way partitioning of the smallest
graph is determined named initial partitioning Phase which
DVSDNE uses 2-way partitioning. Finally, this partitioning
is projected back toward the main graph by continuously
purifying the partitioning during the Uncoarsening Phase.

FIGURE 4. Phases involved in graph partitioning.

Figure 4 shows these phases. In this example, the Coars-
ening Phase consists of 5 levels named G0, G1, G2, G3, G4.
At each level, the size of the graph is reduced by collapsing
edges and nodes. At Initial Partitioning Phase, the smallest
graph which is G4 is partitioned into 6 parts. At the Uncoars-
ening Phase, G4 is expanded to recover partitioning for the
main graph.

These partitions are used for embedding virtual networks.
For each partition, DVSDNE assigns an agent named an
embedder agent and a FlowVisor controller. An embedder
agent performs the actual VNE algorithm. Because each
agent is aware of the available resources and the topol-
ogy of the allocated partition, it can perform an embedding

algorithm within the allocated partition. After the partition
algorithm has terminated on each level, the algorithm is con-
tinuously repeated to constitute smaller partitions on the next
level.

Figure 5 shows an example, where the physical network
is partitioned once. In this example, there are 4 switches and
3 FlowVisor controllers. FlowVisor 1 and switches 1, 2, 3,
and 4 constitute level 0. Since at level 0 there is one partition,
agent 0 will be assigned to this level. At level 1 there are
two partitions and for each partition, there is one FlowVisor.
FlowVisor 1 and switches No. 3 and 4 constitute partition
1 and agent 1 will be assigned to this partition. Similarly,
FlowVisor 2 and switches No. 1 and 2 constitute partition 2,
and agent 2 will be assigned to this partition. Since at level
1 there are two partitions, two agents (one for each partition)
will be assigned to this level.

B. EMBEDDING STEP
The Embedding Step is performed after completing the Ini-
tialization Step. As we mentioned before, in the Initialization
Step, the partitioning of the substrate network is set up and in
the Embedding Step, the actual VNE algorithm is performed.

Upon the arrival of aVNRi, CPU and bandwidth resource
demand are calculated as follows:

Demand
(
VNRi

)
CPU
=

∑
v∈VNRi

CR,V
CPU (v) (16)

Demand
(
VNRi

)
BW
=

∑
e∈VNRi

CR,E
bw (e) (17)

Suppose that part of the substrate network managed by
Agentj is showed by the graph G(VS,ES). The load bal-
ancer agent determines all agents satisfying the following
equations:∑

v∈VS

RCPU (v)− Demand
(
VNRi

)
CPU
≥ 0 (18)

∑
(u,v)∈ES

RBW (u, v)− γ ∗ Demand
(
VNRi

)
BW
≥ 0 (19)

RCPU (v) and RBW (u, v) in Eq. (18) and Eq. (19) show
residual CPU and Bandwidth resources respectively and is
calculated using Eq. (8) and (9) as follows

Load balancer uses Eq. (18) and Eq. (19) to estimate
which agents are sufficient resources to perform embedding.
Since a virtual link may assign to multiple physical links the
requested bandwidth is multiplied by a parameter γ .

Then, the merit value for those agents is determined using
the following equation:

MeritValue
(
Agentj

)
=

∑
v∈VS

RCPU (v)− Demand
(
VNRi

)
CPU

∗

 ∑
(u,v)∈ES

RBW (u, v)− γ ∗ Demand
(
VNRi

)
BW

(20)

12034 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 5. Partitioning the substrate network and assigning the agent at each level.

An agent with the minimum merit value is selected as an
appropriate embedder agent. After an appropriate embedder
agent is found, the load balancer agent forwards a Virtual
Network Request VNR to that embedder agent. If the embed-
der agent cannot embed the VNR, it informs the load bal-
ancer agent that it cannot embed this VNR. After the load
balancer receives this information, it sends the VNR to the
parent agent, also asks it to embed VNR. This procedure is
successively performed until the VNR is embedded or the
agent assigned to the root partition cannot embed this VNR
which means that VNR is rejected.

C. AGENT COMMUNICATIONS
Since agents act autonomously, they have to synchronize
their actions with each other. Synchronization is done using a
protocol by sending messages to each other. Also, a locking
mechanism is used to prevent resource contention between
agents that share the same parts of the substrate network.
To explain resource contention between agents, we illustrate
Figure 6 (FlowVisor controllers are not shown). Figure 6
shows an example of hierarchical partitioning and assigning
agents to each partition. It can be seen that the substrate
network is partitioned twice and partitions do not overlap at
each level. Suppose the agent assigned on the right partition
of level 1 (including nodes 5-8) is mapping a VNR. At the
same time, the agent assigned on the rightmost partition
of level 2 (including nodes 7 and 8) is running another
embedding. Since these two agents share the same parts of
the substrate network and these two agents work in parallel,
resource contention occurs. In other words, to avoid resource
contention between these two agents, when one of them is
running an embedding procedure another has to wait until the
embedding procedure is finished. It is worth noting that the

agent assigned on the right partition of level 1 and the agent
assigned on the left partition of level 1 can work in parallel
without inconsistency.

