
Received December 15, 2020, accepted December 29, 2020, date of publication January 11, 2021, date of current version January 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050437

Neural-Based Ensembles for Particulate
Matter Forecasting
PAULO S. G. DE MATTOS NETO 1, PAULO RENATO A. FIRMINO 2, HUGO SIQUEIRA 3,
YARA DE SOUZA TADANO 4, THIAGO ANTONINI ALVES 5, JOÃO FAUSTO L. DE OLIVEIRA 6,
MANOEL HENRIQUE DA NÓBREGA MARINHO 6, AND FRANCISCO MADEIRO 7
1Centro de Informática, Universidade Federal de Pernambuco, Recife 50740-560, Brazil
2Center of Science and Technology, Federal University of Cariri, Juazeiro do Norte 63048-080, Brazil
3Department of Electrical Engineering, Federal University of Technology—Paraná, Ponta Grossa 84017-220, Brazil
4Department of Mechanical Engineering, Federal University of Technology—Paraná, Ponta Grossa 84017-220, Brazil
5Department of Mathematics, Federal University of Technology—Paraná, Ponta Grossa 84017-220, Brazil
6Polytechnic School of Pernambuco, University of Pernambuco, Recife 50720-001, Brazil
7UNICAP, ICAM-Tech International School, Catholic University of Pernambuco, Recife 50050-900, Brazil

Corresponding author: Paulo S. G. de Mattos Neto (psgmn@cin.ufpe.br)

This work was supported in part by Brazilian agencies—Brazilian National Council for Scientific and Technological Development, under
Grant 405580/2018-5, Grant 308725/2015-8, Grant 315027/2018-5, and Grant 315298/2020-0; and in part by the Araucaria Foundation
under Grant 51497.

ABSTRACT The air pollution caused by particulate matter (PM) has become a public health issue due to the
risks to human life and the environment. The PM concentration in the air causes haze and affects the lungs
and the heart, leading to reduced visibility, allergic reactions, pneumonia, asthma, cardiopulmonary diseases,
lung cancer, and even death. In this context, the development of systems for monitoring, forecasting, and
controlling emissions plays an important role. The literature about forecasting systems based on Artificial
Neural Networks (ANNs) ensembles has been highlighted regarding statistical accuracy and efficiency.
In this article, trainable and non-trainable combination methods are used for PM10 and PM2.5 (particles
with an aerodynamic diameter less than 10 and 2.5 micrometers, respectively) time series forecasting for
eight different locations, in Finland and Brazil, for different periods. Trainable ensembles based on ANNs,
linear regression, and Copulas are compared with non-trainable combinations (mean and median), single
ANNs, and linear statistical approaches. Different models are considered so far, including Autoregressive
model (AR), Autoregressive and Moving Average Model (ARMA), Infinite Impulse Response Filters (IIR),
Multilayer Perceptron (MLP), Radial Basis Function Networks (RBF), Extreme Learning Machines (ELM),
Echo State Networks (ESN), and Adaptive Network Fuzzy Inference System (ANFIS). The use of ANNs
ensembles, mainly combined with MLP, leads to a better one step ahead forecasting performance. The use
of robust air pollution forecasting tools is prime to assist governments in managing air pollution issues
like hospital collapse during adverse air quality situations. In this sense, our study is indirectly related
to the following United Nations sustainable development goals: SDG 3 - good health and well-being and
SDG 11 - sustainable cities and communities.

INDEX TERMS Forecasting, particulate matter, artificial neural networks, ensemble.

I. INTRODUCTION
Air pollution is one of the worst toxic issues worldwide
[1]–[3]. The World Health Organization (WHO) [4] reported
that 0.8 million deaths and 7.9 million disability-adjusted
life years from respiratory problems, lung diseases, and can-
cer were attributed to urban air pollution. More recently,
WHO [5] reported that 90% of the urban population is
exposed to high air pollution levels. Many works, including

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiyong Zheng .

several epidemiological studies, have reported the relation-
ship between particulate matter concentration and cardiores-
piratory diseases and even death [6]–[12].

Particles with an aerodynamic diameter less than 10 µm
(PM10), and mainly those less than 2.5 µm (PM2.5),
pose severe damages to the environment and human
health.

Environmental damages [2], [3] may include pollution and
acidity of lakes and rivers, imbalance in coastal water and
large river basins, depletion of soil, acid rain, and damaging
to forests, farm crops, and ecosystems.
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Human health damages commonly vary according to the
level of concentration of PM, the period of exposure, size
of the particulates, and the atmospheric chemical profile at
a location [3], [9]. In general, short-term exposure causes
less severe damages, like allergic reactions and irritations
in the upper respiratory tract. In some cases, more serious
problems [13] may occur, like emphysema, pneumonia, and
asthma. In the same way, long-term exposure may severely
affect the respiratory system and other parts of the human
body [14], [15], such as the brain, liver, kidneys, and cardio-
vascular system; causing heart disease, cancer, chronic lower
respiratory diseases, cerebrovascular disease, and even death.

Due to the risks related to the PM10 and PM2.5 concentra-
tion in air, it is crucial that government agencies of air quality
alert in advance the population about the onset, severity, and
duration of high concentration episodes. These institutional
actions mainly aim: (i) in the short-term to draw attention to
harmful effects of high PM concentration [2], [3] and (ii) in
the long-term, to encourage the population and industry to
reduce emissions of PM [2], [3]. In this context, it has been
paramount the PM concentration monitoring and forecasting.

Several forecasting systems [16]–[22] have been devel-
oped to reach good estimates of the PM concentration. In the
literature, those based on Artificial Neural Networks (ANNs)
have been highlighted due to their performance and general-
ization capability.

However, studies like Neumann’s [23], comment that
adopting a single model can lead to statistical bias and under-
estimating the real uncertainty underlying the time series.
In this way, authors [24]–[30] have been challenged by com-
bining diverse models to present aggregate estimates.

In this context, one of the problems has been to combine
single predictors of the time series to enhance the forecast-
ing performance. Statistically, these ensembles are generally
superior in comparison with individual models in terms of
both accuracy and efficiency [24], [31]–[34]. Also, among
ANN-based approaches, there are ensembles that combine
models to obtain a more statistically robust system, outper-
forming the single forecasting models [12], [29], [35], [36].

The combination methods employed in the ensembles can
be divided into two classes: non-trainable [36] and train-
able [29]. The non-trainable combination operators com-
monly used are descriptive statistics, such as mean, median,
mode, maximum, and minimum [36]. In turn, the trainable
combination methods require a phase of prior estimation of
parameters that aims to find the best function of aggregation
of the forecasts [29].

The method or operator used in the combination is thus
paramount for developing attractive models. Currently, sev-
eral works in the PM forecasting literature use this kind of
approach. For instance, Siwek and Osowski [37] improved
different types of PM10 models by using a wavelet transfor-
mation jointly with an ensemble employing two approaches,
separately: Support Vector Regression and Multilayer Per-
ceptron; Souza et al. [38] proposed an ensemble of ANNs
based on bagging to predict the daily concentrations of PM10

in the city of Piracicaba, Brazil, while Debry and Mallet [39]
proposed amethod named discounted ridge regression (DRR)
to combine machine learning algorithms for prediction of
PM10 concentration in France.
Generally, the forecasting models that can or cannot be

associated to an ensemble generally employ two data-driven
approaches for their training: the use of only previous (his-
torical) data of the PM concentration [16]–[18], or the use of
the historical data of PM jointly with related features, such
as temperature, relative humidity, direction, and speed of the
wind [37]. Several works in the literature have considered the
second approach [19]–[22], [37], [39].

There is no consensus on which model shows better
performance to each problem. Then, to develop and test
different approaches is crucial to keep improving air pollu-
tion forecasting. In such a context, the present work inves-
tigates the performance of 16 forecasting models for PM
concentration. As single models we applied the Autore-
gressive model (AR) [40], Autoregressive and Moving
Average model (ARMA) [40], Infinite Impulse Response
Filters [41], Multilayer Perceptron (MLP) [20], Radial Basis
Function Networks (RBF) [42], Extreme Learning Machines
(ELM) [43], Echo State Networks (ESN) [44], and Adap-
tive Network Fuzzy Inference System (ANFIS) [45]; as
non-trainable ensembles, it is considered the mean and
median [36]; as trainable ensembles we addressed a lin-
ear regression with (LR-FS) and without features selection
(LR) [46], ELM with and without the coefficient of regu-
larization (CR), MLP [37], and normal Copula-based mod-
els [25], [29]. These combination methods have emerged
among the most promising from the time series forecasting
literature [12], [29], [35], [37], [38].

Thus, the approaches are evaluated via historical PM series
in terms of six performance metrics widely used in the litera-
ture: Mean Squared Error (MSE), Mean Absolute Percentage
Error (MAPE), Average Relative Variance (ARV), Index of
Agreement (IA), Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE).

The target was PM10 and PM2.5 concentrations time series.
As a geographical location, socioeconomic factors, and urban
development strategy highly impact the air quality in the
cities [47], we studied eight different scenarios for different
geographical locations fromBrazil and Finland. According to
the authors’ knowledge, comparing this set of models in PM
forecasting tasks is unprecedented.

The rest of the work is organized as follows: Section II
presents the background regarding the single and combi-
nation methods adopted for modeling and forecasting PM;
Section III presents computational results, while Section IV
brings relevant discussions; Section V shows concluding
remarks.

II. BACKGROUND
A. LINEAR FORECASTING MODELS
Linear forecasting models are traditional statistical tools to
perform time series modeling and forecasting [40]. Besides
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developing nonlinear methodologies, the literature shows that
such an approach is widely used [11], [48]–[50]. In this sense,
we present three of the most used linear models to deal with
the aforementioned task. In this way, let xt be the value of the
time series under consideration at instant t .

1) AUTOREGRESSIVE MODELS
Autoregressive (AR) models are popular methods for sta-
tionary time series prediction [40] due to its simplicity in
optimizing its parameters and implementing, allied to good
results in the literature. The model weights previous values
of the time series to predict its future values. Equation 1
summarizes the formalism:

x̂t = φ1xt−P + φ2xt−P−1 + · · · + φpxt−P−p+1 + at (1)

in which xt−P−i+1 (i = 1, 2, . . . , p) are the lags of the
observed series, φi represents the free parameters, and at are
random shocks (or the random component) [48]. Thus, p is
the order of the model.

Equation 1 allows one to promote P steps ahead forecasts
[51]. The model presents a unimodal cost function in the
MSE sense. Therefore, the global minimum is defined by a
closed-form solution, named Yule-Walker equations [41].

2) AUTOREGRESSIVE AND MOVING AVERAGE MODELS
The Autoregressive andMoving Average Models (ARMA) is
developed as a hybrid model between the AR and theMoving
Average (MA)models.While the AR considers the lags of the
series, the ARMA also creates the output response addressing
the previous residuals presented by the model, at−P−j, which
are weighted by θj coefficients, as in Equation 2:

x̂t = φ1xt−P + · · · + φpxt−P−p+1
− θ1at−P − · · · − θqat−P−q+1 + at (2)

in which φi, i = 1, 2, . . . , p and θj, j = 1, 2, . . . , q, are free
coefficients [40].

