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ABSTRACT Multinational corporations have multiple databases distributed throughout their branches,
which store millions of transactions per day. For business applications, identifying disjoint clusters of
similar and relevant databases contributes to learning the common buying patterns among customers and
also increases the profits by targeting potential clients in the future. This process is called clustering, which
is an important unsupervised technique for big data mining. In this article, we present an effective approach
to search for the optimal clustering of multiple transaction databases in a weighted undirected similarity
graph. To assess the clustering quality, we use dual gradient descent to minimize a constrained quasi-convex
loss function whose parameters will determine the edges needed to form the optimal database clusters in
the graph. Therefore, finding the global minimum is guaranteed in a finite and short time compared with
the existing non-convex objectives where all possible candidate clusterings are generated to find the ideal
clustering. Moreover, our algorithm does not require specifying the number of clusters a priori and uses a
disjoint-set forest data structure to maintain and keep track of the clusters as they are updated. Through a
series of experiments on public data samples and precomputed similarity matrices, we show that our algo-
rithm ismore accurate and faster in practice than the existing clustering algorithms formulti-databasemining.

INDEX TERMS Multi-database mining, graph clustering, dual gradient descent, quasi-convex optimization,
similarity measure.

I. INTRODUCTION
The emergence of large multi-branch companies has led
to developing new strategies for mining the transaction
databases located at their different branches. To make deci-
sions at a global level, the traditional process consists of
integrating all the branch databases into a central repository
called data warehouse, and then traditional mining algo-
rithms [1]–[3] are applied on this huge accumulated dataset
to discover the global patterns supported by all the branches.
However, this approach may have some limitations related to
(1) the cost of merging potentially heterogeneous databases,
(2) the space and time complexity needed to mine and store
the data warehouse and (3) the privacy issues preventing some
branches from sharing their raw transactions. More impor-
tantly, some essential patterns could be disguised due to the
integration of irrelevant data. To deal with the latter problems,
the raw transaction data remain in place and the local frequent
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itemsets (FIs) mined at each branch are forwarded to a central
site for clustering and aggregation.

Many clustering models have been proposed in the liter-
ature such as partitioning [4], hierarchical [5] and spectral-
based models [6], which have applications in many fields
including image segmentation [7], [8], social networks analy-
sis and community discovery [9], [10], recommender systems
[11]–[13] and so on [14], [15]. Clustering in the artificial
neural networks (ANNs) literature is usually based on a
competitive learning (CL) paradigm [16]–[18] where code-
book weight vectors (prototypes) compete in order to elect
the best matching unit (BMU), i.e., a neuron unit whose
weight vector has the minimum distance to an input vector.
Afterward, the selected prototype is updated to get closer to
the input vector. Models and algorithms based on CL include
vector quantization and self-organizing maps [19]–[21]. The
CL algorithm continues to select and update the BMU until
reaching a certain number of iterations. Despite their simplic-
ity, there are some major limitations associated with CL algo-
rithms, including sensitivity to initialization and difficulty
of choosing an appropriate number of clusters beforehand.
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In fact, due to inappropriate initialization, a BMU might
win the competition too often. Consequently, the remaining
weight vectors will never get updated, and hence engendering
dead units.Moreover, to find the BMUof a given input vector,
a distance between the input patterns and the prototypes must
be defined, which is commonly the Euclidean distance. Since
each transaction database is represented by its local frequent
itemsets, metrics applied to vectors of real numbers (which
are coordinates in a Euclidean space such as the Euclidean
distance) cannot be applied in the case of computing distance
between sets of frequent itemsets.

In this article, our study focuses on similarity-based clus-
tering models for multi-database mining [22]–[25], due to
their simplicity and stability [26]. In fact, similarity-based
clustering represents a robust technique to partitioning graphs
of n nodes into k sub-graphs of similar objects given a prede-
fined similarity measure. However, the clustering evaluation
measures used in the previous works [22]–[25] are non-
convex functions, which makes finding the optimal cluster-
ing a difficult problem to solve without browsing all the
local solutions (i.e., candidate clusterings generated at local
optima). Moreover, sometimes the algorithms proposed in
[22]–[25] fail to identify the ground truth clustering.

