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ABSTRACT Telemonitoring of Parkinson’s Disease (PD) has attracted considerable research interest
because of its potential to make a lasting, positive impact on the life of patients and their carers. Purpose-built
devices have been developed that record various signals which can be associated with average PD symptom
severity, as quantified on standard clinical metrics such as the Unified Parkinson’s Disease Rating Scale
(UPDRS). Speech signals are particularly promising in this regard, because they can be easily recorded
without the use of expensive, dedicated hardware. Previous studies have demonstrated replication of UPDRS
to within less than 2 points of a clinical raters’ assessment of symptom severity, using high-quality speech
signals collected using dedicated telemonitoring hardware. Here, we investigate the potential of using the
standard voice-over-GSM (2G) or UMTS (3G) cellular mobile telephone networks for PD telemonitoring,
networks that, together, have greater than 5 billion subscribers worldwide. We test the robustness of this
approach using a simulated noisy mobile communication network over which speech signals are transmitted,
and approximately 6000 recordings from 42 PD subjects. We show that UPDRS can be estimated to within
less than 3.5 points difference from the clinical raters’ assessment, which is clinically useful given that the
inter-rater variability for UPDRS can be as high as 4-5 UPDRS points. This provides compelling evidence
that the existing voice telephone network has potential towards facilitating inexpensive, mass-scale PD
symptom telemonitoring applications.

INDEX TERMS Decision support tool, Parkinson’s disease, nonlinear speech signal processing,
telemedicine.

I. INTRODUCTION
Parkinson’s Disease (PD) is a chronic neurodegenerative dis-
order characterized by the progressive deterioration of motor
function as well as the emergence of considerable non-motor
problems [1]. The PD incidence rate is approximately
20/100,000 [2] and the prevalence rate exceeds 100/100,000
[3]; moreover it is believed that an additional 20% of
people with Parkinson’s (PWP) might be undiagnosed [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono .

Early PD stages are mainly characterized by three hallmark
symptoms: bradykinesia (slow and reduced amplitude of
movement), rigidity (resistance to passive movement), and
tremor (while at rest) [5].
Medication and surgical intervention can alleviate some of

the symptoms and improve quality of life for most PWP [6],
although there is currently no known cure. To optimize
treatment, PWP are typically followed up by expert clin-
ical staff at relatively sparse (six to twelve month) inter-
vals. Unfortunately, this contemporary triage of symptom
management likely underestimates the true fluctuation of
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symptom severity. More regular PD symptom assessment
would be of considerable benefit, for example, to optimize
treatment regimes, but this is not possible given the avail-
able resources and the established assessment setting which
requires the physical presence of PWP in the clinic.

In current clinical practice, medical raters physically exam-
ine PWP and map symptom severity on appropriate clinical
scales (metrics). The Unified Parkinson’s Disease Rating
Scale (UPDRS) [7] is the most widely used clinical metric
for quantifying PD impairment [8], and attempts to quantify
the full breadth of possible motor (muscle), non-motor PD
symptoms, and complications of dopamine replacement ther-
apies. The motor symptoms are quantified using the motor-
UPDRS, which is a subset and highly correlated with the total
UPDRS [9]. The motor-UPDRS ranges between 0 and 108,
where 0 denotes healthy state, and 108 severe disabilities, and
the total-UPDRS lies in the range between 0 and 176. In addi-
tion to UPDRS, the Hoehn and Yahr (H&Y) scale is often
used, and it is possible to infer H&Y from UPDRS [10], [11].
Other clinical scales are sometimes used in some medical
centers, but for the purposes of this study we shall confine
our analysis exclusively on UPDRS.

Speech disorders, which are of particular interest in this
study, may be amongst the earliest PD onset indicators [12],
and are reported in the vast majority of PWP [13]. Fur-
thermore, strong empirical evidence has emerged associating
speech performance degradation and PD symptom sever-
ity [12]–[17]. Recent work has highlighted the intrinsic link
between speech and specific motor functionality in PD in
terms of freezing [18], sensory impairment [19], and deter-
mining genetically-determined PD (through Leucine-Rich
Repeat Kinase 2, LRRK2 mutations) [20].

Most PD studies rely on the use of expensive, purpose-built
specialized hardware to record signals which are charac-
teristic of PD symptoms, e.g. [9], [21]–[24]. We have pre-
viously demonstrated the considerable potential of speech
to replicate the clinical scale UPDRS [9], [24]–[26], using
high quality speech signals collected with Intel Corporation’s
At-Home Testing Device (AHTD) [21]. This device collects
high quality speech signals sampled at 24 kHz, following
the established recommendation that a sampling frequency
of at least 20 kHz should be used to extract clinically useful
information [27].

In this study, we investigate whether it is possible to accu-
rately infer UPDRS using speech signals transmitted over
the standard cellular mobile voice telephone network, using
a detailed simulation of the entire digital communication
process. The rationale for using the existing voice mobile
phone network over specialized, purpose-built hardware such
as the AHTD is that (a) the existing voice network reaches
nearly 75% of the global population, (b) economies of scale
and global market competition has brought the price of
access down so that it is affordable to a majority of the
global population, (c) mobile telephony allows freedom of
movement for PWP, eliminating the need to carry additional
equipment when leaving home. Thus, the standard phone

network provides convenient means towards inexpensive and
frequent PD severity assessments, facilitating monitoring and
potentially assisting rehabilitation. Data-mining of speech
signals obtained using the public telephone network to extract
clinically useful information has recently shown promis-
ing results [28]–[30]. Similarly, Saenz-Lechon et al. [31]
investigated the effect of different data transmission rates
in automatic voice pathology detection, and concluded that
compressing signals (down to at most 64 kbps) does not
prevent accurate detection of vocal pathologies.