The standard application of ARMA considers the random
shock at−P−j as equivalent to the residuals of the previous
samples [40], [48]. The feedback of previous temporal infor-
mation is the reason classify the model as a recursive linear
approach. However, the estimation of the ARMA parame-
ters has no closed-form solution, being necessary the use of
probabilistic optimization methodologies to adjust the model.
Therefore, it may be unfeasible to carry out an exhaustive
search for the ARMA best coefficients.

In this sense, we use a bio-inspired metaheuristic to adjust
the ARMAmodel: the well known Particle Swarm Optimiza-
tion Algorithm (PSO) [52]–[55].

3) INFINITE IMPULSE RESPONSE FILTERS
Recursive linear models can be described from a different
perspective of the ARMA models. Instead of feeding back
previous residual values, one can reinsert previous values
of the model output [41], [56]. In this case, the model is

known as the Infinite Impulse Response Filter (IIR), which
is depicted in Equation 3 [41]

x̂t = c1xt−P + · · · + cpxt−P−p+1
− b1x̂t−P − · · · − bqx̂t−P−q+1 (3)

in which ci, i = 1, 2, . . . , p, are free parameters that weigh
the feedforward inputs and bj, j = 1, 2, . . . , q, are the
weights of the feedback inputs.

As in the ARMA case, the IIR Filters cannot be adjusted
by closed-form solutions [41]. Again, we use the PSO to
estimate the parameters of the model.

B. ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANNs) are nonlinear methodolo-
gies, inspired by the functioning of the superior organisms’
neural system. Composed by nonlinear processing structures
named artificial neurons, such models are universal approx-
imators, with high mapping capability [42]. The adjustment
of an ANN is known as the training process [57].

This class of methods is vastly applied to time series fore-
casting [58]–[60], and nonlinear mapping problems [9], [61].
In this work, we address four ANN frameworks: MLP, RBF,
ELM, and ESN, sumarized as follows.

1) MULTILAYER PERCEPTRON - MLP
Feedforward neural networks (FNN) are those in which the
information signal flows in one direction, from the input
layer to the output. These architectures present universal
approximation capability, which means that they can approx-
imate any continuous, nonlinear, limited, and differentiable
function [42].

A popular FNN is the Multilayer Perceptron (MLP). The
most widely known method for adjusting the weights of the
MLP is the backpropagation algorithm [42]. Here, we use an
MLP with three layers, with hyperbolic tangent and linear
function as activation functions for the hidden and output
layers, respectively. However, in this work the training pro-
cess is performed using the Modified Scaled Conjugated
Gradient [62].

2) RADIAL BASIS FUNCTION NETWORKS - RBF
The Radial Basis Function Networks (RBF) is a feedforward
ANN framework that presents two layers, hidden and output
layers. The hidden layer performs an input-output mapping,
using radial basis functions as kernel (activation) ones [63].
The most used function is the Gaussian. In this case, the
artificial neurons have two free parameters, a center and a
dispersion. The output layer provides a combination of the
hidden layer outputs, often using a linear approach [42].

The training step of an RBF is performed according to
two stages. The first is the determination of the hidden
layer weights, in which one must determine their centers
and dispersions. This task is performed using non-supervised
clustering methods. In this work, we address the K-Medoids
methodology [64].
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The second step is to tune the weights of the output layer.
In this work, we address the Moore-Penrose pseudoinverse
operator, a linear procedure, which ensures the minimum
mean squared error (MSE) in the output [60].

3) EXTREME LEARNING MACHINES - ELM
Extreme Learning Machines (ELM) are single layer feed-
forward neural networks, introduced by Huang et al. [43]
in 2004. The arrangement of the neurons is quite similar
to the architecture of the MLP. However, ELM presents a
remarkable dissemblance in the training process. It has been
proven that the weights in the hidden neurons, which are ran-
domly generated, can stand untuned. For this, the activation
functions of the intermediate neurons must be continuously
differentiable [63]. The authors proved that the insertion of
new neurons in this layer leads to decreased output error. The
ELM are universal approximators [65].

The training process of an ELM is simple, being summa-
rized in finding the best set of weights of the neurons in
the output layer. This task can be performed by solving a
linear regression problem. Huang et al. [65] suggest using
the Moore-Penrose generalized inverse operation to solve the
task since this technique simultaneously minimizes the norm
of the output weight vector and the MSE between the output
of the network and the desired signal [66].

To increase the generalization capability of an ELM,
we can also address the coefficient of regularization (CR)
[35], [57].

4) ECHO STATE NETWORKS - ESN
Jaeger [44] proposed the Echo State Networks (ESN), which
present similarities with the ELM in terms of the simplicity
in the training process.

The most important structural difference between ELM
and ESN is the presence of recurrent connections within
the latter’s intermediate layer, called dynamic reservoir. The
neurons’ activation in the reservoir (the output of this layer)
is influenced by the current input and the previous state.

Under specific conditions, the reservoir output is a nonlin-
ear transformation, directly influenced by the recent history
of the input signal (hence the term echo). It allows this layer
to be set in advance and kept unchanged during the training.
Therefore, only the output layer must be adjusted through a
solution of a least-square problem. He called these conditions
as echo state PROPERTY [67].

Jaeger suggests a way to generate the reservoir that respects
the echo state property. In his proposal, he created a sparse
matrix. Also, as in the ELM case, the training process is per-
formed applying the Moore-Penrose inverse operation [51].

C. NEURO-FUZZY MODEL
Adaptive Network Inference Fuzzy System (ANFIS) [68]
is a hybrid neuro-fuzzy-based model that combines arti-
ficial neural networks and fuzzy logic. ANFIS carries
out a cross-validation by data set checking, leading to

minimization of overfitting occurrence. It was previously
applied to particulate matter prediction [69], [70].

It is widely known that the number of ANFIS parameters
increases exponentially with the number of input variables
(which corresponds in the present work to the number of past
PM sample values used for prediction), being an unfavorable
point in comparison to traditional approaches of ANN. How-
ever, the versatility of ANFIS suggests that it may succeed in
cases that neural nets have failed.

The ANFIS model uses the following parameters [71]:
• TMF: type of membership functions;
• NMF: number of membership functions;
• NI: number of inputs;
• NFR: number of fuzzy rules.
One can observe that

NFR = NMFNI . (4)

The following membership functions were considered in
the present work:
• trimf: Triangular membership function;
• gauss2mf: Two-sided Gaussian membership function;
• dsigmf: Membership function given by the difference
between two sigmoid membership functions;

• pimf: Pi-shaped curve membership function;
• gaussmf: Gaussian curve membership function;
• gbellmf: Generalized Bell curve membership function;
• trapmf: Trapezoidal membership function;
• psigmf: Product of two sigmoid membership functions.

D. COMBINATION MODELS
1) ENSEMBLES
The ensemble methodology combines the output of single
forecasting models to improve the final response of the sys-
tem [37]. The underlying reasoning is that distinct formalisms
can deal with the diverse characteristics of the time series,
even in the light of the same set of inputs. In this sense, one
method may present better responses for some data range,
while other models may work better in another band. There-
fore, a combination approach can be used to generate the final
output [36].

We highlight the necessity of accurate predictions of each
single model, as well as they have to present diversity [72].
Efficiency also plays an important role. In the present work,
(n = 8) single models are considered: AR, ARMA, IIR Filter,
MLP, RBF, ELM, ESN, and ANFIS. As discussed, such
models are of a different nature, among linear models, neural
networks, and neuro-fuzzy approaches, to reach diversity in
the final response [38], [39].

We addressed as combination formalisms:
• non-trainable approaches: mean and median;
• trainable approaches: linear regression (LR), linear
regression with feature selection (LR-FS), MLP, ELM,
ELM (CR), and normal copula-based models (NC).

The outputs combination through an LR model [46], [73]
is based on a linear combination of the predictions obtained
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FIGURE 1. Estimation steps for the copula model.

from the single models as shown in Equation 5,

xLRt+1 =
n∑
j=1

wLRj Fj(xt ), (5)

in which xLRt+1 is the combined output, n is the number of
single models, wLRj is the coefficient that weight the output
of the jth single model forecast for xt+1, Fj(·), regarding the
observed series until t , xt .
The weights wj are calculated by means of a least squares

approach, using the predictions of each model and the target
value. The weights reflect the contribution of each model in
the final result.

Feature selection is also employed using the LR approach,
where a wrapper [74], [75] is used to find the best set of
models to be considered in a given data set. Thus, a search
is conducted over 28 − 1 possible combinations.

2) NORMAL COPULA-BASED COMBINATION
A Copula is a function that combines two or more uni-
variate marginal probability distributions (MPDs) to build a
joint probability distribution (JPD), incorporating the depen-
dence of these univariate distributions [76]. In this context,
a marginal cumulative distribution function (CDF) can be
seen as a MPD and a joint CDF can be understood as a
JPD [77].

In the time series context, the use of copulas for economics
and finance has been paramount for modeling the dependence
of variables through time [78], [79]. Works have studied
the introduction of copulas formalism in order to achieve
maximum likelihood combination models according to an
adequate JPD [29], [80]–[82].

In general terms, a copula function, C(·), is a JPD
whose marginal distributions are in the range [0,1]. Let
(v1, · · · , vj, · · · , vn) be an instance of nMPDs such that vj ∈
[0, 1]. Then, the copula probability density function (PDF) is
given by Equation 6

c (v1, · · · , vn) =
∂n

∂v1 · · · ∂vn
C (v1, · · · , vn) , (6)

in which C(v1, · · · , vj, · · · , vn) is the respective JPD [76].

Figure 1 summarizes the flow for a copulas-based combi-
nation of n single models, (F1(x), · · · ,Fn(x)), according to a
training series x. In a divide-and-conquer way, the residuals of
each single forecasting model (e1, · · · , en) are modeled and
encapsulated in MPDs. In the general formulation, vj can be
an instance of the jth MPD in the light of a fixed residual ej.
Then, such MPDs are copulated.

This article focuses on the Normal or Gaussian copula.
This copula belongs to the family of Elliptic copulas. In this
case, the dependence between pairs of variables is given by
an n × n covariance matrix, 6, from which a correlation
matrix, ρ, can be obtained. For instance, when ρi,j is the
Pearson (linear) correlation between the variables of indexes
i and j, ρi,j ∈ [−1, 1], it follows that ρi,j = 0 indicates no
(linear) correlation between the variables, ρi,j = −1 cor-
responds to perfect linear negative correlation, and ρi,j = 1
reflects perfect linear positive correlation.

