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ABSTRACT State-of-health (SOH) estimation is crucial for ensuring efficient, reliable and safe operation
of power battery in electric vehicle (EV) application. However, due to the complicated physicochemical
reactions happened in battery cells, it is extremely difficult to accurately estimate SOH, especially in
real-world EV application scenarios. Traditional SOH estimation methods, including both model-based
and data-driven ones, are deterministic, which cannot capture the stochastic property of battery aging
process aroused from the inherent inconsistency during battery production. In this paper, Bayesian network
(BN), which is a probabilistic graphical modeling method for indeterministic process, is used to battery
degradation modeling. Its structure is derived from existing knowledge about battery aging mechanism.
Two-year operational data and capacity calibration results of 16 electric taxies are collected for model
training and validation. Specifically, a systematic data filling procedure is proposed to predict the missing
values of variables necessary for SOH estimation. Markov Chain Monte Carlo method is adopted to generate
the samples from parameterized BN for SOH estimation. Results show that the estimation result is very close
to the calibrated SOH with mean absolute error below 4%. The proposed method is promising to be applied
online for SOH estimation in real-world EV application.

INDEX TERMS Electric vehicle, battery aging, state-of-health estimation, real-world data.

I. INTRODUCTION
In the face of severe energy crisis and environmental prob-
lems, governments all over the world are actively promoting
the development of electric vehicles (EVs) to reduce carbon
emissions and reduce fossil energy consumption [1], [2].
Lithium-ion battery has become the preferred battery type for
EVs due to its advantages of high energy density, high work-
ing voltage platform, no memory effect, low self-discharge
rate and long service life [3], [4]. However, the aging of
lithium-ion batteries is inevitable. When the degradation of
battery accumulates to a certain extent, the performance
of EVs will greatly deteriorate. Capacity decrease is one
of the most dominant phenomena during battery aging [5].
The decrease of battery capacity will lead to the decrease of
driving range of vehicles, which will increase the mileage
anxiety of users. Therefore, to ensure efficient, reliable
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and safe operation of power battery, accurate estimation of
state-of-health (SOH) is one of the most important functions
of battery management system (BMS) [6], [7]. However,
the battery capacity, as a landmark parameter of the health
status, cannot be directly measured. How to accurately eval-
uate the battery aging under the complex and changeable
operating conditions of the real vehicle becomes the key to
the realization of elaborate management of BMS [8].

Electrochemical methods are commonly used to analyze
the battery degradation mechanism and to reveal the rela-
tionship between SOH and the material change inside the
battery. For example, Wohlfahrt-Mehrens et al. [9] and
Yang et al. [10] respectively showed the change of cathode
and anode materials as the battery ages using electrochemical
methods like X-ray diffraction, scanning electron microscopy
and so on. However, these electrochemical methods are intru-
sive or destructive and cannot be applied in engineering
applications like EVs. An important electrochemical method
that can be conducted without destroying the battery cell is
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electrochemical impedance spectroscopy (EIS). A consider-
able amount of work has been done on the application of
EIS in recognition of battery degradation [11]. However, EIS
requires the battery to be excited using sinusoidal current of
different frequencies, which may not be applicable in EVs.

Model-based methods are another type of approach used
for SOH estimation. Most of them use equivalent circuit
model (ECM) rather than electrochemical model as ECM has
reasonable tradeoff between accuracy and complexity [12].
For example, Zou et al. [13] incorporated the capacity into
the state equation of the battery ECM and estimated SOH
using Extend Kalman Filter (EKF). Li et al. [14] used three
different state estimation methods (particle filter, EKF and
least squares) to estimate state-of-charge (SOC) first, and
then obtained the battery capacity through dividing the accu-
mulated charge by the SOC variation. Unfortunately, accu-
racy of this kind of methods heavily relies on the parameters
of ECM [15], thus adaptive identification method is required
to update the parameters online [16], which increases the
computational burden greatly. Moreover, the employment
of state estimation methods like EKF involves large matrix
operations, which makes it difficult to be implemented in
BMS for real-world application [17].

The third type of SOH estimation methods are data-driven
ones. For example, Käbitz et al. [18], [19] derived an
empirical model to describe SOH fade of a LiNMC cell
under different combinations of current rate, temperature
and depth-of-discharge (DOD) through accelerating life test.
Andre et al. [20] constructed a SOH regression model based
on support vector machine (SVM) usingmaximum/minimum
temperature, SOC variation, mean current rate, etc. as model
inputs. Other data-driven models like neural networks [7],
regression tree [21] are also applied for SOH estimation. In
essence, such models exploit the sophisticated and inherent
relationship between SOH and the battery features like ter-
minal voltage, current, temperature and so on from a large
amount of data. As the big-data technology has been widely
promoted in China EV industry, abundant data are avail-
able to train the data-driven model, which ensures that the
training data has relatively wide coverage so the derived
model has desirable prediction performance. For example,
Wang et al. [22] presented a cell inconsistency evalua-
tion model for series-connected battery systems based on
real-world EV operational data, which is helpful to accu-
rately access the battery SOH. She et al. [23] presented a
novel battery aging assessment model based on incremental
capacity analysis and neural network through analysis of
real-world EVs’ operational data. Tian et al. [24] applied box-
plot method to explore battery degradation based on a large-
scale electric taxi GPS and deal data. Existing researches
imply that data-driven method has great potential in revealing
the intrinsic relationship between battery aging and external
factors.