We demonstrate that mobile phone technology could
be useful in telemonitoring PD symptom severity, further
endorsing previous findings that speech may offer a conve-
nient framework for remote assessment [9], [24], [25].

II. DATA
We use the voice data collected by Goetz et al. [21], described
in detail in Tsanas et al. [9]. In brief, 52 subjects with
idiopathic PD diagnosis up to five years from the time of
the baseline clinical visit were recruited into a clinical trial
to investigate the potential of the AHTD. All subjects gave
written informed consent, and did not receive PD-related
treatment for the six-month duration of the trial. They were
asked to complete a range of tests weekly during a conve-
nient, pre-specified time window (all tests can be completed
in about 20-30 minutes). Sustained vowel /ah:/ phonations,
where the subject is asked to sustain vowel phonation at a
comfortable pitch for as long and as steadily as possible, were
part of the test protocol. Here we focus exclusively on these
sustained phonations. Subjects were diagnosed with PD if
they had at least two of the three hallmark PD symptoms
(bradykinesia, rigidity, tremor), without evidence of other
forms of Parkinsonism. We did not apply any exclusion
criteria related to specific PD symptoms (e.g. depression).
We disregarded data from 10 participants – two that dropped
out of the study early, and from eight additional PWP that did
not complete at least 20 valid study sessions during the trial
period. Therefore, in this studywe analyze data from 42 PWP.

Previously, we demonstrated that partitioning the data by
gender is important in this application [9], [26], and hence
males and females are studied separately here as well. The
28 male subjects were 64.8±8.1 (mean ± standard devia-
tion) years old, with a PD diagnosis 63.0±61.9 weeks since
diagnosis at trial baseline. Their motor-UPDRS scores were:
baseline 20.3±8.5, three months into the trial 21.9±8.7, six
months into the trial 22.0±9.2, and total-UPDRS scoreswere:
baseline 27.5±11.6, three months into the trial 30.4±11.8,
and six months into the trial 31.0±12.4. The 14 female
subjects were 63.6±11.6 years old, with a PD diagnosis
89.7±81.2 weeks since diagnosis at trial baseline. Their
motor-UPDRS was: baseline 17.6±7.4, three months into the
trial 21.2±10.5, six months into the trial 20.1±9.4, and their
total-UPDRS was: baseline 24.2±9.1, three months into the
trial 27.4±12.1, and six months into the trial 26.8±10.8.

Six sustained vowel /ah:/ phonations were recorded each
time the PD subject took the test: four at comfortable level of
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pitch and loudness, and two at twice the comfortable loudness
(elicitedwith the instruction ‘‘twice as loud as the first time’’).
The signals were sampled at 24 kHz at 16 bit resolution.
After initial processing to remove faulty phonations (e.g.
patient coughing, failure to record phonation), we processed
4010 phonations for the male subjects, and 1865 phonations
for the female subjects.

Although the phonations were recorded weekly, the actual
clinical assessments for motor-UPDRS and total-UPDRS
were obtained at trial baseline, three months into the
trial, and at six months into the trial. To obtain weekly
UPDRS estimates to associate with the phonations we
used piecewise linear interpolation going exactly through
the measured baseline, three-month and six-month UPDRS
assessments [9], [24]–[26], [32]. This assertion builds on
strong empirical evidence suggesting that average symptom
progression in early PD stages (up to about five years) is
almost linear in non-medicated patients as observed in clini-
cal metrics [33], [34]. The PWP in the AHTD trial were in
early PD stages (up to five years from disease diagnosis)
and remained non-medicated for the duration of the trial,
aspects which justify the use of piecewise linear interpolation
when filling in missing data. The tacit assumption is that PD
symptom severity did not fluctuate wildly within the intervals
where the clinical scores were obtained. Discretizing the
response variable to transform a regression problem into a
classification problem is well known in the machine learning
literature, and often this step can lead to better prediction
performance. We have found that in this application it is
better to discretize the interpolated UPDRS scores and work
with classifiers instead of regressors [9], [35]; hence both
motor-UPDRS and total-UPDRS were rounded to the closest
integer value, giving rise to a multi-class classification set-
ting. For another recent application from a different domain
where this problem transformation was beneficial see [36].

For further details about the dataset and the AHTD data
acquisition hardware, please refer to Tsanas et al. [9].

III. METHODS
We re-iterate that the aim of the study is to investigate UPDRS
estimation using speech signals transmitted over the standard
cellular mobile voice telephone network. Given that the data
available in the study has been collected using the high quality
AHTD equipment we have used a digital communications
simulation framework to study the distorted signals received
through a hostile data transmission channel. The following
section describes in detail the process used to simulate the
data transmission and reception process of the raw speech
signals so that they resemble realistic distorted signals we
may expect to have in a practical cellular mobile telephony
network.

A. SIMULATION OF THE CELLULAR MOBILE TELEPHONY
NETWORK
Creating a realistic simulation of the cellular voice tele-
phony network requires the following steps: (a) encoding

FIGURE 1. Schematic diagram of the digital communication process. ISI
stands for Intersymbol Interference.

the AHTD speech signals into bit-streams for transmission,
(b) simulating the transmitter, radio channel, and receiver, and
(c) decoding the transmitted bit-streams back into intelligible
speech recordings. This application requires only one way
(simplex) communication; PWP call into an automated voice
messaging service and leave sustained vowel phonations.
Predictions of symptom severity are extracted from these
voicemessages and clinical personnel suggest the appropriate
course of action offline as a result of the estimated UPDRS.
Moreover, the sustained vowel phonations need only be a
few seconds long, that is, considerably shorter in duration
than most telephone conversations.