The Normal copula is given by Equation 7 [83]:

C(v1, · · · , vn) = 8(ϕ−1(v1), · · · , ϕ−1(vn)|ρ), (7)

in which ϕ−1(·) is the inverse MPD of a standard normal
distribution and 8(·) is the JPD of a multivariate normal
distribution with zero mean vector and correlation matrix
equal to ρ.
The corresponding PDF of the Normal copula is given in

Equation 8 [83]

c(v1, · · · , vn) = c(ϕ−1(v1), . . . , ϕ−1(vn)|ρ)

=
1
√
|ρ|

exp

− 1
2
(ϕ−1(v1),

· · · , ϕ−1(vn))(ρ−1−I)

ϕ
−1(v1)
...

ϕ−1(vn)


 (8)

in which I is the identity matrix and 6−1 is the inverse
correlation matrix.

For the case where vj comes from a normal MPD, the
resulting copula model is the multivariate Normal distri-
bution. It is the most widely used multivariate model in
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FIGURE 2. Training step for the k trainable combination models (ensemble).

statistics. The multivariate Normal distribution has been
useful for principal component analysis, classical regres-
sion, and ensembles (as used in [25]), for instance. Further,
in this case, the maximum likelihood combination esti-
mate from copulas-based approach is similar to the minimal
variance (MV) method [25], [84]. Thus, this combination
approach is named Normal Copula-based (NC) hereafter.

The NC promotes linear combination forecasts (LCF) xNC

and can be generically presented as in Equation 9:

xNCt+1 =
n∑
j=1

ωjFj(xt ), (9)

in which n is the number of single models andωj is the weight
attributed to the jth single model forecast for xt+1, Fj(·), in the
light of the previous series xt .
In NC approach, ωj is a function of both the efficiency

and linear correlation of the single models, as presented in
Equation 10 [25]:

ωj =

∑n
l=1 hlj∑n

l=1
∑n

j=1 hlj
, (10)

in which hlj is the jth element of the l th row of the inverse
covariance matrix 6−1 of the residuals of the single models.
Thus, the greater the dependence between two models and

the greater the absolute magnitude of their residuals, the
lesser their weights in the combination.

For instance, if n = 2, we have Expression 11:

6−1 =
1

1− ρ21,2
·

 1
σ 21
−
ρ1,2
σ1σ2

−
ρ1,2
σ1σ2

1
σ 22
,

 , (11)

in which ρ1,2 = σ12/σ1σ2 is the Pearson correlation coef-
ficient between the errors of the models F1(·) and F2(·), σi
is the standard deviation of the error of Fi(·), and σi,j is the
covariance between the errors of Fi(·) and Fj(·).

III. CASE STUDIES
A methodology may bring gains to a specific time series
but not to others. Then, we studied the databases from two
countries with distinct climate and emission patterns (Brazil
and Finland) to analyze the performance of each method
under study.

Figures 2 and 3 illustrate the general idea of the work for
studying the performance of single and combination models
for PM time series forecasting. From the observed series,
i.e., the training data set (x), the use of n single models
(F1(x), · · · ,Fn(x)) is suggested. Such single models are then
combined according to the trainable approaches (ensembles
and Copulas), taking into account x (training data). Figure 2
shows a scheme of the training process for single and combi-
nation models.

After this, the single and combination models are used for
forecasting data outside the training set, as shown in Figure 3.
Therefore, for a given vector of time lags xq, which belongs
to the PM series test set, the one step ahead forecasts are
performed.

A. PM TIME SERIES
The database of PM10 and PM2.5 concentrations addressed
in this work consists of univariate time series composed
of daily mean records to four different cities, with distinct
characteristics:

• Helsinki, Finland - Kallio andVallila stations - PM10 and
PM2.5;

• São Paulo city, São Paulo state, Brazil - Tietê station -
PM10 and PM2.5;

• Campinas city, São Paulo state, Brazil - PM10;
• Ipojuca city, Pernambuco state, Brazil - PM10.

Helsinki is the most populous city and the capital of Fin-
land, with 655,276 inhabitants spread over a 1,268,296 km2
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FIGURE 3. Test step for the proposed ensemble. The outputs xk
t+1, xMn

t+1, and xMd
t+1 are the forecasts of the

combinations for a given pattern test xq.

of area [85]. It has temperatures ranging from−8◦C to 21◦C,
and hardly below−19◦C and above 26◦C [86]. Helsinki time
series have already been addressed in the literature about air
pollution forecasting [17]–[20], [87].

In contrast to Helsinki, Ipojuca city (Pernambuco state,
Brazil) weather is characteristic of hot and windy climate
with temperatures ranging from 22◦C to 32◦C [86]. Ipojuca is
a coastal city located in the Brazilian Northeast, Pernambuco
state capital, and has a demographic density of 152.98 inhab-
itants per km2 (total population of 96,204 inhabitants) [88].

The two cities of São Paulo state (São Paulo and Campinas)
also have a distinct population and business characteristics,
but similar weather (hot and rainy long summers and short
winters with temperatures raging from 13 ◦C to 29◦C [86]).
They are located in Southeast Brazil. São Paulo is the capital
of São Paulo state and the most populous city in Brazil
(7398,26 inhabitants per km2 - total population of 12,252,023
and 969.32 km2 of urban area) [88].

Campinas city demographic density is five times lower
than São Paulo city (1359.60 inhabitants per km2), with an
urban area of 238.2 km2 [88].
Beyond the diverse climate, demographic, and business

characteristics of the studied locations, each monitoring loca-
tion has a distinct emission source pattern. As shown in
Figure 4, Vallila station is in a high traffic, city downtown
area. In contrast, Kallio station is an urban background
in Helsinki has quite peculiar demographic, business, and
climatic characteristics, compared to Brazilian areas under
study.

Figure 5 shows São Paulo, Campinas, and Ipojuca cities
stations’ location. São Paulo and Campinas cities are

TABLE 1. Number of samples, data range, and considered pollutant to
each studied station.

TABLE 2. Mean, standard deviation, maximum, and minimum values for
each studied station.

dominated by vehicular sources. The difference is that São
Paulo city’s monitoring region is near a ring road, with main
influence of heavy-duty vehicles, while Campinas station is
in the city downtown, predominantly affected by light-duty
emissions. Ipojuca city is quite distinct, as it is a coastal
city. The main difference from the other time series is that
the monitoring station is located near a petrol refinery, being
characterized by industrial emissions. A statistical descrip-
tion of all series is shown in the Tables 1 and 2.
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FIGURE 4. Location of Finland Stations at Helsinki: Kallio (blue spot) and
Vallila (purple spot). The satellite map is from Google Maps (Map
data 2020 Google; https://www.google.com/maps/place/Finland/); the
satellite is from Google Earth Pro (Map data 2020 Google;
https://www.google.com/maps/@60.1834096,24.8975655,12.83z).

B. EXPERIMENTAL SETUP
Initially, the PM concentration series were normalized using
the z-score [11], [40] and then normalized to lie within
the interval [−1, 1] [42]. The samples were divided into
three sets, according to Proben [89]: 50% for training,
25% for validation, and 25% for test. The test sets com-
prise the last samples of each series: 272 samples to Kallio
(PM10 and PM2.5), Vallila (PM10), São Paulo (PM10 and
PM2.5); 240 to Vallila (PM2.5); 182 samples to Campinas
(PM10); and 158 samples to Ipojuca (PM10).

Thirty simulations with each artificial neural network were
performed, and the best configuration was selected according
to the lowest MSE value in the validation set. The selection
of the best set of inputs (lags) is defined in every single model
through the wrapper method [74], [75]. As the methodology
is model-dependent, the forecasting models can select differ-
ent lags.

FIGURE 5. Location of Brazilian Stations: Ipojuca (green spot), Campinas
(yellow spot), and São Paulo (red spot). The satellite map is from Google
Maps (Map data 2020 Google, INEGI;
https://www.google.com/maps/place/Brazil/); the satellite is from
Google Earth Pro (Map data 2020 Google;
https://www.google.com/maps/@-23.2636702,-47.1095854,9.5z and
https://www.google.com/maps/@-8.0624551, -34.9114682,11.92z).

The AR model was adjusted using the Yule-Walker equa-
tions, while the ARMA and IIR Filter were tuned by the PSO
algorithm. The target during the training was to minimize the
cost function based on the MSE [12].

The MLP is trained via the Modified Scale Conju-
gated Gradient [62] algorithm using the following stopping
conditions: (i) the maximum number of iterations equal
300; (ii) use of the hold-out cross-validation; (iii) progress
training 106. The number of hidden neurons for a single MLP
model is defined using a grid search in the range [3, 250].
For the MLP used in the combination, the number of input
nodes is set up eight, one for each single ANN model. The
hyperbolic tangent is addressed as the activation function of
the hidden neurons. The RBF was configurated following the
same premisses of the MLP.

In addition to using grid partition, ANFIS uses a hybrid
optimization method: the combination of least-squares esti-
mator and backpropagation as gradient descent. The product
operator was used as the connective, and the weighted mean
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for defuzzification. A zero tolerance for the error is adopted in
the stopping criterion, and the number of iterations adopted
is 250. The number of inputs (NI) is selected in the range
[1, 6], and the number of fuzzy rules (NFR) is selected into
the interval [2, 50]. The type of member functions (TMF)
is selected among eight candidates: trimf, gauss2mf, dsigmf,
pimf, gaussmf, gbellmf, trapmf and psigmf.
The weights of ELM and ESN are adjusted by the

Moore-Penrose inverse operation [42], [57]. To determine the
number of neurons in the hidden layer of the neural models,
a grid search is carried out in the interval [3, 250]. Both also
use the hyperbolic tangent as activation function of the hidden
neurons.

Six metrics are taken into account for evaluating the sin-
gle and combination PM models [90], [91]: MSE, Mean
Absolute Percentage Error (MAPE), Average Relative Vari-
ance (ARV), Index of Agreement (IA), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE), given
by Equations 12 to 17:

MSE =
1
N

N∑
t=1

(xt − x̂t )2, (12)

MAPE =
100
N

N∑
t=1

∣∣∣∣xt − x̂txt

∣∣∣∣, (13)

ARV =

N∑
t=1

(xt − x̂ t )2

N∑
t=1

(x̂t − x)2
, (14)

IA = 1−

N∑
t=1

(xt − x̂t )2

N∑
t=1

(|x̂t − x| + |xt − x|)2
, (15)

MAE =
1
N

N∑
t=1

|xt − x̂t |, (16)

RMSE =
√
MSE, (17)

in whichN is the number of available samples, xt is the actual
value of the series at time index t , x̂t is the model forecast for
xt , and x the mean of the series.
In the case of the MSE, MAPE, MAE, ARV, and RMSE

measures, the lower the value of those measures, the better
the performance of the model. Mainly, ARV is a metric used
to compare the methodologies with the simple mean of the
series. If the ARV value is 1, the prediction of the model
is as good as using the mean as the prediction of the series;
otherwise, if the value is less (greater) than 1, the prediction
of the model is better (worse) than using the mean as the
prediction. In turn, the higher the IA, the better the model. Via
IA, one can evaluate the quality of the model concerning both
the accuracy of the simple mean estimate and the dispersion
of the series [19], [20], [87].