To address the limitations related to (1) sensitivity to
cluster centers initialization and selection of the number of
clusters k (i.e., requiring multiple restarts) and (2) optimiza-
tion of non-convex clustering quality measures, we repre-
sent the problem of clustering multiple transaction databases
as a quasi-convex optimization problem solvable without
specifying the number of clusters beforehand. In contrast to
competitive learning paradigm [16]–[18], we have adopted a
gradient-based learning approach [27] with back-propagation
[28] to minimize a clustering quasi-convex loss function
L(θ ) which guarantees convergence to the global minimum.
We also discover the number of clusters (denoted by fθ (D))
in the input space by incorporating fθ (D) into our objective.
Unlike logistic regression where hyperplanes or decision

boundaries are learned to classify the training data given their
respective class labels, and different than linear/polynomial
regression where we learn the weighted model that best fits
the training data given some actual continuous variable, our
approach learns the optimal weights θp,q minimizing L(θ ),
such that p = 0 . . . n − 2, q = p + 1 · · · n − 1, and n is
the number of databases. From a graph-theoretic standpoint,
each learned weight θp,q represents a discrete membership
value that is associated with an edge in a similarity graph
G = (D,E), where D is the vertex set consisting of the n
database nodes and E is the edge set, which is initially empty.
In our proposed clustering model, we use a single-layer

perceptron, where the input layer consists of the pairwise sim-
ilarities sim(Dp,Dq) to be fed into our model, and the output
unit computes the intra-cluster similarity denoted by Wθ (D),
which is then plugged into our loss function L(θ ). In fact,
the simplest and straightforward way to model the intra-
cluster similarity is to use a weighted sum of the pairwise
similarities where each learned weight θp,q decides whether

the corresponding similarity value sim(Dp,Dq) should take
part in calculating Wθ (D). Precisely, if θp,q ≥ 1, an edge
is added between Dp and Dq in G, sim(Dp,Dq) is added
up to Wθ (D), the number of clusters is decremented by one
and the corresponding databases {Dp,Dq} are put into the
same cluster. Otherwise, if θp,q < 1, we just keep updating
the weights θp,q using gradient descent and back-propagation
until we reach the global minimum. Our main contributions
are:

• We propose a gradient-based approach to minimize a
clustering quasi-convex loss function, which guarantees
convergence to the global minimum.

• We reduce the running time of the recent multi-database
clustering algorithms proposed in [22]–[25] by early
stopping the clustering process at the global minimum
of the objective function.

• We improve the accuracy of the existing similarity mea-
sure proposed in [22] by including the estimated sup-
ports of the infrequent itemsets.

• In our clustering method, the number of clusters denoted
by fθ (D) is not required beforehand. Instead, fθ (D)
becomes a parametric function in our loss function L(θ )
that needs to be optimized as well.

Unlike the algorithms proposed in [22]–[25], by mini-
mizing a quasi-convex loss function L(θ ), our clustering
algorithm does not need to generate and evaluate all the
possible candidate clusterings in order to select the optimal
one. Instead, we assess each clustering on the fly as it is
generated and we terminate the generation process once we
have reached the global minimum of the loss function. This
is mainly possible because of the quasi-convexity of L(θ ),
i.e., while L(i−1) ≥ L(i), our clustering algorithm continues to
add new edges and update the database clusters. Otherwise,
the procedure terminates and returns the cluster labels at the
iteration i− 1.

The remainder of this article is organized as follows.
In Section II, we present a motivating example and an
overview of some existing clustering algorithms while point-
ing out their advantages and limitations. Section III describes
some relevant concepts and then presents our approach
to clustering multiple transaction databases using gradient
descent and back-propagation. In Section IV, we perform
several experiments to analyze and compare the proposed
algorithm with the existing works in terms of both accuracy
and running time. Finally, Section V concludes this article
and highlights our future work.

II. MOTIVATION AND RELATED WORK
Prior to mining multiple databases for knowledge discovery,
it is crucial to group thesemultiple databases into relevant and
disjoint clusters sharing common patterns. Afterward, each
cluster could be analyzed individually using techniques from
[29]–[32] to identify new patterns such as the high-vote pat-
terns [33] supported by all the branches and the exceptional
patterns [34] supported by only few branches. The underlying
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patterns are useful for making specific decisions on each
group of branches operating under the same organization.
Example 1: Consider the following motivating example.