Despite above achievements, there still exist some short-
comings in current researches. Firstly, most real-world EV
data recorded in existing researches do not have capacity item

because battery capacity cannot be measured directly from
on-board sensors. Therefore, when evaluating battery degra-
dation based on real-world data, most researches used driving
mileage to represent battery health status like in Ref. [23].
Despite driving mileage is proportional to capacity degrada-
tion to some extent, their relationship may not be completely
linear, thus the derived battery agingmodel or revealed degra-
dation mechanism may not be accurate. Secondly, data miss-
ing and distortion are inevitable when recoding operational
data of real-world EVs. Most existing researches simply drop
out these low-quality data. However, at one time stamp, usu-
ally not all data items are missing and missing data item may
be filled based on its relationship between other observed
data. Filling such missing data may increase the utilization
rate and maximize the potential of data-driven model [25].
Thirdly, most existing battery aging models are deterministic
while the truth is that many battery aging influence factors
are uncertain [26]. In addition, even two batteries undergo the
exactly same aging stress loading process, their capacity still
may be different because of inherent inconsistency in produc-
tion. Therefore, the deterministic model cannot capture the
probabilistic properties in battery degradation.

In order to mitigate existing research gaps, this paper
analyzes battery degradation for real-world electric taxies
using Bayesian network (BN). The main contributions of this
work include following three aspects. Firstly, by conducting
capacity calibration periodically, real-world operational EV
data together with capacity at specific stage are collected,
which provides accurate degradation evaluation benchmark
for in-depth analysis. Secondly, to fully exploit the data value
and provide high-quality data source for subsequent model
training, one-stage Markov chain and radius basis function
neural network (RBF-NN) are adopted for vehicle-related
and battery-related missing data filling respectively. Thirdly,
to incorporate the indeterministic characteristic existing in
battery aging process, this paper applies BN to capture the
probabilistic causality between different influencing factors
and battery capacity. Because in BN, each node represents
a variable and a specific distribution is associated with each
node, this kind of probabilistic description inherited in BN
provides the capability to consider the uncertainties of the
variables and provide probability distributions instead of
point value estimation.

The rest of the paper is organized as follows. Section 2
describes the data collection and data cleaning procedure.
Section 3 gives a brief introduction of BN. Section 4 pro-
vides a detailed construction procedure of the hierarchical BN
model for battery degradation analysis. Section 5 introduces
the training and validation process, followed by the key con-
clusions summarized in Section 6.

II. DATA COLLECTION AND CLEANING
A. ELECTRIC VEHICLE TYPE
In this research, 16 EVs are used as the investigated targets.
All of these vehicles are BAIC EU260. The detailed specifi-
cation of this vehicle model is listed in Table 1. It needs to
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be mentioned here that all these vehicles are used as taxies.
According to Ref. [27] and Ref. [28], the average daily driv-
ing distance is 49.8 km for Beijing private electric vehicles
while the value is 117.98 km for Beijing electric taxies.
Because taxies have relatively longer daily driving distance
compared with private vehicles, their battery degradation is
more obvious after short period of usage. So using taxies
as investigated targets can greatly shorten the necessary data
span while ensuring battery aging still be tangible.

TABLE 1. Specification of BAIC EU260.

B. DATA COLLECTION
In order to obtain high-frequency and high-quality EVs’
battery operational data, we installed data collector in
each investigated EV and connected them to the vehicle’s
Controller Area Network (CAN) bus through on-board diag-
nostic (OBD) port to get signals related to battery, such as
current, voltage, SOC, temperature, et al. The GPS module
inside the data collector can record the position, speed and
acceleration of the vehicle while collecting the power battery
data. The data collector starts to record data after the vehicle
is started and stops working after the vehicle is switched
off. The collected data are stored in the memory card in the
message format defined by the vehicle manufacturer in the
unit of a trip or a charge event. The specification of the data
collector is listed in Table 2 and the installation of the data
collector on the investigated vehicles is shown in Fig.1.

The memory card of the data collector is taken out every
month to copy the original data. According to the vehicle
manufacturer’s settings, the original data of BAIC EU260 is
in ∗.inr format. They need to be decoded and converted to
∗.xls files according to the communication protocol provided
by the manufacturer. In order to facilitate the subsequent
usage of MATLAB for data analysis, all files are converted
to ∗.mat format finally.

At the same time, when the investigated vehicle is brought
back for data copy, it is also subjected to capacity calibration
test. The test procedure is as follows: first, the vehicle is
put on the dynamometer for discharging. When the vehicle’s
SOC is higher than 10%, the vehicle is forced to discharge at
speed of 100km/h. When the SOC decreases below 10%, the

TABLE 2. Specification of the data collector.