TABLE 3. Evaluation metrics for forecasting PM10 series (Kallio Station).

TABLE 4. Ranking of the single and combination models by metric for
PM10 series of the Kallio Station.

We highlight that, after the forecasting procedure,
we applied the Friedman test to evaluate if the performances
were statistically different [92]. Considering 5% of signif-
icance, the highest p-value found was 1.3914e-73, which
allows admitting that a change in the predictor led to different
results.

C. COMPUTATIONAL RESULTS
1) CONCENTRATION OF PM10 IN KALLIO STATION
Table 3 shows the forecasting results for the PM10 concentra-
tion time series (Kallio Station) using single and combination
models. Table 4 presents a ranking regarding each metric
result. The value column Mean presents an average of the
positions achieved regarding all metrics, while the column
Rank order the values of the means. We followed the rank to
define the best prediction models. This premise is adopted to
all PM series. Note that the best error values are highlighted
in bold for each approach: single and combination models.

The results summarized in Tables 3 and 4 allow some
important remarks. There is no perfect correspondence
between the error metrics. While the smallest ARV is related
to the AR model, the best MSE, MAPE, MAE, and RMSE
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FIGURE 6. The best forecast for the test set of the PM10 concentration
time series for Kallio station.

belong to the Ensemble with MLP. The best IA is from the
single MLP.

Among the linear models, the IIR filter performed better
than the AR and ARMA, considering the six metrics. The
best single ANNwas theMLP, which presented the best MSE
for a single model. It is essential since some references [42],
[57] consider the MSE as the most important error metric in
time series forecasting. It is the metric minimized during the
adjustment of the linear models and ANN.

Comparing the combination approaches, the MLP ensem-
ble achieved the best performance considering four metrics,
while the ELM (CR) in one (ARV), and theMedian in another
(IA). However, observing the general results considering the
16 predictors, the trainable ensembles stood out, reaching the
best overall performances for 5 out of 6 metrics. Besides,
the trainable ensembles achieved the first three positions in
Table 4.

Figure 6 presents the best execution of the MLP Ensemble,
the best predictor for the Kallio PM10 series in the test set.

2) CONCENTRATION OF PARTICULATE MATTER PM2.5 IN
KALLIO STATION
Table 5 shows the performances for PM2.5 concentration
series of Kallio Station, and Table 6 shows the ranking.
Combination approaches have reached the best values for all
evaluation measures. Among the linear models, the IIR filter
was the best again. It is observed that the AR achieved the
smallest ARV. The ELM was the best single approach.

Considering the combination models, the MLP ensemble
was the one that achieved the best performance for MSE,
MAPE, MAE, and RMSE. The single LR (FS) combiner
achieved the best result in terms of IA.

The ranking in Table 6 shows a draw between the ELM
Ensemble and MLP Ensemble, although the last achieved
the best MSE. The third place was occupied by the LR (FS)

TABLE 5. Evaluation metrics for forecasting PM2.5 series (Kallio Station).

TABLE 6. Ranking of the single and combination models by metric PM2.5
series of the Kallio Station.

TABLE 7. Evaluation metrics for forecasting PM10 series (Vallila Station).

combiner. Figure 7 shows the test set of the actual series and
the forecasting ones.

3) CONCENTRATION OF PM10 IN VALLILA STATION
Table 7 shows the computational results of the single and
combined models for Vallila station PM10 concentration, and
Table 8 the general ranking.
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FIGURE 7. Best forecast for the test set of the PM2.5 concentration time
series for Kallio station.

TABLE 8. Ranking of the single and combination models by metric for
PM10 series of the Vallila Station.

Analyzing the results in Tables 7 and 8, it is clear that the
IIR Filter was the best linear model, even though, the AR
reached good values for MAPE and ARV. Among the single
models, the ELM was the best for four error metrics.

Considering the ensembles, the MLP combiner was the
best for 5 out of 6 metrics, and the ELM (CR) in one metric,
precisely the ARV. Also, the first five ranked methods belong
to the combination class.

Figure 8 presents the prediction models’ general behavior,
showing the test set of the actual values for PM10 and the
predictions of the best predictior (MLP Ensemble).

4) CONCENTRATION OF PM2.5 IN VALLILA STATION
Tables 9 and 10 show the performance for PM2.5 concentra-
tion of Vallila Station, and the ranking of the performances,
respectively.

The analysis of Table 9 reveals a distinct behavior regard-
ing the linear models. Considering all single models, the

FIGURE 8. Best forecast for the test set of the PM10 concentration time
series for Vallila station.

TABLE 9. Evaluation metrics for forecasting PM2.5 series (Vallila Station).

TABLE 10. Ranking of the single and combination models by metric for
PM2.5 series of the Vallila Station.

ARMA achieved the best IA and MAE errors, while AR the
smallest MAPE and ARV. Table 10 shows that ARMA was
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FIGURE 9. The best forecast for the test set of the PM2.5 concentration
time series for Vallila station.

TABLE 11. Evaluation metrics for forecasting PM10 series (São Paulo
Station).

the fourth-best predictor for Vallila PM2.5 series. Considering
the six metrics, the IIR filter presents a better raking position
than AR.

On the other hand, the ELM obtained the smallest MSE
and RMSE regarding the single predictors. About the com-
bination models, the MLP Ensemble was also the winner,
followed by the LR combiner and ELM (CR) proposal. Note
that, in general, the combination models stood out.

Figure 9 shows the test set of the actual values for PM2.5
and the MLP combination model’s forecasts.

5) CONCENTRATION OF PM10 IN SÃO PAULO STATION
Table 11 summarizes the computational results found
by 16 forecasting models for PM10 concentration in
São Paulo, while Table 12 presents the performances’
ranking.

For São Paulo PM10 concentration, the computational per-
formances were uniform. The linear approaches overcame

TABLE 12. Ranking of the single and combination models by metric for
PM10 series of the São Paulo Station.

FIGURE 10. The best forecast for the test set of the PM10 concentration
time series for São Paulo station.

just the RBF, being the ARMA the best of them. The ELM
overcame some ensembles, being the best single model
regarding five metrics (except ARV).

The six best methods belong to the ensembles based
on feedforward neural models, MLP and ELM. However,
different from previous cases, the ELM combiner was the
best (winner for four metrics), followed by the MLP and
ELM (CR).

Figure 10 sketches the forecasting of the ELM ensemble.

6) CONCENTRATION OF PM2.5 IN SÃO PAULO STATION
We present in this section the computational results for
São Paulo PM2.5 in Table 13, together with the ranking in
Table 14.
For São Paulo PM2.5 concentration time series, the per-

formances showed an remarkable behavior. The ELM was
the winner for all metrics regarding the single models, while
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TABLE 13. Evaluation metrics for forecasting PM2.5 series (São Paulo
Station).

TABLE 14. Ranking of the single and combination models by metric for
PM2.5 series of the São Paulo Station.

the MLP Ensemble was the general winner considering all
models. The ELM achieved the fourth-best performance. The
best models were, again, the MLP and ELM. Interestingly,
the Ensemble LR (FS) was the third best, but the LS was one
of the worst methods. Concerning the linear models, the IIR
Filter and the ARMA presented a similar Mean value.

Figure 11 shows the time behavior of São Paulo PM2.5 for
the test set in comparison to the original data.

7) CONCENTRATION OF PM10 IN CAMPINAS STATION
In Tables 15 and 16 we show the general performances for
Campinas PM10 prediction.
In Campinas’ case, the ARMA and IIR Filter present

almost a draw considering the final ranking score, with a
small advantage for the ARMA. Both overcame theAR. Also,
this is the first time we see the MLP present a Mean worse
than the linear approaches, despite it reached the best IA.

We observed the ELM as the second general best model,
being the general best for MAE, and the winner for 3 met-
rics considering just the single models. Also, the ESN was
highlighted regarding the single models for MSE and RMSE.
Considering all predictors, the ESN was the sixth-best.

FIGURE 11. Best forecast for the test set of the PM2.5 concentration time
series for São Paulo station.

TABLE 15. Evaluation metrics for forecasting PM10 series (Campinas
Station).

TABLE 16. Ranking of the single and combination models by metric for
PM10 series of the Campinas Station.

The ensembles followed the same tendency as the previous
simulations, being the MLP combiner the winner. However,
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FIGURE 12. The best forecast for the test set of the PM10 concentration
time series for Campinas station.

TABLE 17. Evaluation metrics for forecasting PM10 series (Ipojuca
Station).

the ensemble using the Mean achieved the third position
in the ranking, reaching the best MSE and RMSE, and the
second-best MAE. The ELM-based approaches were good
again. On the other hand, the LR and LR (FS) ensembles
appeared between the worst predictors.

Figure 12 shows the graphic of the MLP Ensemble and the
observed data for the Campinas time series.

8) CONCENTRATION OF PM10 IN IPOJUCA STATION
Finally, we present in Tables 17 and 18 the general perfor-
mance for the last series, the Ipojuca PM10 concentration,
regarding the error values and the ranking of the forecasting
models, respectively.

The results show that theARMAwas the best singlemodel,
being the winner for five metrics when considering just the
single models. The MLP was the second-best in this group.

TABLE 18. Ranking of the single and combination models by metric for
PM10 series of the Ipojuca Station.

FIGURE 13. The best forecast for the test set of the PM10 concentration
time series for Ipojuca station.

We highlight that the ELM presented its worst position in the
ranking.

The combination models in the Ipojuca case stood out.
Just the Copulas combiner was worse than most of the single
models. The MLP Ensemble won for five metrics (the best
one), and the ELM (CR) for IA (the second general best).
The next was the ELM and the LR (FS) combiners.

Figure 13 shows the output of the MLP Ensemble for the
Ipojuca PM10 time series.

IV. DISCUSSION
After the presentation and initial discussion of the results
regarding the 16 forecasting models and 8 time series,
we show Table 20, which summarizes the general pre-
diction performance, with the following correspondence:
K10 - Kallio PM10; K2.5 - Kallio PM2.5; V10 - Vallila PM10;
V2.5 - Vallila PM2.5; SP10 - São Paulo PM10; SP2.5 - São
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TABLE 19. The general ranking of performances considering the eight
time series taken into account.

Paulo PM2.5; C10 - Campinas PM10; I10 - Ipojuca PM10;
Mean - the mean ranking from all time series to each applied
model; and Rank - the new mean-based ranking.

From the results in Tables 3 to 20, one can discuss many
aspects. For the linear models, ARMA and IIR Filter achieved
the best results four times. It seems to be clear that recursive
linear models (ARMA and IIR Filter) have an advantage over
AR,which does not present feedback recurrences. Despite the
absence of closed-form solutions to determine the free param-
eters, the inclusion of feedback information to perform the
models output response seems to compensate this drawback.