Fig. 1 presents the schematic diagram of the communica-
tion system used in this study. The main components of a
digital communication system are the transmitter, the chan-
nel (physical medium connecting the transmitter and the
receiver), and the receiver. The transmitter aims to assist
the receiver to correctly recover the speech signal which
may be distorted by the channel. We follow closely the
studies of Tsanas [37], Ampeliotis and Berberidis [38], and
Tuchler et al. [39] for the practical implementation.
We summarize the data communications process in the Sup-
plementary Material under section 1.1 ‘Overview of the data
communication process’, and refer readers to specialized
monographs for further background [40], [41].

B. METHODOLOGY TO ANALYZE THE SPEECH SIGNALS
RECOVERED AT THE RECEIVER
We followed three steps to process the recovered phona-
tions and extract clinically useful information: (a) feature
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extraction, where we applied speech signal processing algo-
rithms to characterize the phonations and extract charac-
teristic patterns (features), (b) feature selection, where a
parsimonious (small, information-rich) subset of the origi-
nally computed features is selected in order to provide maxi-
mally useful information for predicting UPDRS, and (c) fea-
turemapping, where a standard supervised learning algorithm
was used to determine a functional form associating the
selected feature subset with the clinical outcome (UPDRS).
The rationale behind this methodology is that characteristic
acoustic patterns in PWP’s voice are indicative of UPDRS.
Although confounding factors may affect vocal performance
(such as the subject’s emotional state, some pathological
condition not related to PD, organic vocal pathology inde-
pendent of PD, or pathologies due to tobacco abuse), it is
unlikely these contaminatemore than a handful of the approx-
imately 6000 recordings used here.We assumed that potential
confounding factors do not dominate PWP’s voices to the
extent that the extracted dysphonia measures do not provide
clinically useful information for estimating UPDRS.

Before characterizing the phonations by extracting
dysphonia measures, we removed the vowel onset and offset
choosing the three seconds in the middle of the phonation to
simplify computational processing. The resulting three sec-
ond signal was subsequently normalized to facilitate compar-
isons across recordings.

1) FEATURE EXTRACTION
We applied the dysphonia measures rigorously defined
in Tsanas et al. [9] to the speech signals recovered at
the receiver. We refer to that paper for detailed descrip-
tion of the concepts and rationale behind each algorithm.
The MATLAB source code to compute these features is
available on the first author’s website (https://www.darth-
group.com/software). Here, we briefly describe the most
important families of dysphonia measures used in this and
other studies.

Some of the most widely used dysphonia measures are
jitter and shimmer [27], [42]. They seek to capture the phys-
iological observation that the vocal fold vibration pattern is
nearly periodic in healthy voices, whilst it is disturbed in
pathological voices [42]. Jitter characterizes deviations in
fundamental frequency (F0), whereas shimmer characterizes
deviations in amplitude. There is no unique definition of
those dysphonia measures, and we investigated many jit-
ter and shimmer variants [15] which are algorithmic vari-
ations of the same underlying concept. Quantifying vocal
fold departure from near periodicity has inspired the develop-
ment of the Recurrence Period Density Entropy (RPDE) [43],
the Pitch Period Entropy (PPE) [44], the Glottal Quotient
(GQ) [9], and F0-related measures [9]. GQ can be seen as an
improved jitter-like family of measures, but working directly
with vocal fold cycles instead of pre-specified segments (e.g.
10 ms) of the speech signal. RPDE expresses the uncertainty
in vocal fold cycle duration. PPE quantifies the impaired
control of F0 in sustained phonations, taking into account

normal vibrato. The F0-related measures include statistical
summaries of F0 distributions, and F0 differences compared
to average age- and gender-matched healthy controls in the
population.

The second group of dysphonia measures characterize Sig-
nal to Noise Ratio (SNR)-like quantities. The physiologi-
cal motivation for this group is that incomplete vocal fold
closure leads to the creation of aerodynamic vortices which
result in increased acoustic noise. Harmonic to Noise Ratio
(HNR) [42], Detrended Fluctuation Analysis (DFA) [43],
Glottal to Noise Excitation (GNE) [45], Vocal Fold Excita-
tion Ratio (VFER) [9], and Empirical Mode Decomposition
Excitation Ratio (EMD-ER) [9] are typical examples. GNE
and VFER analyze the frequency ranges of the signal in
bands of 500 Hz. Empirically, we found that frequencies
below 2.5 kHz can be treated as ‘signal’, and everything
above 2.5 kHz can be treated as ‘noise’ [9], [35] to define
SNRmeasures using energy, nonlinear energy (Teager-Kaiser
energy operator) and entropy concepts. EMD-ER is similarly
motivated: the Hilbert-Huang transform [46] decomposes the
original signal into its constituent components in decreasing
order of contributing frequency. Then, the top (high fre-
quency) components are taken to constitute noise, and the
lower frequency components to constitute signal, to obtain
SNR-like measures.

Lastly,Mel Frequency Cepstral Coefficients (MFCC) have
been traditionally used in speaker recognition applications,
but also appear promising in biomedical speech signal pro-
cessing contexts [9], [35], [47], [48]. Although the partic-
ipants in this study were asked to sustain a vowel (hence
theoretically the vocal folds have a steady oscillating pattern
and the vocal tract remains completely steady), it is reason-
able to argue that the articulators will exhibit some perturba-
tion (similarly to the fact that the vocal folds will not vibrate
with perfect periodicity, even for healthy controls when sus-
taining a vowel [27]). The MFCCs collectively characterize
the short-term power spectrum of a speech signal on the
nonlinear (Mel) scale, which approximates the human audi-
tory system’s response more closely than the linearly-spaced
frequency bands. Thus, they inherently quantify the filtering
effects of the vocal tract (if we consider the conceptually
appealing source-filter voice production mechanism [27]).
Therefore,MFCCs can be considered to detect subtle changes
in the position and motion of the articulators (tongue, lips)
which are known to be affected in PD [13].