FIGURE 1. Installation of the data collector on the investigated vehicles.

vehicle’s speed is adjusted to 10km/h. The reason to use high
speedwhen SOC is high is to shorten the discharge timewhile
using low speed when SOC is low is to ensure the battery
is discharged with small current near the end of discharge
so that the battery can be close to fully discharged when
SOC decreases to zero. The discharge process stops when the
dashboard of the vehicle demonstrates the SOC is zero. Then
the vehicle is connected to the charging pile and a device,
which can record the current exchanged, is installed between
the vehicle and charging pile. The device can do ampere-hour
counting calculation, so when the vehicle is fully charged, the
demonstrated value on the device is the calibrated capacity of
the vehicle’s battery pack. It needs to be mentioned that the
whole test procedure is conducted in the climatic chamber
with fixed temperature 25◦C. The fixed temperature is meant
to avoid the influence of temperature on capacity calibration
and make the calibrated SOH comparable. Before the test,
the vehicle will be placed in the climatic chamber for at
least 12 hours to make the vehicle close to the temperature
equilibrium state.

The holistic data collection procedure is shown in Fig.2.
The above data collection process is continued from
June 2017 to June 2019. Finally, dataset combing vehicle
operational data and calibrated capacity at specific time with
timespan of 2 years is obtained.
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FIGURE 2. Holistic data collection procedure.

Fig.3 shows the battery degradation trajectory for three
vehicles. It can be seen that at the beginning of the exper-
iment, vehicle #4 is relatively new while vehicle #7 and
#13 have experienced aging to some extent because SOH (see
Section 4 for its definition) for vehicle #4 is close to 1 while
for vehicle #7 and #13, SOH is around 98%. In addition,
the aging process for vehicle #4 is relatively even, while
vehicle #7 encounters faster battery degradation in later stage.
For vehicle #13, its degradation is fast at early and final
experiment stage, while slow in the middle stage. Different
battery aging trajectory may be related with the different
driving pattern and usage of EVs. Such observations ensure
that the dataset is relatively abundant to cover different usage
styles of power battery so the developed model will have
much more powerful generalization capacity.

FIGURE 3. Battery degradation for three investigated vehicles.

C. DATA CLEANING
The data cleaning process is mainly for the operational data.
For the calibrated capacity, it is obtained from standard exper-
iment thus having no necessity for data processing.

Data distortion and data missing are inevitable in reality
due to unreliable wire connection and unexpected condi-
tions. Therefore, a systematic and effective data preprocess-
ing method, which can distinguish the erroneous data and fill

the missing data and is necessary. For erroneous data iden-
tification, data items beyond the technically feasible range
are firstly removed. For example, in some cases, the recorded
speed may increase to over 150km/h abruptly while the adja-
cent speed is mainly below 80km/h, which is impossible for
real-world scenarios. In addition, if the acceleration is greater
than 4.5m/s2, we will also consider such records are unreli-
able like in Ref. [29]. Fig.4(a) gives an example of speed and
acceleration distortion record. Some other erroneous data like
Nan or discontinuity are also removed for subsequent data
filling. Fig.4(b) provides such an example in demonstration
of discontinuity.

FIGURE 4. Example of erroneous data.

In this research, the measured data items that are nec-
essary for the following battery SOH estimation include
vehicle acceleration a, vehicle velocity v, battery current I ,
battery voltage V , battery SOC, and temperature T . There-
fore, we focus on the filling of such indispensable data items.
Generally, the above measurement data can be classified
into two categories, namely vehicle-related data including
velocity and acceleration, and battery-related data including
current, voltage, SOC and temperature.

For the vehicle-related data, if only velocity is missing, its
value can be filled according to acceleration data and it is
vice versa for the scenario when only acceleration is missing.
When both velocity and acceleration data are missing, a one-
stage Markov-chain velocity predictor is constructed to pre-
dict the missing value because velocity is generally regarded
to satisfy the Markov property [30]. The proposed one-stage
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Markov-chain velocity predictor describes the probability
of appearance of specific acceleration at the next time step
when given the velocity at current time step. Fig.5 gives
an example of the velocity predictor based on one-stage
Markov chain. For example, when the current velocity is
15m/s, the next acceleration with probability 49% equals to
0m/s2, as labelled with red star in the figure. It can also be
distinguished from Fig.5 that next acceleration has higher
probability around value 0m/s, which means the vehicle has
more time in constant-velocity driving state. In this paper,
we assume that the weekdays share the similar velocity transi-
tion style while the driving style on weekends basically is the
same. Therefore, when filling the lost velocity on weekdays,
velocity predictor calculated by velocity data of Monday to
Friday on the last week is used. It is also similar for the
missing velocity on weekends. Once the velocity predictor
is obtained, it can be used to generate the missing velocity
on the next step according to current existing velocity value
based on Monte Carlo method [31] and this process can be
continued until all continuous missing data are filled.