Let D = {D1,D2, . . . ,D6} be a set of six transaction
databases of a multi-branch company as defined in Table 1.
Each branch database stores a set of customer transactions
and each transaction enclosed in parentheses includes a list
of items separated by commas. The sizes (i.e., number of
transactions) corresponding to the six databases are 4, 5,
4, 3, 4 and 4, respectively. Let α = 0.5 be the minimum
support threshold set by the user. The local FIs mined in each
local database are presented in Table 2, where each entry
〈Ik , supp(Ik ,Dp)〉 in FIS(Dp, α) is a tuple of two elements,
Ik , the name of the frequent itemset and supp(Ik ,Dp) ∈ [0, 1],
called the support, which is the frequency of Ik in Dp.

TABLE 1. Transaction databases (TD).

TABLE 2. Frequent itemsets (FIs) mined fromDi in Table 1 under a
minimum support threshold α = 0.5 for i = 1 to n = 6.

Now, the global support of each itemset Ik ∈

∪
6
p=1{FIS(Dp, 0.5)} in D is estimated using the synthesizing

model proposed in [35] given as follows:

supp(Ik ,D) = (
n∑

p=1

|Dp|)−1 ×
n∑

p=1

supp(Ik ,Dp)× |Dp| (1)

such that |Dp| is the size of database Dp and n (6 in this
example) is the number of all transaction databases inD. For
example, the global support of the itemsetA inD is calculated

as follows:

supp(A,D) = (
6∑

p=1

|Dp|)−1 ×
6∑

p=1

supp(A,Dp)× |Dp|

= (4+ 5+ 4+ 3+ 4+ 4)−1

× (0.75× 4+ 0.8× 5+ 0.5× 4+ 0× 3

+ 0× 4+ 0× 4) = 0.375

The global supports of the rest of the itemsets are given in
Table 3. As we can see in Table 3, all the global itemsets
synthesized from the six databases are not valid or infrequent
(i.e., ∀ Ik ∈ FIS(D, 0.5), supp(Ik ,D) < α). As a result,
no novel pattern has been found. This is mainly due to
the irrelevant data involved during the synthesizing process.
On the other hand, if we observe the transactions in the
six databases, we may notice that they actually form two
disjoint clusters, C1 = {D1,D2,D3} and C2 = {D4,D5,D6},
such that each cluster has similar transactions and common
frequent itemsets.

Using the same model in (1) on the local frequent itemsets
of each cluster separately (p = 1 · · · n = 3 for C1 and
p = 4 · · · n = 6 for C2), we discover new valid frequent
itemsets with a support ≥ α in the clusters C1 and C2, that
is, FIS(C1, 0.5) = {〈A, 0.692〉, 〈B, 0.769〉, 〈C, 0.769〉} and
FIS(C2, 0.5) = {〈H , 0.818〉, 〈F, 0.727〉, 〈F H , 0.727〉}. The
frequent and infrequent patterns mined from each cluster are
shown in Table 4. From the obtained results, we can conclude
that more than 69% of the transactions in C1 contain itemsets
A, B and C , and more than 72% of the transactions in C2
contain H , F and F H . Furthermore, other information could
be derived from analyzing the association between frequent
itemsets. For example, in the business sector, the itemset
〈F H , 0.727〉 ∈ FIS(C2, 0.5) indicates that if a customer
buys the item H , they are likely to also buy the item F
with a confidence of conf (H → F,C2) =

supp(FH ,C2)
supp(H ,C2)

=

88.87% in at least one of the branches of C2. Extracting such
implications is also known as association rule mining, which
has been studied extensively in the literature.

Based on the discovered patterns, the corporate headquar-
ters will know what branches of the company share similar
purchasing patterns, usually encompassing information such
as frequency, quantity and timing. Also, the same business
decisions and management strategies may be applied on the
branches whose databases belong to the same cluster. Such
decisions aim to reduce customer attrition, predict potential
buying trends and convince clients to buy more products
and services in the future. Therefore, analyzing the frequent
itemsets coming from the same clusters contributes to iden-
tifying novel and useful patterns enhancing the quality of the
decision making process.

Existing multi-database clustering algorithms [22], [23],
[25], [36], [37] follow an agglomerative approach to produce
hierarchical classifications at different similarity levels, such
that each class in a given candidate classification is a subset
of another class generated in the next classification. Despite
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TABLE 3. Synthesized global itemsets from the union of the 6 databases
in Table 1 under a minimum support threshold α = 0.5.