To solve this problem, the load balancer agent keeps a data
structure where information about the states of agents is held.
This data structure includes two variables named Self-lock
and Parent-lock. Each of them holds a binary data type. The
variable of Self-lock can be in one of two states: Unlock
or Lock. The variable of Parent-lock can be in one of two
states: Waiting or Ready. The descriptions about each state
are described in the following:

Unlock: Neither the agent nor its parents are running the
Embedding algorithm.

Lock: The embedder agent or one of its parents is running
the Embedding algorithm. Therefore, the agent does not know
up-to-date resource mapping information on all of its nodes
and links. Therefore, the load balancer agent cannot send it a
VNR at the moment. It needs to wait until all of its children
terminate embedding.

Waiting: At least, one of the parents of the embedder
agents wants to run the Embedding algorithm.

Ready: None of the parents of the embedder agent wants
to run the Embedding algorithm.

In the following, communication protocol including mes-
sages communicated between agents is described in details:

START (VNR): This message is used by the load balancer
agent to send a VNR to an embedder agent. When an embed-
der agent receives this message, firstly, it receives a resource
assignment update from its children using UPDATE_GET
message, then it runs the Embedding algorithm. This message
is sent when the Self-lock and Parent-lock state of the embed-
der agent is Unlock and Ready respectively. This message
makes the Self-lock state of the embedder agent and all of
its children change to Lock.

VOLUME 9, 2021 12035

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 6. An example of hierarchical partitioning.

UPDATE_GET: This message is used by the parent of the
embedder agent to receive resource assignment update from
its children.

UPDATE_SET: This message is used by the parent of the
embedder agent to send a resource assignment update to its
children.

END (Success | Failure): This message is used by an
embedder agent to inform the load balancer agent about its
result. If the embedding is successful, END (Success) is
sent to the load balancer agent, otherwise, END (Failure)
is sent. When the load balancer agent receives END (Suc-
cess), the Self-Lock state of the embedder agent and all of
its children change to Unlock. Also, the embedder agent
sends a resource assignment update to its children using
UPDATE_SET message.

When the load balancer agent receives END (Failure),
if the sibling embedder agent of the sender of this message or
one of its children is running embedding (i.e. the Self-Lock
state of the agent is Lock), the load balancer agent waits for
them to finish embedding. The load balancer waits for agents
by setting the state of them toWaiting. After all children of the
parent embedder agent finish embedding, the load balancer
agent wants the parent embedder agent of the sender of this
message to start embedding using START (VNR) message.

Algorithm 1 shows VN embedding Algorithm for each
embedder agent in pseudo-code. The algorithm consists of 3
distinct parts S1, S2, and S3. Each of embedder agents,
upon receiving START message (part S1), first checks
whether it has children or not. If it has, it sends a message
UPDATE_GET(part S2) to receive resource assignment
update from its children. Next, after it receives the resource
assignment update, it tries to embed the VNR. If the mapping
result is successful, it sends a resource assignment update
to its children by using the message UPDATE_SET (part
S3).Also, it sends theEND (Success) to the load balancer
agent to inform that the embedding result is successful. Oth-
erwise, the embedder agent sends END (Failure) to load
balancer agent to send the VNR to another embedder agent.

Algorithm 2 shows VN embedding Algorithm for the load
balancer agent in pseudo-code. The algorithm consists of 3

Algorithm 1 The Main VN Mapping Algorithm for Each
Embedder Agent
(S1) Upon receiving START message do

If Embedder Agent has children
Receive update from all children using
UPDATE_GET message

Result = embed(v)
If Result is successful
Send an update to all children using
UPDATE_SET message
Send END (Success) message

Else
Send END (Failure) message

(S2) Upon receiving UPDATE_GETmessage do
Send up-to-date resource assignment to sender

(S3) Upon receiving UPDATE_SET message do
Set resource update from sender

distinct parts S1, S2, and S3. The load balancer agent, upon
receiving VNR (part S1), first finds an appropriate agent
based on the states and merit value of embedder agents. Next,
after the load balancer agent finds the appropriate embedder
agent, it sends the VNR to that embedder agent using START
message and asks it to embed the VNR. Accordingly, the load
balancer agent updates its data structure to prevent sending
another VNR to this embedder agent. Based on the embed-
ding result, the load balancer agent gets END (Success)
or END (Failure). If it receives END (Success)(part S2),
the load balancer agent updates its data structure accordingly.
Otherwise (part S3), it waits for all children of the sibling
embedder agent to finish embedding. Next, the load balancer
agent updates its data structure and asks the parent embedder
agent to embed this VNR.

For clarification, a mapping scenario is described in the
following (see Figure 7 and Table 1).

Suppose the states for each agent are at initial states accord-
ing to Table 1. As Table 1 shows, the Self-lock of embedder
agent C is Lock which means it is trying to embed a VNR

12036 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

Algorithm 2 The Main Algorithm for Load Balancer Agent
(S1) Upon receiving VNR do

Send VNR to appropriate embedder agents
based on \

states and merit value of agents
Update its data structure

(S2) Upon receiving END (Success) message do
Update its data structure

(S3) Upon receiving END (Failure) message do
Wait until all children of sibling embedder agent

\

finish embedding
Update its data structure
Send START message to parent embedder agent

FIGURE 7. Mapping scenario described our multi-agent systems.