FIGURE 5. Velocity predictor based on one-stage Markov chain.

It also needs to be mentioned that in order to construct the
Markov Chain based velocity predictor, velocity and accel-
eration need to be discretized. Nearest neighborhood method
is used to attribute the velocity to one specific value when
using the velocity predictor. For example, in Fig.5, velocity
range (0,30m/s) is divided into 60 intervals and acceleration
range (−0.5m/s2, 0.5m/s2) is divided into 50 intervals, which
means when using the Markov Chain, only discrete velocity
values like 0, 0.5m/s, 1m/s, . . . , 29.5m/s, 30m/s and discrete
acceleration values like −0.5m/s2, −0.48m/s2, . . . 0.48m/s2,
0.5m/s2 have corresponding probability. If the real velocity
is 0.7m/s, then it will be regarded as 0.5m/s when looking up
the probability matrix because its value is closer to 0.5m/s
than 1m/s.

For the battery-related data, if temperature or SOC is miss-
ing, they can be filled through linear interpolation because
these two variables change very slowly. Because battery
current and voltage come from different kind of sensors,
in our database, the situation where both current and voltage
data are missing does not exist. Therefore, when coping
with the battery-related data missing, it finally boils down
to two scenarios. One scenario is current data needs to be
filled with voltage, temperature and SOC are known and

the other scenario is voltage data needs to be filled with
current, temperature and SOC are known. In order to fill the
current or voltage missing data with other three variables
observed, two regression models are developed based on
RBF-NN with current and voltage as outputs respectively,
as shown in Fig.6. Compared with traditional neural network,
RBF-NN can provide more flexibility and reduce the depen-
dence on the quality of datasets [32].

FIGURE 6. RBF-NN structure for battery voltage/current prediction.

RBF-NN is composed of input layer, hidden layer and
output layer. When the input signal of RBF artificial neural
network is xp =

[
xp1 , x

p
2 , . . . , x
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]
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, its activation function of

Gaussian radial basis function R can be expressed as:
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= exp(−
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∣∣xp − cj∣∣2) (1)

where p is the index of the sample, i and k are the index
number of input and output node respectively,m and n are the
number of input and output nodes respectively, c is the center
of Gaussian radial basis function, j is the index of hidden layer
nodes, σ is the variance of Gaussian radial basis function.
Then the prediction output y of RBF-NN can be

expressed as:

ypk =
Q∑
j=1

wjkexp(−
1

2σ 2
j

∣∣xp − cj∣∣2) (2)
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FIGURE 7. Holistic data filling procedure.

whereQ is the number of hidden layer nodes,wjk is theweight
between the hidden layer and output layer.

The prediction error for the kth output node of the pth
sample then can be expressed as:

MSE =
1
Pn

P∑
p=1

n∑
k=1

ep
2

k =
1
Pn

P∑
p=1

n∑
k=1

(ykp − ŷkp)
2

(3)

where P is the number of training samples, e represents the
absolute error between prediction output ŷ and real output y.
RBF-NN uses gradient descent method to update the radial

basis function center cj and the weights between the hidden
layer and output layer wjk to make the predicted output
approach the expected output. The update process can be
expressed as:

cj (t + 1) = cj (t)− η1
∂MSE(t)
∂cj (t)

(4)

wjk (t + 1) = wjk (t)− η2
∂MSE(t)
∂wjk (t)

(5)

where η1 ∈ [0, 1] and η2 ∈ [0, 1] represent the learning rate
for cj and wjk respectively. t is the iteration index.
In summary, the holistic data cleaning procedure is shown

in Fig.7. Firstly, the collected data are subjected to pre-
checking process to remove distorted and infeasible data.
Then for the vehicle-related data, one-stage Markov Chain
predictor will be used to fill the missing data if both velocity
and acceleration are missing. Difference or integration cal-
culation will be executed if only acceleration or velocity is
missing. For the battery-related data, the complete part will
be used to train the RBF-NN model with current/voltage as
output first, then together with filled SOC and temperature by

linear interpolation, the missing current or voltage in incom-
plete dataset will be filled using trained RBF-NN model.
Finally, combing the filled vehicle-related and battery-related
data, the complete measurement dataset can be constructed
for subsequent SOH model training and validation.

III. BASIC KNOWLEDGE OF BAYESIAN NETWORK
Bayesian network, also known as belief network, is an exten-
sion of Bayes method and is one of the most effective theoret-
ical models in the field of uncertain knowledge representation
and reasoning. Since it was proposed by pearl in 1988 [33],
it has become a hot topic in recent years. Bayesian network
uses graphical network structure to express the joint probabil-
ity distribution and conditional independence of the variables
intuitively, which can greatly lighten the computational bur-
den of probabilistic reasoning.