Overall, we applied 132 dysphonia measures to the speech
database, each dysphonia measure producing a single real
value per voice sample, resulting in a design matrix of size
4010 × 132 for male PWP and a matrix of size 1865 × 132
for female PWP.

2) FEATURE SELECTION
The use of a large number of features (132 in this study)
makes it extremely difficult to discern meaningful patterns
in the data, and may often be detrimental in the process
of mapping the features onto the clinical outcome UPDRS.
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This problem is known as the curse of dimensionality, and
arises because adequate population of the feature space
requires that the number of voice samples increases expo-
nentially with the number of features [49]. Contemporary
algorithms that can map features onto outcomes may be very
robust to the inclusion of potentially noisy or irrelevant fea-
tures, and their predictive power may or may not be severely
affected; however, a smaller feature set always facilitates
insight into the problem by allowing interpretation of themost
predictive features [50], [51]. An exhaustive search through
all possible feature subset combinations is computationally
impractical; feature selection (FS) algorithms are a principled
approach to selecting a smaller (lower dimensional) feature
subset. We refer to Guyon et al. [51] for a detailed overview
of FS.

Here, we compared four FS algorithms: (1) Least Abso-
lute Shrinkage and Selection Operator (LASSO) [52], (2)
Minimum Redundancy Maximum Relevance (mRMR) [53],
(3) RELIEF [54], and (4) feature importance in Random
Forests (RF) [55]. We applied the FS voting strategy that
was previously described in Tsanas et al. [35], [48], [56]
to identify the final feature subset S for each FS algorithm,
which was used in the subsequent statistical mapping phase.
We refer readers to section 1.2 ‘Background on feature selec-
tion’ of the Supplementary Material for further background
on FS and the FS voting strategy.

3) FEATURE MAPPING
In the preceding steps we have computed 132 characteristic
patterns from the sustained vowel phonations, and subse-
quently applied FS techniques to obtain subsets of those
features. Here, we aim to determine the functional rela-
tionship f (X) = y, which maps the dysphonia measures
X = (x1 . . . xM ), where M is the number of features, to the
outcome (response) y (motor-UPDRS and total-UPDRS in
this study). That is, we want to obtain a classifier that will use
the dysphonia measures to accurately predict UPDRS. There
is a large literature on supervised classification, and we refer
to Bishop [49], and Hastie et al. [50] for a broad overview
of this area. Here, we experimented with three powerful
classifiers: Random Forests (RF), Support Vector Machines
(SVM), and eXtreme Gradient Boosting (XGBoost). For
more specific background on these statistical learners please
see section 1.3 ‘Background on statistical learners’ in the
Supplementary Material.

4) MODEL VALIDATION AND GENERALIZATION
As in previous studies [9], [24], [26] we used 10-fold Cross
Validation (CV) to assess the generalization performance of
the statistical learners. Conceptually, CV provides an estimate
of the accuracy with which UPDRS may be predicted on a
new dataset, assuming the new dataset has similar statistical
characteristics to the data used to train the classifier. Specifi-
cally, we split the initial dataset comprisingN (4010 formales
and 1865 for females) phonations into a training (in sample)
subset of 0.9 · N (3609 and 1679) phonations and a testing

(out of sample) subset of 0.1 · N (401 and 186) phonations.
For statistical confidence, the process was repeated a total
of 100 times, randomly permuting the data each time before
splitting into training and testing subsets. As in previous stud-
ies [9], [24]–[26], we used the Mean Absolute Error (MAE)
to assess the model performance:

MAE =
1
N

∑
i∈Q

∣∣ŷi − yi∣∣ (1)

where ŷi is the predicted UPDRS and yi is the actual UPDRS
for the ith entry in the training or testing subset, N is the
number of phonations in the training or testing subset, and
Q contains the indices of that set. Errors over the 100 CV
iterations were averaged. We also computed the Confidence
Interval (CI) of the errors (using 95% confidence level).

Finally, we also trained and assessed the model perfor-
mance by using a validation scheme leaving samples out from
a participant. Specifically, the data from the L-1 participants
(where L is the total number of subjects, 28 males and
14 females for the models we build, respectively), the data
from the first four weeks of the left-out participant were used
for training, and the model performance was reported for the
remaining fivemonths. In addition to the dysphonia measures
we presented RF with the UPDRS values during the first
four weeks for the left-out participant (this would be known
in practical setting in this tracking scenario and is implic-
itly a calibration approach). This model validation approach
replicates the tracking setting where past data from the same
subject in addition to the database built from the remaining
L-1 participants are used to replicate future UPDRS scores
for each of the participants. Errors for the weekly UPDRS
scores were averaged.We did not include timing information,
participants’ age, or participant identifiers as inputs into the
statistical learners in order not to implicitly bias the statistical
learning models.