TABLE 1. Agent’s states during the running of DVSDNE for the sample
mapping scenario described by Figure 7.

named VNRI. Below describe the states of each agent at a
different time.

T0: The load balancer agent receives VNR1 and it is for-
warded to agent B by START (VNR1) message. Thus, the
states for each agent are according to time T0 in Table 1.

T1: Agent B runs the Embedding algorithm. However,
agent B cannot embed the VNR1 and sends an END (Failure)
message. Since the agent C is embedding the VNRI, the load
balancer agent waits for it to finish the embedding. The states
for each agent are according to time T1 in Table 1.

T2: After agent C finishes its embedding successfully,
the states for each agent are according to time T2 in Table 1.

T3: Load balancer agent sends VNR1 to agent A which is
the parent embedder agent of agent B and wants it to embed
VNR1. Thus, the states for each agent are according to time
T3 in Table 1.

T4: Agent A sends UPDATE_GETmessage to agent B and
C to receive resource assignment update from its children.
The states for each agent are equal to the state at time T3.

T5: After updates are done, agent A runs embedding.
This time embedding is successful and then agent A sends
UPDATE_SET to agent B and C to send resource assignment
update to its children. The states for each agent are equal to
the state at time T3.

T6: Agent A informs the load balancer agent that embed-
ding is successful using the END (Success) message. The
states for each agent are according to time T6 in Table 1.

VI. PERFORMANCE EVALUATION
In this section, the simulation environment, the performance
metrics the results, and the complexity of DVSDNE are dis-
cussed. Then, we will evaluate our performance. We apply
vSDN embedding in an offline manner, considering all vSDN
requests are known in advance.

A. SIMULATION TOOLS
Here, we describe the tools and packages that we used for the
simulation of our method. First, we mention the tool that we
used for topology and resource generation followed by refer-
ring to the tool we used for partitioning. Then, the simulation
tool for implementing multiagent systems is described.

1) TOPOLOGY AND RESOURCE GENERATION
Networkx tool [39] is a Python package for creating and
studying complex networks. We use this package to gener-
ate random SN and VN topologies. Random CPU resources
from 50 to 100 are uniformly generated and assigned to the
substrate nodes and random bandwidth resources from 250 to
500 are uniformly generated and assigned to the substrate
links. Also, the latency between adjacent substrate nodes is
set to be 1. Likewise, Random CPU and bandwidth resources
are uniformly generated between 25 and 50 and assigned to
virtual nodes and links. Moreover, we assume that control
plane traffic is negligible compared to the data plane traf-
fic. Also, we consider α and β equal to 1 in Eq. (11) and
(12) for measuring both revenue and cost metrics. Besides,
parameter γ is set to 10 in parts B.1 and B.2 of the result
section. All experiments run on a stand-alone personal com-
puter with core-i3 CPU running at 3.6 GHz and 4 GB main
memory.

VOLUME 9, 2021 12037

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

2) INITIALIZATION STEP
As described in Section V, at Initialization Step, DVSDNE
partition the substrate network into hierarchical parts.
DVSDNE uses the Metis tool1 that provides an implemen-
tation of the algorithm of [38] to create a binary tree hier-
archy. At each level, every part of the substrate network is
partitioned into two sections to constitute another level.

3) MULTIAGENT SYSTEMS FRAMEWORK
For simulating a multiagent system, we used PADE [23]
which is a framework for developing, running, and managing
multiagent systems in distributed computing environments.
PADE is an open-source platform implemented in Python
language and uses the twisted libraries for implementing the
communication between the network nodes. Although this
framework provides a development solution for distributed
systems and also is compliant with the specifications of the
Foundation for Intelligent Physical Agents, we need to add
appropriate codes to implement our desired system.

B. EVALUATION
In this section, the performance of DVSDNE is evaluated
based on three items: generality of DVSDNE, scalability of
DVSDNE, and Evaluation of DVSDNE’s parameter γ .
Generality means that centralized VNE algorithms can run

in DVSDNE and scalability means that DVSDNE scales well
in large substrate networks.

Before moving onto larger topologies and to show the gen-
erality of our work, we are running our framework with two
centralized VNE algorithms designed for SDN i.e., [1], [19]
and compare the message overhead with a basic algorithm
designed for distributed VNE [10]. Table 2 lists these meth-
ods and Table 3 shows and describes the notations used for
evaluating DVSDNE.

TABLE 2. List of VNE approaches used for evaluating DVSDNE.

TABLE 3. Notation used for comparing algorithms.

To demonstrate the generality of DVSDNE, we compare
the embedding results of DVSDNE with those of basic cen-
tralized algorithms.

Large scale network topologies are used to evaluate the
scalability of DVSDNE. These results demonstrate DVSDNE
framework scales with the size of substrate networks. Also,

1 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

runtime measurements are shown, representing that DVS-
DNE improves runtime in large scale substrate networks.

1) GENERALITY IN DVSDNE
This section shows and analyzes results for measuring
DVSDNE’s generality. To study the behavior of different
algorithms, network load is varying from 2 to 12 virtual net-
works. The results of the DVSDNE framework are evaluated
based on acceptance ratio, Revenue/Cost, average latency
to the controller, maximum latency to the controller, and
message overhead.