A. CONSTRUCTION OF BAYESIAN NETWORK
BN is a directed acyclic graph (DAG), which is composed of
nodes representing variables and directed edges connecting
these nodes. The directed edges are represented by the arrow
directing from the parent node to the child node. Fig.8 demon-
strates an example of BN. Usually denotation B<G,P> is
used to represent BN, where B is short for Bayesian,G stands
for graph and P is short for probability. Therefore, it can be
seen that a BN is comprised of two parts:

(1) A directed acyclic graph G with n nodes. The nodes in
the graph represent random variables, and the edges directing
from the parent node to child or descent node represent their
dependent relationship. For example, in Fig.8, there is an edge
directing from v1 to v3, so node v3 is v1’s child or descent
node, while v1 is v3’s parent node. Node variables can be
abstractions of any problem, such as fault hypothesis, test
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value, observation phenomenon, opinion consultation, etc.
It is generally believed that directed edges express a causal
relationship, so BNs are sometimes called causal networks.
It is very important that the directed graph implies the con-
ditional independence hypothesis, namely every variable is
independent of any subset of its non-descendants conditioned
on its parents. For any variable vi, let p(vi) represent the parent
nodes of vi, A(vi) denote the non-descendants of vi, then BN
implies the following conditional independence hypothesis:

P (vi |A (vi) , p (vi)) = P (vi | p (vi)) (6)

(2) A conditional probability distribution (CPD) P associ-
ated with each node. CPD for each node can be described
by P(vi|p(vi)), which expresses the conditional probability
relationship between the node and its parent nodes, as shown
in Fig.8 for nodes v2 to v6. The conditional probability of a
node without any parent node is called prior probability, like
node v1 in Fig.8.

FIGURE 8. Example of Bayesian network.

With nodes and their relationships (directed edges) and
CPD, BN can express the joint probability distribution of all
nodes (variables) in the network:

P(v1, v2, . . . , vn) =
n∏
i=1

P (vi | p (vi)) (7)

Take Fig.8 as the example, the joint distribution can be
expressed as:

P (v1, v2, v3, v4, v5, v6)

= P (v1)P (v2 | v1)P (v3 | v1)P (v4 | v2)

×P(v5|v2, v3)P(v6|v5) (8)

It needs to be mentioned that the detailed BN structure
changes with specific investigated problem. The detailed BN
development process for battery SOH estimation will be
introduced in Section IV.

B. APPROXIMATION REASONING ALGORITHM
BN reasoning is a process to calculate the probability by using
the conditional independence of its expression. At present,
the main accurate reasoning algorithms include polytree
propagation, clique tree propagation, graph reduction and
combinatorial optimization [34].

Although BN is considered as one of the best uncertain
reasoning methods because of its effectiveness and solid
probability theory foundation, the research focus of BN rea-
soning turns to approximate reasoning algorithm because
for complicated structure, accurate reasoning of BN is an
NP hard problem. Markov Chain Monte Carlo (MCMC) is
one of the most commonly used approximation reasoning
methods for BN [35], which uses a random number generator
to generate a set of samples according to the CPDof BN. Then
the approximate value of the probability to be calculated is
obtained by processing the samples instead of directly using
the joint probability distribution. Because for the developed
BN in this paper, there are 20 nodes, which makes accurate
reasoning extremely time-consuming. Therefore, MCMC is
adopted to calculate the posterior distribution for the esti-
mated capacity value.

The basic idea of MCMC is to construct a Markov chain
so that its stable distribution is a posterior distribution of the
parameters to be estimated. Samples of posterior distribution
are generated through the Markov Chain, and Monte Carlo
integration is performed based on the effective samples when
theMarkov chain reaches the stable distribution. Let φ denote
the sampling space, n is the total number of samples generated
and M is the number of samples when the chain reaches
a stable state, the flowchart of MCMC algorithm is shown
in Table 3.

TABLE 3. Flowchart of MCMC algorithm.

Metropolis-Hasting algorithm [36] is one of the most com-
monly used and effective MCMC methods. It was initially
proposed by Metropolis etc. in 1953 and then refined by
Hasting. Let q(x; x(i−1)) denote the transition function and
x(0) denote the initial value. Then the ith iteration with the
variable value before ith iteration x(i−1) is listed in Table 4.

IV. BAYESIAN NETWORK CONSTRUCTION AND
VARIABLE PROBABILITY DENSITY FUNCTION TYPE
DETERMINATION
In this section, firstly we constructed the BN for battery
degradation analysis. The BN structure is determined based
on physical equations from existing research findings about
battery aging mechanisms and vehicle system dynamics.
After establishing the BN structure, proper distribution type
for each variable is selected based on the analysis of their
unique characteristics.
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TABLE 4. Flowchart of Metropolis-Hasting algorithm.