IV. RESULTS
Prior to any analysis, it is useful to visually appreciate the
variability of UPDRS within participants. Fig. 2 presents
violin plots with the total-UPDRS variability for each partic-
ipant in the study, stratifying the data by sex. We clarify that
we used all weekly UPDRS estimates derived using linear
interpolation to present here (rather only the three UPDRS
clinical assessments per participant) because these are subse-
quently used as the ground truth for training and testing the
statistical learners. We remark that for some participants the
UPDRS range is over 10 points (7.67 ± 4.12 for males and
9.69± 4.22 for females).We computed Spearman correlation
coefficients to quantify the strength of statistical association
of the features with UPDRS, and compared these new associ-
ation strengths to our previous findings [9] (see Tables 1 and
2 for comparisons of the correlation coefficients of indicative
features with UPDRS for males and females, respectively).
The results in these two tables illustrate the changes in the
univariate statistical association of the features with UPDRS
and implicitly demonstrate the effect the noise and the data
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FIGURE 2. Violin plots with the total-UPDRS variability within each of the
28 male participants and 14 female participants in the study. The white
dot in each violin indicates the median, the grey box represents the range
for the 25th percentile (bottom) and 75th percentile (top) entries. The
horizontal line indicates the mean value.

transmission channel have in terms of using speech signals
to replicate PD symptom severity. As expected, in most cases
there are stronger statistical associations with the raw data;
there are a few cases where the magnitude of the correlation
coefficients appears slightly larger in the noisy data which
can be attributed to statistical fluctuations. We have found
that, as expected, the features in the present study had lower
association strength with motor-UPDRS and total-UPDRS
than in earlier studies that used full bandwidth speech [9].
Fig. 3 provides a succinct representation of the univari-
ate association of each feature with total-UPDRS. Overall,
univariate associations appear to be stronger for females,
particularly for features which focus on F0 (jitter, GQ,
F0-related features). We report the out-of-sample accuracy
(using RF) with which UPDRS can be predicted in Sup-
plementary Material Table 1 for males, and Supplementary
Material Table 2 for females. For each FS algorithm, the final

TABLE 1. Correlation coefficients of features with total UPDRS in males
(extracted from the raw data and from the noisy data).

TABLE 2. Correlation coefficients of features with total UPDRS in females
(extracted from the raw data and from the noisy data).

number of features K is determined using the one standard
error rule [50]: adhering to the principle of parsimony, we fix
K to be the number of features where MAE is up to one stan-
dard deviation larger than the globally lowest MAE obtained
with the feature subsets from that FS algorithm. TheMAE for
motor-UPDRS is 2.91± 0.23 (CI=[2.49, 3.46]) formales and
2.38 ± 0.23 (CI=[2.19, 3.13]) for females, whilst the MAE
for total-UPDRS is 3.43 ± 0.27 (CI=[3.08, 4.11]) for males
and 2.91 ± 0.27 (CI=[2.58, 3.54]) for females. The out-
of-sample performances using SVMs and XGBoost are not
presented because results were consistently worse compared
to RF.

The methodology was repeated contaminating the speech
signals with AWGN or pink noise prior to speech cod-
ing and transmission. In both cases, the results were very
similar (slight differences due to statistical fluctuation).
By comparison, in a recent study in this application where
high-quality, high-bandwidth, uncompressed speech signals
from the AHTD were used instead, the MAE reported
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FIGURE 3. Visual representation of the feature correlations with total
UPDRS. Features 1 to 30 are jitter variants, 31-51 shimmer variants,
51-60 HNR and GQ variants, 59-82 energy-related measures (RPDE, GNE,
EMD-ER), 83-124 MFCCs, 125-132 F0-related features.

for total-UPDRS was [26]: 1.49 ± 0.14 for males, and
2.14± 0.25 for females.We defer further elaboration of those
findings for the Discussion.

Finally, for the model validation approach where we used
the data from L-1 participants and only the first month of
the data for each left-out participant to train the model and
aiming to estimate their future total-UPDRS in the following
5 months (UPDRS tracking), we obtained MAE 3.72 ± 2.29
(CI=[2.83, 4.47]) for males and 4.86 ± 2.42 (CI=[3.67,
5.86]) for females.

V. DISCUSSION
We had previously demonstrated that using speech signals
may be very promising in both (a) differentiating PD sub-
jects from age- and gender-matched healthy controls [48],
and (b) telemonitoring PD symptom severity by means of
replicating the standard clinical scale UPDRS [9], [24]–[26].
In all those studies we had used high-quality speech signals,
collected using high sampling frequency with minimal sig-
nal distortion (for example the signals were collected in a
sound-treated booth in [48]). In this study, we investigated
the robustness of using lower quality signals which have
been transmitted through the simulated GSM mobile tele-
phone network. We found strong evidence that the existing
GSM network, which to-date reaches more than 5 billion
subscribers, enables clinically accurate UPDRS estimation.

In Tsanas et al. [26], where the high-quality signals
obtained from Intel’s AHTD were used, we reported that
UPDRS could be estimated to within 1.5 UPDRS points for
males and 2.2 UPDRS points for females; here we demon-
strated that UPDRS can be estimated to within approximately
3.4 UPDRS points for males, and 2.9 UPDRS points for
females (when comparing results against [26] where also
10-fold CV was used). We argue that this loss in accuracy
of UPDRS, which is due to bandwidth restriction and/or
channel transmission error is acceptable in practice because

most PWPwho could benefit from remote symptom tracking,
are unlikely to have access to expensive, dedicated hardware
such as the AHTD. We emphasize that the accuracy with
which UPDRS is estimated even in this scenario of restricted
quality speech, is less than the inter-rater variability (differ-
ence in UPDRS score between two expert clinicians), which
is about 4-5 points [57]. Putting our findings in the wider
context: clinical colleagues had previously remarked that in
their view our early investigations in 2010 towards replicat-
ing UPDRS using speech were insufficiently accurate to be
widely deployed in clinical practice (the MAE in that study
was 7.5 points) [24]. They had emphasized this technology
would be practically very useful if we could demonstrate
the MAE to be better than the inter-rater variability (i.e. less
than 5 UPDRS points). This has been the informal threshold
that we had used as guidance to deem whether our findings
are practically ‘sufficiently good’. Therefore, speech over
GSM remains clinically useful here, and could be used as a
decision support tool to aid clinicians in remote, non-invasive
PD symptom severity assessment. Similarly, the automatic
assessment of voice pathologies using signals transmitted
over the public telephone network had been shown to be
promising in related applications [28], [29].