We ran our algorithm for 20 different scenarios. Each
scenario consists of different VNRs with 4 virtual nodes.
Then, we ran our framework for these different scenarios
one by one. For each scenario, we calculate the acceptance
ratio and other metrics. Finally, we calculated the average of
these metrics for 20 scenarios to calculate the final metrics.
Also, in this subsection to measure the performance metrics,
we used a substrate network with 16 nodes.

FIGURE 8. Accepted VNR ratio.

a: ACCEPTANCE RATIO AND REVENUE/COST RATIO
Figure 8 shows DVSDNE’s acceptance ratio is comparable
to the acceptance ratio of basic centralized algorithms. The
same is obtained from the Revenue/Cost metric as shown
in Figure 9. Both metrics get a little better performance when
they run within in DVSDNE framework. Mapping SVNRs
to partitions instead of a whole substrate network improve

FIGURE 9. The R/C ratio for VNs embedding.

12038 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

both the Acceptance ratio and Revenue/Cost. This is the
consequence of partitioning substrate networks. The parti-
tioning algorithm tries to categorize nodes that are highly
interconnected.

FIGURE 10. Average controller-to-switch delays.

b: AVERAGE LATENCY
Figure 10 shows DVSDNE’s average latency is comparable
to the average latency of a basic centralized algorithm. As the
size of the virtual network gets larger, the average latency
increases. That is because virtual nodes map at a far distance
from the controller. Since every partition uses a dedicated
FlowVisor, average latency improves when the algorithms
run inside DVSDNE framework.

FIGURE 11. Maximum controller-to-switch delays.

c: MAXIMUM LATENCY
Figure 11 shows DVSDNE’s Maximum latency is compara-
ble to the Maximum latency of a basic centralized algorithm.
Similar to average latency, as the size of the virtual network,
gets larger, the Maximum latency increases. That is because
virtual nodes map at a far distance from the controller. Since
every partition uses a dedicated FlowVisor, the Maximum
latency improves when the algorithms run inside DVSDNE
framework.

d: MESSAGE OVERHEAD
Figure 12 shows the numbers of messages are transferred
between agents during the mapping process within DVSDNE
framework. As the figure shows, when the number of net-
works increases, the messages are sent increases. That is

FIGURE 12. Message Overhead for large scale network.

because bottom partitions cannot embed the latest VNRs
and those VNRs are sent to upper partitions for embedding.
Clearly, centralized VNE algorithms do not transfer any
messages.

2) SCALABILITY IN DVSDNE
To evaluate the scalability of DVSDNE, these experiments
are performed for large scale networks. For evaluation, along
with Revenue/Cost, Average latency to the controller, and
Maximum latency to the controller, the runtime of algorithms
is measured. It is shown how dramatically execution time
increases when the substrate network nodes increase. In this
scenario, a virtual network with 16 nodes and 33 links is
successively embedded 10 times.

FIGURE 13. Execution time for large scale network.

a: RUNTIME
Figure 13 shows execution time when they run outside and
insideDVSDNE.As Figure 13 shows, DVSDNEoutperforms
centralized algorithms for execution time. Since partitions
used by DVSDNE are smaller than the original substrate
network, it results in significant improvement.

b: REVENUE/COST RATIO
Figure 14 shows the R/C ratio for large scale networks. Simi-
lar to Figure 9, the results of centralized algorithms run inside
DVSDNE are better than original centralized algorithms.
As mentioned before, it is caused by pre-partitioning used by
DVSDNE.

VOLUME 9, 2021 12039

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 14. The R/C ratio for large scale network.

FIGURE 15. Average controller-to-switch delays for large scale network.

c: AVERAGE LATENCY
Figure 15 shows the average latency for large scale networks.
Similar to Figure 10, DVSDNE outperforms centralized algo-
rithms results concerning average latency. As mentioned
before, it is caused by using a FlowVisor at each partition.

FIGURE 16. Maximum controller-to-switch delays for large scale network.

d: MAXIMUM LATENCY
Figure 16 shows the Maximum latency for large scale net-
works. Similar to Figure 11, DVSDNE outperforms cen-
tralized algorithms results concerning Maximum latency.
As mentioned before, it is caused by using a FlowVisor at
each partition.

3) EVALUATION OF DVSDNE’S PARAMETER γ
This subsection evaluates the impact of parameter γ on the
performance metrics. As we stated before, the load balancer

agent needs to find an appropriate embedder agent to forward
the virtual network request to that agent. For each virtual
network request, an appropriate embedder agent is found by
using Eq. (20). This equation finds an appropriate embedder
agent based on estimating the number of resources required to
embed a VNR. Parameter γ in Eq. (20) tunes the estimation.
If parameter γ is chosen large, DVSDNE selects an embed-
der agent with higher resources than what VNRs require.
Besides, if parameter γ is chosen small, DVSDNE selects
an embedder agent with fewer resources than what VNRs
require.

Embedder agents with more resources are located at higher
levels in a hierarchical structure and have more children than
embedder agents with fewer resources that are located at
lower levels. As Algorithm 1 depicts, embedder agents with
more children should exchangemoremessages to update their
resources assignment. Therefore, embedder agents with more
resources should exchange more messages than embedder
agents with fewer resources.