A. BAYESIAN NETWORK CONSTRUCTION
In this paper, we use battery capacity as the index for degra-
dation evaluation. Thus, SOH variable QN , which is defined
as the ratio of battery current capacity Q to its initial capacity
Q0, is used here to represent battery aging status:

QN =
Q
Q0

(9)

According to Ref. [26], battery capacity fade can be
expressed by:

QN = 1− [(αSOCi + β) e
ηI−Ea
RT Ahζ + ε] (10)

where α and β are parameters describing battery aging rela-
tionship to SOC. Ea is activation energy. η is C-rate param-
eter. I is the battery current. T represents the temperature. R
is Molar gas constant and is selected as 8.314J/(mol · K). Ah
represents the total Ampere-hour throughput. ζ is the power
factor, which describes battery aging dependency to Ah. ε
represents residual error of capacity estimation. According
to above description, following BN in Table. 5 Step 1 can be
constructed.

In addition, Ah is related to battery current I as:

Ah =
∫
Idt (11)

Besides, battery current I can be calculated by:

I =
Pb
V

(12)

where Pb represents battery power and V is battery voltage.
Thus, we can add another three directed edges to the BN in
Table.5 Step 1, as labelled in red in Table.5 Step 2.

Battery power can be expressed as the sum of auxiliary
power Paux and driving power Pw when driving and the sum
of auxiliary power Paux and charging power Pg when charg-
ing. Here, a trigger parameter kt is introduced to determine
which one, the driving power Pw or the charging power Pg,
is chosen. The BN corresponding to above description is
shown in Table.5 Step 3.

TABLE 5. Bayesian network construction procedure.

At last, we expand driving power Pw. According to the
vehicle system dynamic theory:

Pw = mgf +
CDAv2

21.15
+ mgθ + δma (13)

where m is vehicle mass. g is the gravitational constant,
namely 9.8m/s2. f is the rolling resistance coefficient. CD is
aerodynamic drag coefficient. A is the frontal area. θ is
the road incline. δ is the rotational mass conversion fac-
tor. To simplify representation, we use Pvr to represent the
parameters including m, g, f ,CD,A, θ, δ in Eq.(13). Based
on above analysis, finally the complete BN in Table.5 Step 4
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can be derived to fully describe the intrinsic relationship
among different factors in the process of battery degradation.

B. PARAMETER DISTRIBUTION
After determining the structure of BN, it is necessary to set
proper distribution type for all node variables.

For variables QN and SOC, their values are between
0 and 1. Therefore, Beta probability distribution function
(PDF), which is a continuous distribution defined between
0 and 1, is suitable for these two variables.

For variables Ah, V and v, they are definitely positive.
Therefore, Gamma PDF, which only has probability distri-
bution on positive range, is proper for these variables.

For parameter I , it is mostly concentrated on positive small
values while having slight chance distributing over large
numbers. Therefore, Rayleigh PDF is selected for it.

For parameter kt , it is a selector and only has probability
distribution over two points, namely 1 for driving while 0 for
charging. Thus, the discrete Bernoulli distribution is chosen
for it.

For parameter Pvr , it includes vehicle-related parameters
and environment-related parameters. Vehicle-related param-
eters can be deemed as constant because they only depend on
the vehicle’s physical property. For the environment-related
parameters, like road incline θ and rolling resistance coef-
ficient f , because it is difficult to get accurate distribution
of these parameters, for simplicity, we take them as constant
values in this paper. For parameters α, β, ε, ζ , η and Ea, they
only depend on the chemical property of thee battery thus can
be considered as constant values.

For variables T , Pg, Pb, Pw, a, their distributions have no
distinct features, therefore Normal PDF is selected for these
variables.

Following Table 6 concludes the distribution type for all
variables and parameters.

V. MODEL TRAINING AND VALIDATION
Fig.9 demonstrates the framework of the proposed Bayesian
network based capacity estimation method. Firstly, the real-
world operational data of electric vehicles are collected and
preprocessed to remove infeasible values. The systematic
data filling procedure in Section 2 is used to predict the
missing data and the complete dataset for later training and
validation is obtained. Then the Bayesian network is con-
structed based on existing knowledge about battery degrada-
tion and vehicle system dynamics, generally the BN nodes
comprise of four kinds of variables, namely measurable data,
aging/driver-behavior/mechanical parameters and other vari-
ables. Proper distribution type is selected for all variables
and parameters. Afterwards, the BN model is training with
complete training data and the parameterized BN is obtained.
Finally, MCMC method is applied to generate posterior dis-
tribution samples for capacity estimation. The used valida-
tion data is processed with sparsification for application of
Metropolis-Hasting algorithm. After the number of samples
satisfies the mix state criterion, the samples of capacity are

TABLE 6. Selected distribution type for all variables and parameters.

collected to fit the Beta distribution and the mode value is
regarded as the estimation result.

The first step for the proposed framework is data cleaning,
which mainly incorporates the filling of vehicle-related data
and battery-related data. The most important part for filling
of vehicle-related data is one-stage Markov chain velocity
predictor. In order to verify its effectiveness, a velocity pre-
diction test is conducted for a specific trip, as shown in
Fig.10, where the prediction horizon is 5 steps ahead. It can be
seen from Fig.10(a) that the predicted velocity is very close
to the real value because the red line, which represents the
estimated result, is basically overlapped with the blue line,
which denotes the real velocity. Fig.10(b) gives a closer view
of the velocity prediction result during 620s∼740s. The root
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FIGURE 9. Framework of the proposed Bayesian network based capacity
estimation method.