Although we can not state which linear approach is more
suitable, it is essential to highlight that the IIR filter is mainly
applied to adaptive filtering problems [41], while the ARMA
in forecasting tasks. Therefore, if the user chooses to use
linear approaches, the IIR filter should be considered. Also,
a further investigation on the use of bio-inspired metaheuris-
tics should be conduced, analyzing other approaches, such as
Genetic Algorithms, Differential Evolution, and so on [93].

In general, the linear models did not overcome the ensem-
bles, but they perform better than some nonlinear approaches.
Besides, the response of themodelsmay increase the diversity
to perform the ensembles.

About the single ANN-models, it was not expected that
RBF, ANFIS, and ESN were worse than the linear ones.
Among them, the ESN was the best predictor. Some previous
studies revealed the prediction capability of such approaches
in related time series forecasting [51], [94]. However, as in
the linear case, these models must have generated diversity
in the final response.

The application of the MLP led to intriguing observations.
When used as a combiner, the architecture led to the best per-
formances. However, considering the general ranking, it pre-
sented similar performance to ARMA and IIR Filter. But,
for the Vallila series, it shows relatively poor performance,
figuring among the worse predictors.

Undoubtedly, the best single approach was ELM. Except
for the Ipojuca series, the model was always among the
first half of the ranked methods. For Campinas, it was the

TABLE 20. Number of studentized residuals greater than 3.0 in absolute
value (Kallio -K10, K2.5, Vallila - V10, V2.5, Campinas - C10, Ipojuca - I10,
and São Paulo - SP10, SP2.5). The worst performance per series is in bold.

second-best. It is an important remark since the ELM is
similar to the traditional MLP, but as its hidden neurons are
not tuned, the computational training effort is relatively lower.
In addition, these results reinforce the premises found in other
time series forecasting problems [51], [57].

The computational results were favorable to the use of
combination models (ensembles). Table 20 reveals, in 7 out
of 8 cases, the MLP ensemble reached the best raking posi-
tion, followed by the two ELM ensembles. It is intriguing
since, in the single approaches, the ELM performed bet-
ter. Due to the advantage in terms of performance, we can
state that the trainable ensembles, mainly those endowed by
feedforward neural models, are more suitable to solve the
prediction task.

The use of the CR by the ELM Ensemble does not prove
to be an advantage. We observed performance gains in two
cases. However, as the computational cost involved in its
application is not high it may be important for other series.

The non-trainable approaches were similar in terms of
performance, with an advantage to the mean. However, they
did not overcome the ELM and MLP.

Concerning the use of the linear regression (LR), we noted
that the implementation of the Feature Selection (FS) process
increased the quality of the results for 6 cases. Without this
technique, the LR combiner was worse than the non-trainable
ensembles. Also, the LR (FS) was the fourth-best model. This
is important because further investigation can be conducted to
evaluate FS methods to other ensembles.

The Normal Copula-based combination presented interest-
ing results in literature [29], [80], [81]. In this investigation,
it performed fairly but the it did not overcome the neural
ensembles.

Another critical issue is related to the dispersion of the
results considering 30 independent simulations. In this case,
we used the MSE achieved for the Kallio PM10 series to
exemplify the models behavior, as show in the boxplot
graphic depicted in Figure 14. The non-trainable ensembles
and the methods with close-form solution for the training,
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FIGURE 14. Boxplot of the MSE of the test set for Kallio PM10 series.

do not present dispersion, as expected. Note that the RBF
presents a small dispersion, but its best performance is worse
than most other single models. Also, the MLP Ensemble
presented a relatively small dispersion compared to the other
neural-based combiners.

Comprising the environmental aspect, we can state that the
best forecasting models (Figures 6 to 13) were adequate to all
considered time series, even during extreme events of high
air pollution. It is a crucial behavior, as the health systems
may collapse due to overcrowding during high air pollution
events, which may help governments take rapid measures to
ensure the safety of the whole population. But, it is important
to highlight that the forecast power may vary from series to
series.

A. RESIDUAL ANALYSIS
Once the target time series and respective forecasts are close
in some cases, and it may be difficult to distinguish in the
time series plots, the Studentized residuals were computed
by using rstudent function of R software [95]. The Stu-
dentized residual measures how many standard deviations of
each observed value of a time series deviates from an adjusted
model considering all samples except that observation [96].
Due to the expressive number of time series and models,
we present in Table 20 the number of samples showing Stu-
dentized values greater than 3.0 in absolute value to some of
the studied time series.

The worst results are in bold. One can see that Ipojuca
PM10 (I10) and Kallio PM2.5 (K2.5) series have presented,

FIGURE 15. Studentized Residuals for Ipojuca PM10 series using ANFIS
model.

in this order, the best and worst results, taking the maximum
number of Studentized-based outliers into account.

Figures 15 and 16 show the Studentized residuals plot with
respect to the best model (ANFIS for I10, with 6 outliers)
and one of the worst predictors (single MLP for K2.5 series,
with 20 outliers).

One can observe that the difference between the number
of Studentized-based outliers per series was lesser than 8.
These results showed no significant findings regarding the
best performances. Then, the conclusion obtained with the
previous error metrics analyses might be maintained.

B. LIMITATIONS AND POSSIBLE DIRECTIONS
This work intended to determine the most suitable model
to perform PM forecasting, considering only endogenous
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FIGURE 16. Studentized Residuals for Kallio PM2.5 series using MLP
model.

inputs (lags). A comparison of 16 approaches was carried
out. A variety of techniques was considered, including lin-
ear models, neural networks, and combination models. The
literature presents other proposals that use the same premise
for time series forecasting [18], [57], [60], [97]. However, it is
important to mention the limitations of this study, since other
investigations followed different directions.

It is known that a general model for predicting the concen-
trations of PM, especially the fine fraction, is quite challeng-
ing to be achieved without considering source apportionment,
seasonality, local topography, and climatic factors. Previous
investigations proposed hybrid techniques that employ many
other models, such as ANNs and SVM. Also, air trajectory
models have been developed [98].

An eventual poor performance by solely using an algorithm
directly on a time series should be a consequence of not
including variability of local conditions. Therefore, a specific
algorithm may perform better in other locations and other
seasons. In this sense, a further investigation addressing cal-
ibration and sensitivity analysis considering seasonality and
climatic variations is needed.

Regarding the activation functions of the neural models,
we only use hyperbolic tangent (tanh) and linear function.
It is a usual choice because it is fully differentiable and
ranges from−1 to+1. However, the literature presents many
possible functions, such as threshold, sigmoid, or ReLU.
A change in the activation function may lead to an increase
in the models performance.

The computational results were convergent on showing the
ensembles behave better in PM forecasting, considering the
databases addressed. Regarding the separation of the samples
in training, validation, and test, we considered 50%, 25%, and
25%, respectively. This division is based on the premise that
the training set must contain the temporal patterns to allow
the ANN to capture the statistical oscillations of the target
series over time. Note that, only in the Ipojuca series, we did
not use a full year of samples in training, but something
close to that. Also, we would like to provide a significant
amount of samples in the test set, to obtain a better eval-
uation of the results. However, some studies indicate that
distinct divisions can be more adequate, such as 70%, 15%
and 15% [42].

TABLE 21. Weights of the single models in the NC combination for each
time series taken into account (Kallio -K10, K2.5, Vallila - V10, V2.5,
Campinas - CPM10, Ipojuca - GPM10, and São Paulo - SPPM10, SPPM2.5).
According to the magnitude of the residuals variance and covariances,
the weight of the main model in the combination is highlighted in bold.

In order to determine the number of hidden neurons,
we performed a search in a grid. It is evident that our decision
increases the computational effort since we trained many
ANN topologies for each neural proposal. However, the lit-
erature provides some formulas for defining the number of
hidden neurons. In an embracing study provided by Mad-
hiarasan and Deepa [99], the authors presented 13 approaches
to deal with similar task. The formulas can be useful, spe-
cially when the user has a short time or little computational
power to perform the predictions.

C. INSIGHTS REGARDING DIVERSITY AND PARSIMONY
Table 21 summarizes each single model performance accord-
ing to the variability of its residuals and its linear correlation
with the remaining single predictors, taking the training sets
into account. The greater the absolute value of the weight, the
better the performance and dissimilarity of a single predictor,
considering the remaining models.

Naturally, depending on the single model performance
in the test set, we may have a possible overfitting during
the training phase. Thus, finding parsimonious models, i.e.,
predictors that are accurate and efficient though involving a
simplified architecture (with a reduced number of parame-
ters) is also in the kernel of time series forecasting exercises.

For the sake of illustration, one can see the remarkable per-
formance of ANFISwhen forecasting the training set of PM10
concentration in Kallio station (K10). However, this model
has performed poorly during test, assuming one of the worst
positions (see Table 4). In the current way Copulas-Based
Ensemble is modeled, it is unable to handle such a problem,
also leading to poor results. In fact, it has stayed in the second
half of the general rank (Table 4).

Diversity also plays an important role in ensemble mod-
els. Figure 17 brings a sketch of the level of dependence
between the single models when forecasting the training
set of K10. ESN seems to present the most heterogeneous
results in comparison with the alternative single models taken
into account. On the other hand, the expressive relationship
between ARMA and IIR and between IIR and ELM illustrate
the challenge of promoting diversity in ensemble studies.
Considering Pearson’s correlations estimates between the
residuals of the single models in the training phase, one has a
range from 0.5441 to 0.9929 and an average of 0.8796, taking
the triple (0.8369, 0.9571, 0.9296) as quartiles.
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FIGURE 17. Variability and relationship between residuals of the single models when forecasting the training set of PM10 concentration from Kallio
Station.

V. CONCLUSION
In the The present work it were evaluated single and combina-
tionmethods used to particulatematter time series forecasting
(PM10 and PM2.5) concentration. The database comprises
daily records from Kallio and Vallila stations (Finland), São
Paulo, Campinas, and Ipojuca stations (Brazil).

A variety of single models was considered, including
Autoregressive model (AR), Autoregressive and Moving
Average Model (ARMA), Infinite Impulse Response (IIR)
Filters, Multilayer Perceptron (MLP), Radial Basis Func-
tion Networks (RBF), Extreme Learning Machines (ELM),
Echo State Networks (ESN), and Adaptive Network Fuzzy
Inference System (ANFIS). As combination approaches
(ensembles), we considered two non-data-driven combina-
tions (median and mean), linear regression, MLP, ELM, and
Normal-based Copulas.

According to a number of evaluation metrics (i.e. MSE,
MAPE, ARV, IA, MAE, and RMSE), the ensemble meth-
ods led to the best overall result in all analyzed PM time
series. Particularly, the MLP combination seems attractive.
The capability to achieve the best results from different mod-
els is an important advantage of the ensembles. Among single
models, ELM has been remarkable.