Also, embedder agents at higher levels in hierarchical
structure manage more nodes and links than embedder agents
at lower levels in the hierarchical structure. Since the virtual
network embedding problem is NP-hard, the execution time
increases as the number of nodes and links increases. There-
fore, embedding algorithms run by embedder agents at higher
levels take more time than embedder agents at a lower level
in a hierarchical structure to embed VNRs.

To clarify the impact of parameter γ on our algorithm,
4 virtual networks with 5 nodes each were chosen and a sub-
strate network with 32 nodes was generated. The parameter
γ is set to 1, 10, 100, 200 respectively, and the performance
metrics are calculated for those values. These parameters are
chosen so that DVSDNE selects different embedder agents
at different levels. For this experiment, when parameter γ
is set to 1, the unsuccessful embedding attempt occurs and
DVSDNE wants the parent of the current embedder agent to
embed VNRs. The parent embedder agent can embed VNRs
successfully. When parameter γ is set to 10, 100, 200 respec-
tively, the unsuccessful embedding attempt does not occur,
however, DVSDNE prefers the embedder agents which have
more resources to run the embedding algorithm. As a result,
the number of messages exchanged and the execution time
increase.

a: MESSAGE OVERHEAD
Figure 17 shows the message overhead. By increasing param-
eter γ , at first message overhead decreases, and then it
increases. This is because for lower γ values, embedder
agents at lower levels are selected and for higher γ values,
embedder agents at higher levels are selected.

Since an embedder agent at a lower level does not have suf-
ficient resources to embedVNRs, an unsuccessful embedding
attempt occurs. Therefore, the embedder agent uses messages
by which want the load balancer to forward VNRs to its
parent. Therefore, message overhead increases. As parameter
γ increases, an embedder agent that has sufficient resources

12040 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

FIGURE 17. Message overhead due to change of parameter γ.

is selected. Therefore, the number of a message decreases,
since the VNRs do not need to be forwarded to other embed-
der agents. By increasing parameter γ , an embedder agent
that has more resources and is located a higher level is
selected. In this situation, the embedder agent can embed
the VNRs but a lot of messages are exchanged among the
embedder agent and its children to update their resource
assignments. Therefore, the message overhead increases.

FIGURE 18. Execution time due to change of parameter γ .

b: EXECUTION TIME
Figure 18 shows the execution time. Similar to message
overhead, by increasing parameter γ , at first, execution time
decreases, and then it increases. This is since DVSDNE
chooses embedder agents that manage a larger substrate net-
work. When embedder agents with lower substrate resources
are chosen, those embedder agents could not embed the
VNRs and they want load balancer agent to forward VNRs
to parent embedder agents, leading to increasing execution
time. In this situation, execution time consists of time spent on
unsuccessful embedding attempts and successful embedding
attempts. As parameter γ increases, an embedder agent that
has sufficient resources is selected. In this case, execution
time is equal to the time spent on successful embedding
attempt. So, the execution time is lower than when there exist
unsuccessful embedding attempts. If the parameter γ contin-
ues to increase, embedder agents that manage a larger part of
the substrate network are chosen. In this case, there do not
exist unsuccessful embedding attempts. However, as shown
in part B.2, the execution time of embedding algorithms
increases in large substrate networks.

FIGURE 19. R/C ratio due to the change of parameter γ .

c: REVENUE/COST RATIO
Figure 19 shows R/C ratio. As the γ parameter increases,
the R/C ratio remains constant at first and then decreases.
When an unsuccessful embedding attempt occurs, the parent
embedder agent of the embedder agent is selected to run the
embedding algorithm. The parent of the selected embedder
agent when parameter γ is set to 1 is the same as the selected
embedder agent when the γ parameter is set to 10. Therefore,
VNRs are mapped with the same agents when the γ parame-
ter is set to 1 or 10. As a result, the R/C ratio does not change.
If the parameter γ continues to increase, embedder agents
that manage a larger part of the substrate network are chosen.
As shown in part B.2, the R/C ratio of embedding algorithms
decreases in large substrate networks.

FIGURE 20. Average controller-to-switch delays due to change of
parameter γ .

FIGURE 21. Maximum controller-to-switch delays due to change of
parameter γ .

d: AVERAGE LATENCY AND MAXIMUM LATENCY
Figure 20 and Figure 21 show average latency and maximum
latency respectively. As the γ parameter increases, the aver-
age latency remains constant at first and then increases.
When parameter γ is set to 1 or 10 the same agents run

VOLUME 9, 2021 12041

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

embedding algorithms. As a result, average latency and max-
imum latency does not change. If the parameter γ continues
to increase, embedder agents that manage larger part of the
substrate network are chosen. As shown in part B.2, the aver-
age latency and maximum latency increases in large substrate
networks.

C. ANALYZING OF THE COMPLEXITY OF THE PROPOSED
FRAMEWORK
In this section, we analyze that the worst-case time complex-
ity of running VNE algorithms in our framework is not worse
than the original algorithms.