FIGURE 10. Speed prediction using one-stage Markov Chain.

mean square error of the prediction result over the whole trip
is 2.2km/h, which means the velocity prediction performance
is desirable.

In order to verify the effectiveness of the proposed
RBF-NN based battery current and voltage filling method,
Fig.11 shows the current and voltage estimation results for
the same trip in Fig.10. It can be seen from Fig.11 that the
estimated value is very close to the real value. The root mean
square error of the current and voltage estimation results are
2.3A and 3.7V respectively, which means the RBF-NN can
capture the intrinsic nonlinear relationship involved in the
battery’s complicated physicochemical relationship.

The complete data after data cleaning are used to train and
test the developed model. In the training stage, the model gets
the temperature, velocity, acceleration, current, voltage and
calibrated SOH as inputs and calculates the posterior distri-
butions for the intermediate variables like Ah, SOC, required
power and model parameters α, β, ε, ζ , η and Ea. During
this stage, maximum likelihood estimation method [37] is
used to find the optimal model parameters that maximize
the occurrence of all the train data collections. Then, in the

FIGURE 11. Current/voltage estimation using RBF-NN.

validation stage, it uses the parameters and inputs to estimate
the capacity fade without measured SOH data by MCMC
method.

However, when implementing the MCMC method to get
the posterior distribution for estimated variables, it is neces-
sary to dedicate initial values for subsequent iterations. For
constant variables related to battery aging involving α, β, ε,
ζ , η and Ea, they are determined based on engineering expe-
rience and existing research results [38]. Their initial values
need to ensure that the capacity fade estimation on the sample
is within feasible range. For variables SOC, Pb, Pw and Paux ,
they are decided according to the usage pattern of EVs. It is
more suitable to initialize these variables with values of high
appearance probability. Parameter Pvr is chosen according to
the vehicle’s basic property parameters and parameter kt is
set as 1 because in most cases the vehicle is in driving state.

Because the data collector recorded the operational data
of EV with 10Hz, adjacent data has strongly correlation with
each other, thus the multiplication of probabilities will lead to
a significantly small quantity, which makes it difficult for the
Metropolis-Hasting algorithm to accept new generating sam-
ples. To address this problem, we sparse the input observation
data by taking average value of adjacent data to represent the
whole dataset. Here, it is necessary to dedicate the length
of average operation window. Because autocorrelation of
sequence data can be calculated according to:

A (lag) =
E[(ys − µ)(ys+lag − µ)]

σ 2 (14)

where E is the mathematical expectation operator, s is the
sampling index, y refers to any observed data, µ and σ
represent average value and standard deviation of the data
respectively. It is generally acknowledged that when autocor-
relation is smaller than 0.2, the data points can be regarded
as uncorrelated. In the developed BN, the observation data
mainly refer to the vehicle’s speed, acceleration andmeasured
ambient temperature. Fig.12 shows the autocorrelation for
the acceleration samples with different lags. It can be seen
that when the data interval lag is equal to or greater than
70, the data autocorrelation can be smaller than 0.2. This
observation also applies to the velocity and temperature data.
Thus, in this paper, we take the average of every 70 data
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FIGURE 12. Autocorrelation for acceleration data with different lags.

FIGURE 13. Illustration of mix state of generated samples.

FIGURE 14. Determining starting point of mix state.

points to sparse the original dataset for Metropolis-Hasting
algorithm implementation.

Another important thing when applying MCMC is to
decide whether enough samples have been generated that
the samples have subjected to the stationery distribution of
Markov Chain, which is also called that the generated sam-
ples has come into ‘‘mix’’ state. Fig.13 illustrates the mix
state of generated samples. Because initial state may deviate
from the true value severely, if only few samples have been
generated and they are used to estimate the variables, the esti-
mation result may be inaccurate. Therefore, it is necessary to
determine from which sample you begin to take as from the
stationary distribution.

Fig.14 shows the mean estimation for the variable state-
of-health QN at different aging states with two different sets
of initial parameters. It can be seen that when starting point
equals to 100 or 1000, estimations with different initial values
are quite distinct (they deviate from the diagonal line), which
means that mix state has not been reached because if the
samples have entered mix state, all samples are from the same
stationary distribution, so the estimation should be the same.

however, when the starting point equals to 5000 or 10000,
estimations with parameters initialized differently give out
similar result, which means that the generated samples have
mixed. Therefore, in the following analysis, we take 5000 as
the starting point index. It also needs to be mentioned that
the estimation window length used here (denoted in pink in
Fig.13) is set as 1000. Its length is also determined through
similar method as for the starting point for mix state.