We also discussed the challenges of promoting diversity
and avoiding overfitting in the single modeling phase. Ongo-
ing research by part of the authors involves these themes.
Other models can be evaluated to improve the ensemble’s
diversity, as Deep Neural Networks, other versions of the
ESN, or hybrid systems [18].

Considering the United Nations sustainable development
goals (SDG) [100], our study presents a contribution to
air quality forecasting. It can advise governments to pre-
pare hospitals during extreme air pollution events, and has
premises to air pollution reduction. It is indirectly related to

SDG 3-good health and well-being and SDG 11-sustainable
cities and communities. Further, future works can be devel-
oped addressing pollutant series from different stations.
Besides that, exogenous variables, such as weather or sea-
sonality data, can be considered.

Copulas models that disregard from the minimal vari-
ance approach (based on the multivariate normal probabil-
ity distribution) can also be studied. Finally, the proposed
methodology may be tested to other air pollutants and higher
forecasting horizons.

REFERENCES
[1] S. T. Ebelt, W. E. Wilson, and M. Brauer, ‘‘Exposure to ambient and

nonambient components of particulate matter: A comparison of health
effects,’’ Epidemiology, vol. 16, no. 3, pp. 396–405, May 2005.

[2] F. Dominici, M. Greenstone, and C. R. Sunstein, ‘‘Particulate matter
matters,’’ Science, vol. 344, no. 6181, pp. 257–259, Apr. 2014.

[3] M. Jerrett, ‘‘The death toll from air-pollution sources,’’ Nature, vol. 525,
no. 7569, pp. 330–331, Sep. 2015.

[4] WHO—World Health Organization. (2002). Reducing Risks,
Promoting Healthy Life. [Online]. Available: https://www.who.int/
whr/2002/en/whr02_en.pdf?ua=1

[5] WHO—World Health Organization. (2008).Out of 10 People WorldWide
Breathe Polluted Air, but More Countries are Taking Action. [Online].
Available: http://www.who.int/news-room/detail/02-05-2018-9-out-of-
10-people-worldwide-breathe-pollute%d-air-but-more-countries-are-
taking-action

[6] P. Kassomenos, M. Petrakis, D. Sarigiannis, A. Gotti, and S. Karakitsios,
‘‘Identifying the contribution of physical and chemical stressors to the
daily number of hospital admissions implementing an artificial neural
network model,’’ Air Qual., Atmos. Health, vol. 4, nos. 3–4, pp. 263–272,
Dec. 2011.

[7] Z. Sun, X. An, Y. Tao, and Q. Hou, ‘‘Assessment of population exposure
to PM10 for respiratory disease in Lanzhou (China) and its health-related
economic costs based on GIS,’’ BMCPublic Health, vol. 13, no. 1, p. 891,
Dec. 2013.

[8] Y. Li, Z. Ma, C. Zheng, and Y. Shang, ‘‘Ambient temperature
enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in
Beijing, China,’’ Int. J. Biometeorology, vol. 59, no. 12, pp. 1761–1770,
Dec. 2015.

VOLUME 9, 2021 14487



P. S. G. de Mattos Neto et al.: Neural-Based Ensembles for PM Forecasting

[9] G. Polezer, Y. S. Tadano, H. V. Siqueira, A. F. Godoi, C. I. Yamamoto,
P. A. de André, T. Pauliquevis, M. de Fatima Andrade, A. Oliveira,
P. H. Saldiva, P. E. Taylor, and R. H. Godoi, ‘‘Assessing the impact of
PM2.5 on respiratory disease using artificial neural networks,’’ Environ.
Pollut., vol. 235, pp. 394–403, Apr. 2018.

[10] L. G. Ardiles, Y. S. Tadano, S. Costa, V. Urbina, M. N. Capucim,
I. da Silva, A. Braga, J. A. Martins, and L. D. Martins, ‘‘Negative bino-
mial regression model for analysis of the relationship between hospital-
ization and air pollution,’’ Atmos. Pollut. Res., vol. 9, no. 2, pp. 333–341,
Mar. 2018.

[11] J. T. Belotti, D. S. Castanho, L. N. Araujo, L. V. da Silva, T. A. Alves,
Y. S. Tadano, S. L. Stevan, F. C. Corráa, and H. V. Siqueira, ‘‘Air pollution
epidemiology: A simplified generalized linear model approach optimized
by bio-inspired metaheuristics,’’ Environ. Res., vol. 191, Dec. 2020,
Art. no. 110106.

[12] L. N. Araujo, J. T. Belotti, T. A. Alves, Y. D. S. Tadano, and H. Siqueira,
‘‘Ensemble method based on artificial neural networks to estimate air
pollution health risks,’’ Environ. Model. Softw., vol. 123, Jan. 2020,
Art. no. 104567.

[13] K.-Y. Wang and T.-T. Chau, ‘‘An association between air pollution and
daily outpatient visits for respiratory disease in a heavy industry area,’’
PLoS ONE, vol. 8, no. 10, Oct. 2013, Art. no. e75220.

[14] S. Genc, Z. Zadeoglulari, S. H. Fuss, and K. Genc, ‘‘The adverse effects
of air pollution on the nervous system,’’ J. Toxicol., vol. 2012, pp. 1–23,
2012.

[15] J. W. Kim, S. Park, C. W. Lim, K. Lee, and B. Kim, ‘‘The role of
air pollutants in initiating liver disease,’’ Toxicol. Res., vol. 30, no. 2,
pp. 65–70, Jun. 2014.

[16] F. S. D. A. Filho, F. Madeiro, S. M. M. Fernandes, P. S. G. D. M. Neto,
and T. A. E. Ferreira, ‘‘Time-series forecasting of pollutant concentration
levels using particle swarm optimization and artificial neural networks,’’
Química Nova, vol. 36, no. 6, pp. 783–789, 2013.

[17] P. S. G. de Mattos Neto, G. D. C. Cavalcanti, F. Madeiro, and
T. A. E. Ferreira, ‘‘An approach to improve the performance of PM fore-
casters,’’ PLoS ONE, vol. 10, no. 9, Sep. 2015, Art. no. e0138507.

[18] P. S. G. de Mattos Neto, F. Madeiro, T. A. E. Ferreira, and
G. D. C. Cavalcanti, ‘‘Hybrid intelligent system for air quality forecasting
using phase adjustment,’’ Eng. Appl. Artif. Intell., vol. 32, pp. 185–191,
Jun. 2014.

[19] A. Vlachogianni, P. Kassomenos, A. Karppinen, S. Karakitsios, and
J. Kukkonen, ‘‘Evaluation of a multiple regression model for the fore-
casting of the concentrations of NOx and PM10 in athens and helsinki,’’
Sci. Total Environ., vol. 409, no. 8, pp. 1559–1571, Mar. 2011.

[20] H. Niska, M. Rantamäki, T. Hiltunen, A. Karppinen, J. Kukkonen,
J. Ruuskanen, and M. Kolehmainen, ‘‘Evaluation of an integrated mod-
elling system containing a multi-layer perceptron model and the numer-
ical weather prediction model HIRLAM for the forecasting of urban
airborne pollutant concentrations,’’ Atmos. Environ., vol. 39, no. 35,
pp. 6524–6536, Nov. 2005.

[21] J. Kukkonen, ‘‘Extensive evaluation of neural network models for the
prediction of NO2 and PM10 concentrations, compared with a determin-
istic modelling system and measurements in central Helsinki,’’ Atmos.
Environ., vol. 37, no. 32, pp. 4539–4550, Oct. 2003.

[22] F. Biancofiore, M. Busilacchio, M. Verdecchia, B. Tomassetti, E. Aruffo,
S. Bianco, S. Di Tommaso, C. Colangeli, G. Rosatelli, and P. Di Carlo,
‘‘Recursive neural network model for analysis and forecast of PM10 and
PM2.5,’’ Atmos. Pollut. Res., vol. 8, no. 4, pp. 652–659, Jul. 2017.

[23] S. P. Neuman, ‘‘Maximum likelihood Bayesian averaging of uncertain
model predictions,’’ Stochastic Environ. Res. Risk Assessment, vol. 17,
no. 5, pp. 291–305, Nov. 2003.

[24] A. T. Sergio, T. P. F. de Lima, and T. B. Ludermir, ‘‘Dynamic selection of
forecast combiners,’’ Neurocomputing, vol. 218, pp. 37–50, Dec. 2016.

[25] P. R. A. Firmino, P. S. G. de Mattos Neto, and T. A. E. Ferreira, ‘‘Cor-
recting and combining time series forecasters,’’ Neural Netw., vol. 50,
pp. 1–11, Feb. 2014.

[26] T. Lux and L. Morales-Arias, ‘‘Forecasting volatility under fractality,
regime-switching, long memory and student-t innovations,’’ Comput.
Statist. Data Anal., vol. 54, no. 11, pp. 2676–2692, Nov. 2010.

[27] S. Yin, L. Liu, and J. Hou, ‘‘A multivariate statistical combination fore-
casting method for product quality evaluation,’’ Inf. Sci., vols. 355–356,
pp. 229–236, Aug. 2016.

[28] F. Ye, L. Zhang, D. Zhang, H. Fujita, and Z. Gong, ‘‘A novel forecasting
method based on multi-order fuzzy time series and technical analysis,’’
Inf. Sci., vols. 367–368, pp. 41–57, Nov. 2016.

[29] R. T. A. de Oliveira, T. F. O. de Assis, P. R. A. Firmino, and
T. A. E. Ferreira, ‘‘Copulas-based time series combined forecasters,’’ Inf.
Sci., vol. 376, pp. 110–124, Jan. 2017.

[30] S. Panigrahi and H. Behera, ‘‘A hybrid ETS–ANN model for time series
forecasting,’’ Eng. Appl. Artif. Intell., vol. 66, pp. 49–59, Nov. 2017.

[31] R. T. Clemen, ‘‘Combining forecasts: A review and annotated bibliogra-
phy,’’ Int. J. Forecasting, vol. 5, no. 4, pp. 559–583, Jan. 1989.

[32] D. I. Jeong and Y.-O. Kim, ‘‘Combining single-value streamflow
forecasts—A review and guidelines for selecting techniques,’’ J. Hydrol.,
vol. 377, pp. 284–299, Oct. 2009.

[33] K. F. Wallis, ‘‘Combining forecasts—Forty years later,’’ Appl. Financial
Econ., vol. 21, nos. 1–2, pp. 33–41, Jan. 2011.

[34] R. Dell’Aquila and E. Ronchetti, ‘‘Stock and bond return predictability:
The discrimination power of model selection criteria,’’ Comput. Statist.
Data Anal., vol. 50, no. 6, pp. 1478–1495, Mar. 2006.

[35] J. Belotti, H. Siqueira, L. Araujo, S. L. Stevan, P. S. G. de Mattos Neto,
M. H. N. Marinho, J. F. L. de Oliveira, F. Usberti, M. D. A. Leone
Filho, A. Converti, and L. A. Sarubbo, ‘‘Neural-based ensembles and
unorganized machines to predict streamflow series from hydroelectric
plants,’’ Energies, vol. 13, no. 18, p. 4769, Sep. 2020.