To achieve that, we consider our previous VNE algo-
rithm [1] named NR as the baseline and then show that
O(DVSDNE) = O(NR). The complexity of algorithm NR is
O(V 3), where V denotes the number of nodes in the substrate
graph. In DVSDNEmethod, worst-case scenario occurs when
embedding starts at a leaf embedder agent and end at root
embedder agent. In this case, the algorithmNR is executed by
the number of levels in a hierarchical structure. For example,
in Figure 6, there are 3 levels, and each of agents 4,5,6, and
7 is a leaf embedder agent and agent 1 is the root embedder
agent.

Also, we consider DVSDNE uses 2-way partitioning algo-
rithm, which halves the number of nodes at each level. There-
fore, the number of subgraphs at level k is 2k and the number
of nodes of each subgraph at level k is V/2k . Therefore,
in the worst-case scenario, the time complexity of DVSDNE
is calculated as follows:

O (DVSDNE) = O
(
NR,

V
20

)
+ O

(
NR,

V
21

)
+O

(
NR,

V
22

)
+ . . .+O

(
NR,

V
2n−1

)
(21)

whereO (NR,K)means the complexity of algorithmNRwith
K nodes and n determines the number of levels in hierarchical
structure. As we mentioned earlier, O (NR,K) = O(K 3).
Therefore, the Eq. (21) can be written as follows:

O (DVSDNE) = O
(
V 3
)
+

1
23
∗O

(
V 3
)
+

1
22∗3
∗ O

(
V 3
)

+ . . .+
1

2(n−1)∗3
O
(
V 3
)

= O
(
V 3
)(

1+
1
8
+

1
82
+ . . .+

1
8(n−1)

)

=

1−
(
1
8

)n
1− 1

8

O
(
V 3
)
= O

(
V 3
)

(22)

This would also hold for any other VNE algorithm to
be used in place of the NR algorithm. In other words,
the worst-case time complexity of running algorithm NR in
DVSDNE for a sufficiently large network is the same as the
complexity of the underlying VNE algorithm.

Since the Initialization step of DVSDNE executes only
once, we just calculate the complexity of the embedding
step. In other words, we can ignore the complexity of the
initializing step which uses the Metis tool to partition the

substrate graph into a smaller partition because it does not
need to be repeated during run-time. However, the complexity
of partitioning a graph using theMetis tool is O(V+E+klogk)
where V is the number of nodes, E the number of edges, and
k the number of partitions. For algorithm NR, it is obvious
that with considering the complexity of both the Initialization
step and embedding step of DVSDNE, the worst-case com-
plexity of running algorithm NR in DVSDNE is not worse
than running algorithm NR outside of DVSDNE, because
O(V+E+klogk) is smaller than O(V 3).

VII. CONCLUSION AND FUTURE WORK
In this work, we propose a framework named DVSDNE for
the virtual network embedding problem for the SDN envi-
ronment based on multi-agent systems. In the first step of our
method, the substrate network is partitioned into parts and a
FlowVisor is assigned to each part. Then, an agent is assigned
to each part to do VNE. Since we designed agents to work
together for mapping virtual networks to substrate network in
a distributed manner, we designed a protocol. This commu-
nication protocol is designed and implemented to work with
agents together. Through simulations, two cost-optimizing
VNE algorithms are designed for SDN run within DVSDNE.

We evaluated the generality and scalability of our meth-
ods. We presented that DVSDNE outperforms centralized
algorithms in terms of execution time, average latency to the
controller, and maximum latency to the controller. It is the
result of partitioning the substrate network into smaller parts
and assigns a FlowVisor to each part. Also, results show that
the revenue-to-cost ratio and the acceptance ratio when the
algorithms run inside the DVSDNE are comparable to when
the algorithms run outside the DVSDNE.

For future work, we are planning to concentrate on vir-
tual network embedding in a dynamic environment which
is an important subject. In this environment, virtual network
migrations and reassignment are the main steps to map virtual
networks efficiently. Next, the number of partitions, the size
of each partition, and the placement of FlowVisors need to be
considered. These factors directly affect the cost-efficiency
and average latency.

REFERENCES
[1] A. A. Nasiri and F. Derakhshan, ‘‘Assignment of virtual networks to

substrate network for software defined networks,’’ Int. J. Cloud Appl.
Comput., vol. 8, no. 4, pp. 29–48, Oct. 2018.

[2] W. Miao, G. Min, Y. Wu, H. Huang, Z. Zhao, H. Wang, and C. Luo,
‘‘Stochastic performance analysis of network function virtualization in
future Internet,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 613–626,
Mar. 2019.

[3] D.-L. Nguyen, H. Byun, N. Kim, and C.-K. Kim, ‘‘Toward effi-
cient dynamic virtual network embedding strategy for cloud net-
works,’’ Int. J. Distrib. Sensor Netw., vol. 14, no. 3, Mar. 2018,
Art. no. 155014771876478.

[4] H. Cao, S. Wu, Y. Hu, Y. Liu, and L. Yang, ‘‘A survey of embedding algo-
rithm for virtual network embedding,’’ China Commun., vol. 16, no. 12,
pp. 1–33, Dec. 2019.

[5] M. Rost and S. Schmid, ‘‘NP-completeness and inapproximability
of the virtual network embedding problem and its variants,’’ 2018,
arXiv:1801.03162. [Online]. Available: http://arxiv.org/abs/1801.03162

[6] N.M.M. K. Chowdhury,M. R. Rahman, and R. Boutaba, ‘‘Virtual network
embedding with coordinated node and link mapping,’’ in Proc. IEEE 28th
Conf. Comput. Commun. (INFOCOM), Apr. 2009, pp. 783–791.