The topic of the appropriate methodology towards report-
ing out-of-sample performance is considerably more subtle
than it first appears and has attracted some recent atten-
tion [58], [59]. The latter article contains discussion from
three research groups weighing on the topic of how best to
provide an estimate of generalization performance in clinical
settings.We remark that the first guiding principle in deciding
on the model validation scheme is how we envisage the
deployed model will be subsequently used in practice (i.e. the
intended usage should dictate themodel validation approach).
The argument is that standard CV may include confounding
variables which could potentially overestimate performance
because samples from the same subject end up in both the
training and testing subsets [58]. In the debate appearing
in [59] there is discussion and different opinions on con-
founders and which approach should be used when aiming to
develop a tool towards diagnosis. However, all three research
teams essentially agree that standard leave-subject-out meth-
ods underfit the data when it comes to tracking and endorse
the use of validation methods where samples from the same
subject are used in both training and testing sets. In par-
ticular, Varoquaux recommends only using samples from
the subject’s past to estimate future entries in this tracking
setting [59]. We emphasize that the problem investigated in
this study comes under the broad area described as tracking
in the studies above [58], [59]. Motivated by these points,
we have introduced a model validation approach where we
used data from the first 4 weeks of a participant in the training
set (in addition to the data from all other L-1 participants), and
tested the performance on the remaining five months for the
left-out participant. We demonstrated that also in this case
we have relatively accurate results (MAE for total-UPDRS
is 3.72 ± 2.29 for males and 4.86 ± 2.42 for females). The

11030 VOLUME 9, 2021



A. Tsanas et al.: Remote Assessment of Parkinson’s Disease Symptom Severity

MAE is lower in males, likely reflecting the lower aver-
age individual UPDRS variability observed in Fig. 2. From
a practical perspective, this model validation approach we
used here is directly comparable to a tracking paradigm that
records some phonations and obtains the UPDRS clinical
assessments by an expert neurologist for a specific participant
before deploying the tool for longer-term UPDRS tracking.

In a related earlier study, Bayestehtashk et al. enrolled
168 PDparticipants and focused on replicatingmotor-UPDRS
using sustained vowels /ah/, a diadochokinetic task, and a
reading task (using standardized, linguistically rich text) [60].
They reported a MAE of 5.5 motor-UPDRS points. To the
best of our knowledge, this is the only study by a different
research group that used speech to replicate symptom severity
as expressed using UPDRS and quantitatively expressed
performance using some error metric.

Concurring with previous findings, we have found that
a parsimonious speech feature subset actually improves the
out-of-sample MAE, and is also more amenable to inter-
pretation [9], [24], [26]. We experimented with different
statistical learners aiming to improve the out of sample
performance. In addition to RF, we explored SVMs (linear
SVM, polynomial SVM), and XGBoost (both in regression
and classification mode), exploring different configurations
and optimization of their internal hyper-parameters (results
not shown). The radial basis function SVM was consider-
ably better than linear SVM and generally better than the
polynomial SVM. RF outperformed SVMs and XGBoost
consistently and significantly (p < 0.001), although we
cannot provide a clear theoretical justification for this finding.
More detailed empirical and theoretical analysis is required to
understand which classification algorithm is likely to lead to
more accurate prediction for similar datasets [35].

The UPDRS scores used as the response variable in our
investigations have different class membership, i.e. this is
an unbalanced multi-class classification statistical learning
setting, which is known to be challenging in practice. There
are different strategies to cope with the class unbalance
problem including (a) using different weights internally in
the classifier for the samples belonging to different classes
(as a function of sample domination in the training data
in each iteration, where under-represented classes are up-
weighted), and (b) using different probabilistic cut-offs for
the different classes (again, these can be set to be inversely
proportional to class dominance). We stress that these adap-
tive thresholds should only use information from the train-
ing dataset (similarly, in a CV application these need to be
recomputed accordingly using only the information available
in the training of the classifier). We have explored both
approaches to train different RF models, however neither led
to improving the out of sample performance (detailed results
not shown). There is a more sophisticated approach to tackle
class unbalance in statistical learning, by generating new
(artificial) data points, e.g. using techniques such as the Syn-
thetic Minority Over-sampling Technique (SMOTE) [61] and
Adaptive Synthetic Sampling (ADASYN) [62]. Then, we can

explore using the augmented dataset (comprising both the
original and artificial data) in the statistical learning process.
Again, there are different strategies within data generation,
e.g. to ensure all classes have equal membership (completely
balanced dataset), or ensuring there is no clear dominance
of particular class(es) in order not to contaminate the data
with a very large number of artificial samples. We had not
explored these data generation approaches here because it
would diverge from the main focus of the study, however it
would be an interesting direction to pursue in further work.