[36] N. Kourentzes, D. K. Barrow, and S. F. Crone, ‘‘Neural network ensemble
operators for time series forecasting,’’ Expert Syst. Appl., vol. 41, no. 9,
pp. 4235–4244, Jul. 2014.

[37] K. Siwek and S. Osowski, ‘‘Improving the accuracy of prediction of PM10
pollution by the wavelet transformation and an ensemble of neural predic-
tors,’’ Eng. Appl. Artif. Intell., vol. 25, no. 6, pp. 1246–1258, Sep. 2012.

[38] R. M. S. Souza, G. P. Coelho, A. E. A. da Silva, and S. A. Pozza, ‘‘Using
ensembles of artificial neural networks to improve PM10forecasts,’’
Chem. Eng. Trans., vol. 43, pp. 2161–2166, 2015.

[39] E. Debry and V. Mallet, ‘‘Ensemble forecasting with machine learning
algorithms for ozone, nitrogen dioxide and PM10 on the Prev’Air plat-
form,’’ Atmos. Environ., vol. 91, pp. 71–84, Jul. 2014.

[40] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, vol. 734. Hoboken, NJ, USA: Wiley, 2011.

[41] S. S. Haykin, Adaptive Filter Theory. London, U.K.: Pearson, 2008.
[42] S. S. Haykin, Neural Networks and Learning Machines. New York, NY,

USA: Prentice-Hall, 2009.
[43] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:

A new learning scheme of feedforward neural networks,’’ in Proc. IEEE
Int. Joint Conf. Neural Netw., vol. 2. Jul. 2004, pp. 985–990.

[44] H. Jaeger, ‘‘Short term memory in echo state networks,’’ GMD-German
Nat. Res. Inst. Comput. Sci., Darmstadt, Germany, GMDRep. 152, 2002.

[45] M. Sugeno and T. Yasukawa, ‘‘A fuzzy-logic-based approach to qual-
itative modeling,’’ IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7–31,
Feb. 1993.

[46] M. R. Najafi and H. Moradkhani, ‘‘Ensemble combination of sea-
sonal streamflow forecasts,’’ J. Hydrol. Eng., vol. 21, no. 1, Jan. 2016,
Art. no. 04015043.

[47] G. Polezer, A. Oliveira, S. Potgieter-Vermaak, A. F. L. Godoi,
R. A. F. de Souza, C. I. Yamamoto, R. V. Andreoli, A. S. Medeiros,
C. M. D. Machado, E. O. dos Santos, P. A. de André, T. Pauliquevis,
P. H. N. Saldiva, S. T. Martin, and R. H. M. Godoi, ‘‘The influence
that different urban development models has on PM2.5 elemental and
bioaccessible profiles,’’ Sci. Rep., vol. 9, no. 1, Dec. 2019, Art. no. 14846.

[48] H. Siqueira, I. Luna, T. A. Alves, and Y. de Souza Tadano, ‘‘The direct
connection between Box & Jenkins methodology and adaptive filtering
theory,’’Math. Eng., Sci. Aerosp., vol. 10, no. 1, pp. 27–40, 2019.

[49] M. Khashei and M. Bijari, ‘‘A novel hybridization of artificial neural
networks and ARIMA models for time series forecasting,’’ Appl. Soft
Comput., vol. 11, no. 2, pp. 2664–2675, Mar. 2011.

[50] A. B. Sanchez, C. Ordonez, F. S. Lasheras, F. J. de Cos Juez, and
J. Roca-Pardinas, ‘‘Forecasting SO2 pollution incidents by means of
Elman artificial neural networks and ARIMA Model,’’ Abstract Appl.
Anal., vol. 2013, no. 6, p. 238259, 2013.

[51] H. Siqueira, L. Boccato, R. Attux, and C. Lyra, ‘‘Unorganized machines
for seasonal streamflow series forecasting,’’ Int. J. Neural Syst., vol. 24,
no. 3, May 2014, Art. no. 1430009.

[52] P. Santos,M.Macedo, E. Figueiredo, C. J. Santana, F. Soares, H. Siqueira,
A. Maciel, A. Gokhale, and C. J. A. Bastos-Filho, ‘‘Application of
PSO-based clustering algorithms on educational databases,’’ in Proc.
IEEE Latin Amer. Conf. Comput. Intell., Nov. 2017, pp. 1–6.

[53] E. D. P. Puchta, R. Lucas, F. R. V. Ferreira, H. V. Siqueira, and
M. S. Kaster, ‘‘Gaussian adaptive PID control optimized via genetic algo-
rithm applied to a step-down DC-DC converter,’’ in Proc. 12th IEEE Int.
Conf. Ind. Appl. (INDUSCON), Nov. 2016, pp. 1–6.

14488 VOLUME 9, 2021



P. S. G. de Mattos Neto et al.: Neural-Based Ensembles for PM Forecasting

[54] E. D. P. Puchta, H. V. Siqueira, and M. D. S. Kaster, ‘‘Optimization
tools based on metaheuristics for performance enhancement in a Gaus-
sian adaptive PID controller,’’ IEEE Trans. Cybern., vol. 50, no. 3,
pp. 1185–1194, Mar. 2020.

[55] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm the-
ory,’’ in Proc. 6th Int. Symp. Micro Mach. Human Sci., 1995, pp. 39–43.

[56] A. V. Oppenheim, A. S. Willsky, and H. Nawab, Signals and Systems.
London, U.K.: Pearson, 1996.

[57] H. Siqueira, L. Boccato, I. Luna, R. Attux, and C. Lyra, ‘‘Performance
analysis of unorganized machines in streamflow forecasting of Brazilian
plants,’’ Appl. Soft Comput., vol. 68, pp. 494–506, Jul. 2018.

[58] R. S. Ettouney, F. S.Mjalli, J. G. Zaki,M. A. El-Rifai, andH.M. Ettouney,
‘‘Forecasting of ozone pollution using artificial neural networks,’’ Man-
age. Environ. Qual., Int. J., vol. 20, no. 6, pp. 668–683, 2009.

[59] R. Adhikari and R. K. Agrawal, ‘‘A combination of artificial neural
network and random walk models for financial time series forecasting,’’
Neural Comput. Appl., vol. 24, no. 6, pp. 1441–1449, May 2014.

[60] P. S. G. de Mattos Neto, M. H. N. Marinho, H. Siqueira, Y. de Souza
Tadano, V. Machado, T. Antonini Alves, J. F. L. de Oliveira, and
F. Madeiro, ‘‘A methodology to increase the accuracy of particulate
matter predictors based on time decomposition,’’ Sustainability, vol. 12,
no. 18, p. 7310, Sep. 2020.

[61] Y. Kachba, D. M. D. G. Chiroli, J. T. Belotti, T. A. Alves,
Y. de Souza Tadano, and H. Siqueira, ‘‘Artificial neural networks to esti-
mate the influence of vehicular emission variables on morbidity and
mortality in the largest metropolis in south america,’’ Sustainability,
vol. 12, no. 7, p. 2621, Mar. 2020.

[62] E. P. dos Santos and F. J. Von Zuben, ‘‘Improved second-order training
algorithms for globally and partially recurrent neural networks,’’ in Proc.
Int. Joint Conf. Neural Netw. Process., 1999, pp. 1501–1506.

[63] H. Siqueira and I. Luna, ‘‘Performance comparison of feedforward neural
networks applied to streamflow series forecasting,’’ Math. Eng., Sci.
Aerosp., vol. 10, no. 1, pp. 41–53, 2019.

[64] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduc-
tion to Cluster Analysis, vol. 344. New York, NY, USA: Wiley, 2009.

[65] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:
Theory and applications,’’ Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, Dec. 2006.

[66] H. V. Siqueira, L. Boccato, R. R. F. Attux, and C. L. Filho, ‘‘Echo
state networks and extreme learning machines: A comparative study on
seasonal streamflow series prediction,’’ inNeural Information Processing
(Lecture Notes in Computer Science), vol. 7664, 2012, pp. 491–500.

[67] H. V. Siqueira, L. Boccato, R. R. F. Attux, and C. L. Filho, ‘‘Echo
state networks for seasonal streamflow series forecasting,’’ in Intelligent
Data Engineering and Automated Learning—IDEAL (Lecture Notes in
Computer Science), vol. 7435, 2012, pp. 226–236.

[68] J.-S. R. Jang, ‘‘ANFIS: Adaptive-network-based fuzzy inference system,’’
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, Jun. 1993.

[69] K. Polat and S. S. Durduran, ‘‘Usage of output-dependent data scaling
in modeling and prediction of air pollution daily concentration values
(PM10) in the city of Konya,’’ Neural Comput. Appl., vol. 21, no. 8,
pp. 2153–2162, Nov. 2012.

[70] M. Oprea, S. F. Mihalache, and M. Popescu, ‘‘A comparative study
of computational intelligence techniques applied to PM2.5 air pollution
forecasting,’’ in Proc. 6th Int. Conf. Comput. Commun. Control (ICCCC),
May 2016, pp. 103–108.

[71] J. Jang and N. Gulley, Fuzzy Logic Toolbox 2: User’s Guide MATLAB.
Natick, MA, USA: The Mathworks, 2007.

[72] K. Siwek, S. Osowski, and M. Sowinski, ‘‘Evolving the ensemble of
predictors model for forecasting the daily average PM10,’’ Int. J. Environ.
Pollut., vol. 46, pp. 199–215, 2011.

[73] J.Mendes-Moreira, C. Soares, A.M. Jorge, and J. F. D. Sousa, ‘‘Ensemble
approaches for regression: A survey,’’ ACM Comput. Surv., vol. 45, no. 1,
pp. 1–40, Nov. 2012.

[74] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and
feature selection,’’ J. Mach. Learn. Res., vol. 3, pp. 1157–1182,
Jan. 2003.

[75] H. Siqueira, M. Macedo, Y. D. S. Tadano, T. A. Alves, S. L. Stevan,
D. S. Oliveira, M. H. N. Marinho, P. S. G. D. M. Neto, J. F. L. D. Oliveira,
I. Luna, M. D. A. L. Filho, L. A. Sarubbo, and A. Converti, ‘‘Selection
of temporal lags for predicting riverflow series from hydroelectric plants
using variable selection methods,’’ Energies, vol. 13, no. 16, p. 4236,
Aug. 2020.

[76] R. B. Nelsen, An Introduction to Copulas, 2nd ed. Portland, ON, USA:
Springer, 2006.

[77] A. Sklar, ‘‘Fonctions de repartition a n dimensions et leurs marges,’’ Publ.
Inst. Statist. Univ. Paris, vol. 8, pp. 229–231, Dec. 1959.

[78] A. Patton, ‘‘Copula methods for forecasting multivariate time series,’’ in
Handbook Economic Forecasting, vol. 2. Amsterdam, The Netherlands:
Elsevier, 2013, pp. 899–960.