12042 VOLUME 9, 2021

A. A. Nasiri et al.: Distributed VNE for Software-Defined Networks Using Multiagent Systems

[7] X. Zheng, J. Tian, X. Xiao, X. Cui, and X. Yu, ‘‘A heuristic surviv-
able virtual network mapping algorithm,’’ Soft Comput., vol. 23, no. 5,
pp. 1453–1463, Mar. 2019.

[8] P. Zhang, H. Yao, M. Li, and Y. Liu, ‘‘Virtual network embedding based
on modified genetic algorithm,’’ Peer Peer Netw. Appl., vol. 12, no. 2,
pp. 481–492, Mar. 2019.

[9] S.-Q. Gong, J. Chen, Q.-Y. Kang, Q.-W. Meng, Q.-C. Zhu, and S.-Y. Zhao,
‘‘An efficient and coordinated mapping algorithm in virtualized SDN net-
works,’’ Frontiers Inf. Technol. Electron. Eng., vol. 17, no. 7, pp. 701–716,
Jul. 2016.

[10] I. Houidi, W. Louati, and D. Zeghlache, ‘‘A distributed and autonomic
virtual network mapping framework,’’ in Proc. 4th Int. Conf. Autonomic
Auto. Syst. (ICAS), Mar. 2008, pp. 241–247.

[11] S. Dong, K. Abbas, and R. Jain, ‘‘A survey on distributed denial of service
(DDoS) attacks in SDN and cloud computing environments,’’ IEEEAccess,
vol. 7, pp. 80813–80828, 2019.

[12] T. Das, V. Sridharan, andM. Gurusamy, ‘‘A survey on controller placement
in SDN,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 472–503,
1st Quart., 2020.

[13] A. Mondal, S. Misra, and I. Maity, ‘‘AMOPE: Performance analysis of
OpenFlow systems in software-defined networks,’’ IEEE Syst. J., vol. 14,
no. 1, pp. 124–131, Mar. 2020.

[14] Y.-N. Hu, W.-D. Wang, X.-Y. Gong, X.-R. Que, and S.-D. Cheng, ‘‘On the
placement of controllers in software-defined networks,’’ J. China Univ.
Posts Telecommun., vol. 19, pp. 92–171, Oct. 2012.

[15] A. Lara, A. Kolasani, and B. Ramamurthy, ‘‘Network innovation using
OpenFlow: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493–512, 1st Quart., 2014.

[16] A. Jalili, H. Nazari, S. Namvarasl, and M. Keshtgari, ‘‘A comprehensive
analysis on control plane deployment in SDN: In-band versus out-of-band
solutions,’’ in Proc. IEEE 4th Int. Conf. Knowledge-Based Eng. Innov.
(KBEI), Dec. 2017, pp. 1025–1031.

[17] S. Abdallah, I. H. Elhajj, A. Chehab, and A. Kayssi, ‘‘A network man-
agement framework for SDN,’’ in Proc. 9th IFIP Int. Conf. New Technol.,
Mobility Secur. (NTMS), Feb. 2018, pp. 1–4.

[18] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, ‘‘DDoS attack protection in the
era of cloud computing and software-defined networking,’’Comput. Netw.,
vol. 81, pp. 308–319, Apr. 2015.

[19] M. Demirci and M. Ammar, ‘‘Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,’’ Comput.
Commun., vol. 45, pp. 1–10, Jun. 2014.

[20] M. Wooldridge, An Introduction to Multiagent Systems. Hoboken, NJ,
USA: Wiley, 2009.

[21] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence. Cambridge, MA, USA: MIT Press, 1999.

[22] J. Xie and C.-C. Liu, ‘‘Multi-agent systems and their applications,’’ J. Int.
Council Elect. Eng., vol. 7, no. 1, pp. 188–197, 2017.

[23] L. S. Melo, R. F. Sampaio, R. P. S. Leão, G. C. Barroso, and J. R. Bezerra,
‘‘Python-based multi-agent platform for application on power grids,’’ Int.
Trans. Electr. Energy Syst., vol. 29, no. 6, Jun. 2019, Art. no. e12012.

[24] H. Cao, H. Hu, Z. Qu, and L. Yang, ‘‘Heuristic solutions of virtual network
embedding: A survey,’’ China Commun., vol. 15, no. 3, pp. 186–219,
Mar. 2018.

[25] T. Wang and M. Hamdi, ‘‘Presto: Towards efficient online virtual network
embedding in virtualized cloud data centers,’’ Comput. Netw., vol. 106,
pp. 196–208, Sep. 2016.

[26] C. K. Dehury and P. K. Sahoo, ‘‘DYVINE: Fitness-based dynamic virtual
network embedding in cloud computing,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1029–1045, May 2019.

[27] A. Xiao, Y. Wang, L. Meng, X. Qiu, and W. Li, ‘‘Topology-aware virtual
network embedding to survive multiple node failures,’’ in Proc. IEEE
Global Commun. Conf., Dec. 2014, pp. 1823–1828.