We used four FS algorithms and applied a voting mecha-
nism approach across perturbed versions of the dataset (see
Supplementary Material for details, including the discussion
therein on FS strategies) to identify features which are jointly
most predictive of UPDRS. The use of perturbed versions
of the data enables the investigation of consistency within
each FS algorithm, and the use of different FS algorithms
provides insight into FS consistency across FS algorithms.
The non-classical dysphonia measures (mainly IMFNSR,SEO,
VFER) and MFCCs are consistently selected as the most
predictive features by RELIEF and RF feature importance
(which appear to lead to the lowest MAE, see Supplemen-
tary Material Tables 1 and 2). The selection of MFCCs
is very consistent across all FS algorithms. These results
reinforce previous findings suggesting that dysphonia mea-
sures focusing on energy aspects may be promising for vocal
pathology assessment [35], [48]. Similarly to previous stud-
ies [9], [26], [35], the features selected are gender-dependent
and focus on different pathological effects in PWP’s voice.
This finding supports the tentative physiological suggestion
that the underlying processes of degradation in PD speech
may be different in men and women [9], [35]. For females
the selected features are mainly log energy, low MFCCs and
F0 related measures; for males they are DFA, IMFSNR,SEO,
VFERNSR,entropy, and mid-range MFCCs. Overall, the most
promising characteristic in PD speech pathology for males
appears to be workingwith energy in the higher energy bands:
quantifying stochastic turbulent noise (DFA), excitation of
different frequency bands and turbulent noise in vocal fold
cycles (VFER), and ratio of high frequency (>2.5 kHz, denot-
ing ‘noise’ in the signal) over low frequency (<2.5 kHz)
energy (IMF). For females, the most promising characteristic
in PD speech pathology appears to be the signal energy (log
energy, 0th MFCC). Interestingly, some dysphonia measures
that rely on F0 may also provide clinical information for
females but not for males. As we argued previously [9], [35],
this finding may be because natural male voices have con-
siderably more vibrato (physiological tremor) compared to
female voices. Given that females have higher F0 on aver-
age [27], and that higher F0 is normally associated with
lower F0 variability [42], F0 perturbations might reflect voice
pathology in females whilst similar distortions in males’
vocal performance could be, at least partly, attributed to
normal vibrato. This is likely the same underlying reason
why log energy is very strongly associated with UPDRS in
females (R = −0.53) but poorly associated with UPDRS
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in males: log energy captures the main ‘power’ in the signal
which is primarily driven by the contribution of the lungs and
vocal folds (as the source of the recorded signal, considering
the basic source-filter model of the vocal production mech-
anism [27]). It is possible that the vocal folds in PD might
be more strongly affected in females compared to males, and
also normal vibrato in males might be masking underlying
F0 perturbations (which in female voices may more clearly
indicate underlying pathology) [35]. Incidentally, the neg-
ative correlation of log energy with UPDRS verifies what
is intuitively expected: reduced log energy corresponds to
reduced loudness (which is well reported in PD [13]) andmay
be used as a marker of symptom severity.

MFCCs have been widely used in speech applications
and have been previously shown to perform very well in
related biomedical applications, e.g. [47]. This study further
supports their use as powerful features in PD monitoring,
as evidenced in the FS findings reported in Supplementary
Material Tables 1 and 2. Although MFCCs are well-founded
from a speech signal processing perspective, their physiolog-
ical interpretation is more challenging. The lower MFCCs
reflect the amplitude and envelope spectral fluctuations, and
higher MFCCs convey mainly information about harmonic
components; mid-range MFCCs are not easily interpretable.

We had previously reported that the VFER family of dys-
phonia measures is amongst the best approaches to quan-
tify information in speech signals to estimate UPDRS for
males [9], [35. Although VFER measures were still selected
here by all FS algorithms, they do not appear near the top
of RELIEF and RF feature importance. This may be because
VFER relies on quantifying the information in the high fre-
quencies (>2.5 kHz) as ‘noise’; however due to the reduced
bandwidth when using a sampling rate of 8 kHz much of
this high-frequency information is lost. This would suggest
that the effectiveness of VFER relies on using high sampling
rates (>20 kHz), in order to accurately quantify the extent of
high frequency noise in the signal. In general, young adult
pathology-free voices may be harmonically efficient up to
about 6 kHz; therefore the suggested threshold of 2.5 kHz
for denoting ‘noise’ may require further clarification. This
empirical finding was reported in Tsanas et al. [9], con-
sidering frequencies below 2.5 kHz to denote ‘signal’ and
frequencies above 2.5 kHz to denote ‘noise’: the threshold
was optimized scanning frequencies (using steps of 500 Hz
similarly to Michaelis et al. [45]) in order to determine
UPDRS. Interestingly, broadly similar findings regarding the
threshold of ‘signal’ and ‘noise’ have been described by other
research groups. For example, Gomez-Vilda et al. [63] indi-
cated that frequencies above 2 kHz can be generally consid-
ered turbulent noise. Likewise, the Multi-Dimensional Voice
Program (MDVP - http://www.kayelemetrics.com/) program
includes ‘‘Voice Turbulence Index’’, which is an alternative
dysphonia measure relying on the SNR concept, where the
spectral energy above 2.8 kHz is used to denote the high fre-
quency energy component in the speech signal [64]. Overall,
we tentatively suggest that the empirical 2.5 kHz threshold

may have a solid physiological justification which is reflected
broadly in the findings of different researchers: most of the
energy in the sustained vowels is up to the second formant,
and the second formant can be up to about 1.7 kHz for the
sustained vowel /ah:/ [27].

One very interesting new finding in this study is that
UPDRS estimation in males deteriorates considerably more
compared to UPDRS estimation in females as a result of the
lower quality speech signals. This may be related to the band-
width restriction, but may also be a consequence of the finite
bit allocation available to reproducing the pitch period with
pitch pulses. It could also be due to the increased noise that is
masked by the formants in the perceptually-weighted linear
prediction: this noise may not be heard, but may, nonetheless,
be important in PD.