[79] A. J. Patton, ‘‘A review of copula models for economic time series,’’
J. Multivariate Anal., vol. 110, pp. 4–18, Sep. 2012.

[80] R. T. A. Oliveira, T. F. O. Assis, P. R. A. Firmino, T. A. E. Ferreira,
and A. L. I. de Oliveira, ‘‘Copulas-based ensemble of artificial neural
networks for forecasting real world time series,’’ in Proc. IEEE Int. Joint
Conf. Neural Netw., 2016, pp. 4089–4096.

[81] R. T. A. D. Oliveira, T. F. Oliveira, P. R. A. Firmino, and T. A. E. Ferreira,
‘‘Combining time series forecasting models via Gumbel-Hougaard copu-
las,’’ in Proc. 11th Brazilian Congr. Comput. Intell., Sep. 2013, pp. 1–6.

[82] T. F. Oliveira, P. R. Firmino, and T. A. E. Ferreira, ‘‘Study of models’
uncertainty by Gumbel copula (in Portuguese),’’ in Proc. 58th RBras
Reunião Ann. Região Brasileira Soc. Int. Biometria, 2013, pp. 1–13.

[83] H. Joe and D. Kurowicka, Dependence Modeling: Vine Copula Hand-
book. Singapore: World Scientific, 2011.

[84] T. F. Oliveira, R. T. A. D. Oliveira, P. R. A. Firmino, P. S. G. D. M. Neto,
and T. A. E. Ferreira, ‘‘Combination of biased artificial neural network
forecasters,’’ in Proc. 11th Brazilian Congr. Comput. Intell., Sep. 2013,
pp. 1–6.

[85] Statistics in Finland. Population Projection 2019: Vital Statistics by Sex
and Area 2019–2040. Accessed: Jan. 25, 2020. [Online]. Available:
https://pt.knoema.com/statfin_vaenn_pxt_128w/population-projection-
2019-vital-statistics-by-sex-and-area-2019-2040-finland

[86] W. Spark. (Aug. 2020). Mean Meteorological Conditions of Camp-
inas, São Paulo, Ipojuca, Helsinki, and Region (in Portuguese:
Condições Meteorológicas Médias de Campinas, São Paulo, Ipojuca,
Helsinki e Região). Accessed: Aug. 22, 2020. [Online]. Available:
http://pt.weatherspark.com

[87] D. Voukantsis, K. Karatzas, J. Kukkonen, T. Räsänen, A. Karppinen, and
M. Kolehmainen, ‘‘Intercomparison of air quality data using principal
component analysis, and forecasting of PM10 and PM2.5 concentrations
using artificial neural networks, in Thessaloniki and Helsinki,’’ Sci. Total
Environ., vol. 409, no. 7, pp. 1266–1276, Mar. 2011.

[88] IBGE-Brazilian Institute of Geography and Statistics (in Portuguese:
Instituto Brasileiro de Geografia Estatística. Censo 2010. Accessed:
Aug. 22, 2019. [Online]. Available: https://censo2010.ibge.gov.br/

[89] L. Prechelt, ‘‘Proben1: A set of neural network benchmark prob-
lems and benchmarking rules,’’ Univ. Karlsruhe, Karlsruhe, Germany,
Tech. Rep. 21/94, 1994.

[90] A. R. Lima Junior, D. A. Silva, P. S. Mattos Neto, and T. A. E. Ferreira,
‘‘An experimental study of fitness function and time series forecasting
using artificial neural networks,’’ in Proc. 12th Annu. Conf. comp Genetic
Evol. Comput. (GECCO), 2010, pp. 2015–2018.

[91] P. S. G. de Mattos Neto, A. R. Lima, T. A. E. Ferreira, and
G. D. C. Cavalcanti, ‘‘An intelligent perturbative approach for the time
series forecasting problem,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2010, pp. 1–8.

[92] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians. Hoboken, NJ, USA: Wiley, 2009.

[93] L. N. De Castro, Fundamentals Natural Computing: Basic Concepts,
Algorithms, Application. Boca Raton, FL, USA: CRC Press, 2006.

[94] Y. de Souza Tadano, H. V. Siqueira, and T. A. Alves, ‘‘Unorganized
machines to predict hospital admissions for respiratory diseases,’’ inProc.
IEEE Latin Amer. Conf. Comput. Intell. (LA-CCI), Nov. 2016, pp. 1–6.

[95] R. C. Team, A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing, 2020.

[96] D. Dunea, A. Pohoata, and S. Iordache, ‘‘Using wavelet–feedforward
neural networks to improve air pollution forecasting in urban environ-
ments,’’ Environ. Monitor. Assessment, vol. 187, no. 7, p. 477, Jul. 2015.

[97] Y. D. S. Tadano, H. V. Siqueira, T. A. Alves, and M. H. D. N. Mar-
inho, ‘‘Forecasting particulate matter concentrations: Use of unorganized
machines,’’ Int. J. Adv. Eng. Res. Sci., vol. 4, no. 4, pp. 188–191, 2017.

[98] X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin, and J. Wang, ‘‘Artificial neu-
ral networks forecasting of PM2.5 pollution using air mass trajectory
based geographic model and wavelet transformation,’’ Atmos. Environ.,
vol. 107, pp. 118–128, Apr. 2015.

[99] M. Madhiarasan and S. N. Deepa, ‘‘A novel criterion to select hid-
den neuron numbers in improved back propagation networks for wind
speed forecasting,’’ Int. J. Speech Technol., vol. 44, no. 4, pp. 878–893,
Jun. 2016.

[100] United Nations. (Aug. 2019). Sustainable Development Goals:
Knowledge Platform. Accessed: Aug. 25, 2020. [Online]. Available:
https://sustainabledevelopment.un.org/

VOLUME 9, 2021 14489



P. S. G. de Mattos Neto et al.: Neural-Based Ensembles for PM Forecasting

PAULO S. G. DE MATTOS NETO received the
Ph.D. degree in computer science from the Cen-
ter of Informatics, Federal University of Pernam-
buco, in 2012. He is currently a Researcher with
the Brazilian National Research Council. He is
also a Professor with the Center of Informatics of
the Federal University of Pernambuco. His cur-
rent research interests include time series model-
ing, artificial neural networks, and hybrid systems.
He is a member of the International Neural Net-

work Society and the Brazilian Computer Science Society.

PAULO RENATO A. FIRMINO received the B.S.
degree in statistics, and theM.S. and Ph.D. degrees
in production engineering (operational research)
from the Federal University of Pernambuco, in
2002, 2004, and 2009, respectively. He is currently
a Professor with the Center for Science and Tech-
nology, Federal University of Cariri, Brazil. His
research interest includes quantitative risk assess-
ment, with a focus on modeling, simulation, and
forecasting.

HUGO SIQUEIRA received the B.Sc. degree
in electrical engineering from the State Univer-
sity of São Paulo, in 2006, and the master’s
and Ph.D. degrees from the University of Camp-
inas, in 2009 and 2013, respectively. He was a
Post-Doctoral Researcher with the University of
Campinas, in 2014, and Illinois State University,
USA, and the University of Pernambuco, in 2017.
He has worked on electric engineering and com-
puter science, with an emphasis on neural net-

works, evolutionary algorithms, immune algorithms, swarm intelligence,
time series forecasting, pollutant impact on human health, and clustering
tasks, among others. He is currently an Adjunct Professor with the Federal
University of Technology—Paraná (UTFPR). He is also an Adviser of Grad-
uate Programs in computer science (PPGCC) and a Production Engineering
(PPGEP). He is the Coordinator of the Interdisciplinary Group of Compu-
tational Intelligence and the Laboratory of Computational Intelligence and
Advanced Control, UTFPR-PG.

YARA DE SOUZA TADANO received the B.Sc.
degree in physics from the Federal University of
Mato Grosso do Sul, in 2004, the master’s degree
from the Federal University of Technology—
Paraná (UTFPR), in 2007, and the Ph.D. degree
in mechanical engineering from the University
of Campinas, in 2012. She was a Postdoctoral
Researcher in environmental engineering with
UTFPR, in 2013. She is currently a Professor with
UTFPR and also an Adviser of the Postgraduate

Program (master’s degree) in mechanical engineering. She is the Coordinator
of the Research network in Life Cycle Impact Assessment and the Laboratory
of Air Pollutants Dispersion. Her researches are related to air pollution, such
as emission and dispersion of pollutants, environmental impact, population
health, statistical analysis, artificial neural networks, and life cycle impact
assessment.

THIAGO ANTONINI ALVES received the D.Sc.
degree in mechanical engineering from the State
University of Campinas, in 2010. He is currently a
Professor of mechanical engineering with the Fed-
eral University of Technology—Paraná (UTFPR),
Ponta Grossa, Brazil. He has experience in the
field of thermal engineering, focusing on heat and
mass transfer, thermodynamics, and energy, with
an emphasis on heat pipes and thermosyphons,
convection, conduction, electronic cooling, solar

energy, generation and cogeneration of energy, emission and dispersion of
air pollutants, numerical simulations, and experimental analysis.

JOÃO FAUSTO L. DE OLIVEIRA received the
Ph.D. degree in computational intelligence from
the Federal University of Pernambuco, in 2016.
He joined the University of Pernambuco, in 2014,
where he is currently a Professor and the Coor-
dinator of the Automation and Control Engineer-
ing undergraduate program. His research interests
include artificial neural networks, pattern recogni-
tion, hybrid intelligent systems, evolutionary com-
putation, and time series forecasting.

MANOEL HENRIQUE DA NÓBREGA MAR-
INHO received the bachelor’s degree in civil engi-
neering from the Federal University of Campina
Grande, in 1999, and the master’s degree in civil
engineering and the Ph.D. degree in electrical
engineering from UNICAMP, in 2002 and 2005,
respectively. He has coordinated and participated
in several research and development projects in
renowned companies in the area of electricity gen-
eration and distribution. He is currently an Adjunct

Professor with the Polytechnic School of Engineering, University of Per-
nambuco, and a Permanent Professor with the Systems Engineering Grad-
uate Program, teaching disciplines, supervising graduate and undergraduate
students, in addition to teaching undergraduate classes in engineering and
materials physics. He is also in related with in research and development
projects and involved in teaching and extension activities in the areas, such
as probability, statistics, stochastic processes, water resources, time series
forecasting, computational intelligence, smart meters, renewable energy,
energy storage, planning and programming of the operation of electric power
systems, hydrothermal power systems, energy planning, reliability engineer-
ing in life data analysis, and repairable systems and extreme conditions
of use.

FRANCISCO MADEIRO received the D.Sc.
degree in electrical engineering from the Federal
University of Paraiba, Brazil, in 2001. Since 2006,
he has been with the University of Pernambuco,
Brazil, where he is currently an Associate Pro-
fessor. His main research interests include signal
processing, communications systems, and compu-
tational intelligence.

14490 VOLUME 9, 2021