[28] A. Hmaity, F. Musumeci, and M. Tornatore, ‘‘Survivable virtual network
mapping to provide content connectivity against double-link failures,’’ in
Proc. 12th Int. Conf. Design Reliable Commun. Netw. (DRCN), Mar. 2016,
pp. 160–166.

[29] A. A. Santos, A. Rizk, and F. Steinke, ‘‘Flexible redundancy generation for
virtual network embedding with an application to smart grids,’’ in Proc.
11th ACM Int. Conf. Future Energy Syst., Jun. 2020, pp. 97–105.

[30] M. P. Gilesh, S. D. M. Kumar, and L. Jacob, ‘‘Resource availability-
aware adaptive provisioning of virtual data center networks,’’ Int. J. Netw.
Manage., vol. 29, no. 2, p. e2066, Mar. 2019.

[31] C. Zhao and B. Parhami, ‘‘Virtual network embedding through graph
eigenspace alignment,’’ IEEE Trans. Netw. Service Manage., vol. 16, no. 2,
pp. 632–646, Jun. 2019.

[32] L. Shengquan, W. Chunming, Z. Min, and J. Ming, ‘‘An efficient virtual
network embedding algorithm with delay constraints,’’ in Proc. 16th Int.
Symp. Wireless Pers. Multimedia Commun. (WPMC), 2013, pp. 1–6.

[33] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang, ‘‘Dis-
tributed virtual network embedding system with historical archives and
set-based particle swarm optimization,’’ IEEE Trans. Syst., Man, Cybern.
Syst., early access, Jan. 3, 2019, doi: 10.1109/TSMC.2018.2884523.

[34] M. T. Beck, A. Fischer, J. F. Botero, C. Linnhoff-Popien, and H. de Meer,
‘‘Distributed and scalable embedding of virtual networks,’’ J. Netw. Com-
put. Appl., vol. 56, pp. 124–136, Oct. 2015.

[35] A. A. Nasiri and F. Derakhshan, ‘‘An agent based approach for assignment
of virtual networks to substrate network for software defined networking,’’
in Proc. IEEE Int. Conf. Smart Energy Grid Eng. (SEGE), Aug. 2018,
pp. 308–312.

[36] B. Heller, R. Sherwood, and N. McKeown, ‘‘The controller placement
problem,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 473–478, Sep. 2012.

[37] T. E. Kalayci and R. Battiti, ‘‘A reactive self-tuning scheme for multi-
level graph partitioning,’’ Appl. Math. Comput., vol. 318, pp. 227–244,
Feb. 2018.

[38] G. Karypis and V. Kumar, ‘‘Multilevelk-way partitioning scheme for irreg-
ular graphs,’’ J. Parallel Distrib. Comput., vol. 48, no. 1, pp. 96–129,
Jan. 1998.

[39] A. Hagberg, P. Swart, and D. S. Chult, ‘‘Exploring network structure,
dynamics, and function using NetworkX,’’ Los Alamos Nat. Lab. (LANL),
Los Alamos, NM, USA, Tech. Rep. LA-UR-08-05495; LA-UR-08-5495,
2008.

ALI AKBAR NASIRI received the B.S. degree
in computer engineering (hardware) from Shiraz
University, Shiraz, Iran, in 2008, the M.S. degree
in computer engineering (artificial intelligence)
from the Iran University of Science and Technol-
ogy (IUST), Tehran, Iran, in 2011. He is currently
pursuing the Ph.D. degree in computer engineering
(artificial intelligence) with the Faculty of Elec-
trical and Computer Engineering, University of
Tabriz, Tabriz, Iran. His major research interests

include multi-agent systems and its applications, software-defined network-
ing, and network security.

FARNAZ DERAKHSHAN received the Ph.D.
degree in artificial intelligence from the Uni-
versity of Liverpool, U.K. She is currently an
Assistant Professor and the Director of the
Multi-Agent Systems Laboratory, Faculty of Elec-
trical and Computer Engineering, University of
Tabriz, Tabriz, Iran. Her main research interests
include multi-agent systems and its applications,
normative multi-agent systems, multi-agent learn-
ing, the Internet of Things, and swarm intelligence.

SHAHRAM SHAH HEYDARI (Senior Member,
IEEE) received the B.Sc. and M.Sc. degrees in
electronic engineering from the Sharif University
of Technology, Iran, the M.A.Sc. degree from
Concordia University, Montreal, QC, Canada, and
the Ph.D. degree from the University of Ottawa,
Ottawa, ON, Canada. He is currently an Associate
Professor with the Faculty of Business and Infor-
mation Technology, University of Ontario Insti-
tute of Technology (Ontario Tech), Oshawa, ON,

Canada. Prior to joining Ontario Tech, in 2007, he was a System Engineer
and a member of Scientific Staff with Nortel Networks, where he worked
on element management in ultra-high-speed IP/MPLS routers, performance
modeling of automatically switched optical networks (ASON), and propri-
etary voice-over-IP transport control protocols. His main research interests
include network design and planning, software-defined networking, appli-
cations of Artificial Intelligence (AI) in network management, and network
Quality of Experience (QoE).

VOLUME 9, 2021 12043

http://dx.doi.org/10.1109/TSMC.2018.2884523