The future of health telemonitoring is linked to the
potential of smartphones and associated apps. A promising
development in that direction would be the deployment of
a smartphone app that can record high-quality (wide-band
and low-distortion) speech signals. This further underlines
the generalization potential of using speech signals towards
future PD symptom monitoring systems. Nevertheless, there
are still many people (particularly elderly, who are the main
beneficiaries of the proposed technology) that do not own
or do not know how to operate a smartphone. Although it
is conceivable this might change in the next 10-20 years
as smartphones are becoming more affordable and the cur-
rent generation of 50-60 year-old people are generally better
adapted to the use of smartphones, we envisage the proposed
technology here with standard mobile telephony may remain
pertinent because of its simplicity in use.

Our findings confirm the established view in the clinical
speech community suggesting that speech signals of at least
20 kHz should be preferred in clinical applications because
there is useful information in the higher frequencies of the
spectrum [27]. Nevertheless, the performance degradation as
a result of the use of the lower-quality GSM coding and
communication framework is unlikely to be prohibitive for
clinically useful UPDRS prediction. We conjecture that this
may also be the case for other voice pathologies. We hypoth-
esize that the speech community may have, hitherto, been
overly pessimistic in the need for very high-quality speech
signals [27] in clinical speech science.

We stress that the results reported in this study were
obtained in a simulated digital communications framework
involving the GSM standard. Additional tests in real-world
contexts using actual mobile phones would be required to
validate the robustness of the presented methodology. For
example, in practice the channel may or may not always
introduce additive white Gaussian noise, although this is
generally the assumption in the digital communication liter-
ature [40], [41]. Also, we have not simulated the effect of
drop-outs due to cell handoff, or switching between 2G/3G,
or quality reduction due to the user not placing the phone
close to their mouth. For this reason, our channel is chosen
to be extremely noisy which introduces quite severe speech
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signal quality degradation. Additional factors that are hard
to control, such as the mobile phone’s microphone, might
need to be taken into account in a real application. Ideally,
the microphone should exhibit uniform frequency response
over the frequencies of interest (50 Hz – 10 kHz) to min-
imize spectral distortion. Similarly, microphones with rea-
sonable SNR (>50 dB) may be required to ensure sufficient
recording quality. Most commercially available microphones
embedded in mobile phones adhere to these requirements.
A detailed comparison of different microphones would reveal
the extent to which speech signals are affected, and whether
additional processing is necessary for signals recorded using
mobile phones. Similarly, we have not pursued a full-scale
simulation of different SNR and communication channels
because this would involve reporting error rates and repeat-
ing the entire process with feature extraction, selection, and
statistical mapping for different simulation scenarios. Instead
we chose a moderate SNR (10dB) and a particularly hostile
environment with the Proakis C channel which is frequently
used in the literature to assess the performance of simulated
digital communication approaches [40]. Therefore, we are
reasonably confident that this study reports findings on a very
challenging simulated digital communications environment.

It is not straightforward to test the proposed methodology
in practice: this would involve building the receiver block and
ideally testing (a) several types of commercially available
microphones and analogue-to-digital conversion hardware,
and also (b) the reception of signals in various realistic scenar-
ios (e.g. in a rural, urban, or hilly environment), which would
probably introduce additional distortion to the transmitted
signal. Other scenarios to test include cell handover. Devel-
opment engineers would need to test the proposed methodol-
ogy in such diverse practical settings in future work. As we
reported recently through a systematic review, there are rel-
atively few paradigms where research findings are translated
into digital health interventions to benefit patients [65]. The
promising findings presented in this study and the reported
results by other colleagues provide compelling evidence to
suggest this is a sufficiently mature field to merit detailed
testing in a new study that will explore all these different
practical challenges.

The research area of speech signal processing and PD
has generated considerable interest in the scientific com-
munity in the last 10-15 years and has led to some recent
exciting developments. For example, there has been con-
sistent interest in the binary differentiation of PD from
healthy controls [48], [66], [67] amongst different research
teams, which has generally led to very successful outcomes.
We have recently reported on our findings in the Parkin-
son’s Voice Initiative (PVI), a large international study where
we had collected more than 19,000 sustained vowel /a/
phonations across seven countries [30]. The PVI phonations
were collected under acoustically non-controlled conditions
over the phone with the explicit aim of investigating large
scale population screening towards PD assessment using
telephone-quality speech. We had demonstrated clinically

meaningful differentiation of PWP versus controls, thus high-
lighting the potential of this technology at scale. Recently,
researchers have started exploring speech data from different
corpora which may lead to new insights across PD popula-
tions with different linguistic backgrounds [30], [68]. Fur-
thermore, some studies have investigated different speech
tasks for PD evaluations [60], [68], although it is still early to
decide whether any particular task is clearly better that com-
peting approaches. Another area of recent interest is in terms
of associating acoustic features with clinical interventions,
e.g. with pharmacological treatment (L-dopa) [69] and deep
brain stimulation [70]. Collectively, these studies highlight
the enormous potential of speech signal analysis in diverse
PD areas. Moreover, we are currently collecting longitudinal
data (including speech) from a large number of people at
risk of PD, aiming to retrospectively revisit data from those
people who are subsequently clinically diagnosed with PD.
This would help us potentially develop a tool towards PD
prognosis.

Telemonitoring in healthcare has received considerable
attention lately, but global adoption is always constrained by
the prohibitive costs associated with specialized telemoni-
toring hardware or equipment. Indicative recent explorative
applications in the PD domain include the mPower study
using iPhones to record a series of motor and cognitive
tasks [71], and other studies relying on the capabilities of
smartphones [72], [73], and wearables [74], which are not
necessarily affordable and accessible to elderly PD patients
leaving in rural areas. The exploration of highly cost-effective
solutions, such as exploitation of existing cellular or PSTN
telephone networks investigated in this studymay be a critical
step towards more widespread diffusion of this promising
technology. We envisage the results of this study being a first
step towards practical, affordable, and accurate telemonitor-
ing of PD for the population at large.
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