In order to verify the effectiveness of the proposed method,
first we use the data to train the model and then use MCMC
method to generate 1000 samples to estimate the SOH of the
vehicle’s battery to be investigated. In needs to be mentioned
here that the data used for model training incorporate the
data of all electric taxies except the investigated vehicle,
which means to verify the method’s generalization ability.
Fig.15 gives an example of Beta distribution fitting for the
generated samples of one specific vehicle at a specific aging
state. It can be seen that the values distributed below 80% is
rather rare because none training data contains SOH below
80%. Thus the estimation given by the BN only contains
scarce points with SOH less than 80%, which may be caused
by the generalization function of BN when traversing the
Markov Chain. Because Beta distribution is a set of contin-
uous probability distribution defined in (0, 1) interval. The
PDF of Beta distribution is:

f (x;α, β) =
xα−1(1− x)β−1∫ 1

0 u
α−1(1− u)β−1du

(15)

Mode value M and standard deviation σ for the Beta distri-
bution are:

M =
α − 1

α + β − 2
(16)

σ =

√
αβ

(α + β)2 (α + β + 1)
(17)

According to the fitting result, the characteristic parame-
ters for Beta distribution here are α = 7.36, β = 1.45, then
the mode value and standard deviation of Beta distribution
can be calculated and they are 93.4% and 11.8%. In this case,
the true SOH of the battery is 93.9%, which is very close to
the estimated result.

Fig.16 demonstrates the SOH estimation result during the
2-year experimental period for the same specific vehicle
in Fig.15. In the figure, the red star represents the SOH
value given by the capacity calibration experiment, while
the bule line denotes the estimated result. The bule circle
correspond to the mode value of the fitted Beta distribution,
while the upper and lower cut-off lines deviate from the mode
value with distance of 1/10 variance. It can be seen from the
figure that all experimental calibration values are distributed
within the estimation range (M− 1

10σ,M+
1
10σ ). This obser-

vation indicates that the model’s training and parameters’
using are successful during the whole battery degradation
period.

It is also interesting to note that as the battery degrades, the
estimated variance is increasing simultaneously. The reason
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FIGURE 15. Example of Beta distribution fitting for the generated
samples.

FIGURE 16. Estimated distribution of SOH compared with experimental
results.

FIGURE 17. Estimation evaluation on different vehicles.

is that as the battery ages, the inconsistence of the battery will
gradually become distinct, which means the SOH dispersion
will enlarge. This property is also hidden in the collected data
for training and in the training process, the model captures
this intrinsic characteristic successfully and demonstrates it
in the prediction process.

Fig.17 shows the performance of the proposed BN based
capacity estimation model on different vehicles. The coeffi-
cient of determination R2 and mean absolute error (MAE) are
used to evaluate the prediction accuracy and their definitions
are as follows:

R2 = 1−

∑
i (yi − fi)

2∑
i (yi − ȳ)

2 (18)

MAE =
1
n

∑
i

|yi − fi| (19)

where yi represents the real value, here it refers to the SOH
calibrated by experiment. fi is the estimation value and refers
to the estimated SOH given by BN, namely the mode value of
the fitted Beta distribution. ȳ is the mean value of all yi. n is
the number of points. In this paper, the experimental period
for each vehicle is 2 years and the SOH is calibrated every
month, therefore n is 24 here.

Theoretically, R2 is distributed between 0 and 1. A higher
R2 generally corresponds to a more accurate prediction
model. It can be seen from Fig.17 that for all vehicles, R2 is
larger than 0.95 andMAE is lower than 4%, which verifies the
accuracy of the proposed method. In addition, when estimat-
ing the battery SOH, the investigated vehicle’s operational
data is unseen for the model as the data is excluded during
model training process. Therefore, the accurate estimations
shown in Fig.17 also verify the generalization of the proposed
method.

VI. CONCLUSION
In this paper, a BN based SOH estimation framework is
proposed to depict the inherent stochastic property in battery
degradation process and validated by real-world operation
datasets of electric taxies. For the model part, existing find-
ings about battery aging mechanism are used to construct
the BN structure and proper distribution type is selected
for all variables and parameters. For the data part, to cope
with the inevitable data missing problem caused by unex-
pected situations like unreliable wire connection, a system-
atic data filling procedure, which applies one-stage Markov
chain to fill vehicle-related data and adopts RBF-NN to fill
battery-related data, is put forward. Then the BN model is
trained with complete data. Data sparsity and mix state deter-
mination are adopted to apply the MCMC method, which
generates samples subjected to posterior distribution for SOH
estimation. Results show that the model can capture the
increasing SOH dispersion trend during battery aging. The
estimated SOH range can fully cover the calibrated SOH at
different aging stages.

Currently, the proposed method can only be used to esti-
mate the battery SOH at current time based on historical
operational data. It does not have the capacity to predict
the future SOH change, thus cannot be used for remaining
useful life (RUL) prediction directly. Another model which
can predict the future working conditions of the battery needs
to be incorporated into the current proposed BN-based SOH
estimation framework if it means to be used for RUL pre-
diction, which is one of the most important directions of our
future work.
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