TABLE 4. Synthesized itemsets from the clusters C1={D1,D2,D3} and
C2={D4,D5,D6} under a minimum support threshold α = 0.5.

the latter property, these algorithms generate each candi-
date classification independently, that is, instead of using
the earlier clusters generated previously to build new ones,
they generate each classification starting from the initial state
where each database forms its own cluster. Consequently,
the existing algorithms in [22], [23], [25], [36], [37] exe-
cute an unnecessary work by reconstructing already existing
clusters.

The above observations motivated the authors in [24] to
propose a graph-based algorithm that keeps track of the
earlier clusters formed in the previous levels and use them
to form the new subsequent clusters. Compared with the
previous works in [22], [23], [25], [36], [37], the clustering
algorithm proposed in [24] is much faster in practice. How-
ever, it is still based on the clustering evaluation measure
proposed in [22], which is a non-convex function whose
global minimum is NP-hard to find. To deal with this main
limitation, we transform the problem of clustering multiple
transaction databases into a quasi-convex optimization prob-
lem where stochastic gradient descent can certainly converge
to the global minimum. This allows us to stop the clustering
process earlier without exploring the remaining candidate
classifications. Hence, we can generate an optimal clustering
in a reduced execution time.

Although k-means [4], [38] is a popular intuitive clustering
approach that is easy to implement, it has the disadvantage
of being sensitive to both centroids and number of clusters
initialization. In fact, due to the non-convexity of its objective
function, k-means cannot handle non-convex sets and only
works well on data described by spatially separated hyper-
spheres. Despite the fact that we can select the number of
clusters through interpretation of the Silhouette plot [39]
(i.e., a technique that quantifies the quality of the clustering),
this method requires running k-means on the same data for
each number of clusters k ∈ {2, 3, 4 . . . n − 1} in order
to determine the optimal clustering that maximizes the Sil-
houette coefficient. Consequently, this might influence the
time performance of the algorithm on large high dimensional
datasets.

In our clustering approach, the optimization problem is
quasi-convex and the global optimum can therefore be found
independently of the initial settings. Moreover, our method
does not require the number of clusters to be specified
beforehand. Instead, the number of clusters becomes a para-
metric function in our loss that needs to be optimized as
well. Furthermore, as it was pointed out in [22], traditional
clustering algorithm such us BIRCH [40], k-means [4], [38]
and Hierarchical clustering [5] are based on metric attributes
whose values are represented by explicit coordinates in a
Euclidean space. In such configuration, two similar multi-
dimensional data points must have a small Euclidean distance
value. Therefore, a traditional algorithm may not function
properly, since we are interested in clustering local frequent
itemsets from multiple databases.

The k-means algorithm converges to a local minimum
solution [41] (due to sensitivity to the initial seeds and non-
convexity of the objective function), which is not necessarily
the optimal solution. In fact, the utilization of a random start
procedure might produce slightly different results for every
run. Consequently, many clustering algorithms attempt to
obtain a good approximate grouping, which tends to be a rea-
sonable solution in practice. On the other hand, Hierarchical
clustering avoids the issue of presetting the number of clusters
k beforehand by visualizing the relationships between objects
at different nested hierarchical levels called dendrogram. This
allows the domain expert to cut the tree diagram at any desired
number of clusters. However, assessing the stability of a
chosen cut-point allowing us to obtain the desired number of
clusters remains difficult and dependent on some non-convex
evaluation metrics. Moreover, the traditional algorithm for
hierarchical clustering takes O(n3) time, which is not very
efficient in practice.

Additionally, Hierarchical clustering faces some limita-
tions when dealing with high-dimensional feature-sets whose
components are not coordinates in a d-dimensional Euclidean
space. This is due to the fact that we cannot calculate the
cluster centroid of frequent itemsets or patterns which are not
real numbers, and therefore cannot be located in a Euclidean
space using the Euclidean distance. Also, because of the size
and sparsity of the one-hot encoded feature vectors, patterns
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in databases should be kept as sets or hash-tables, due to the
huge size of the vocabulary containing the unique frequent
itemsets coming from the n databases.

To overcome the limitations of single clustering algorithms
such as sensitivity to cluster centroids initialization, sampling
variability and prior selection of the number of clusters,
a robust clustering algorithm, namely Ensemble Clustering
(EC) [42]–[45], might be used to first generate multiple base
clusterings which are then aggregated and summarized into
a final optimal clustering result. However, running a sin-
gle or different clustering algorithms on a resampled feature
space of the dataset for few iterations and for each prese-
lected number of clusters k might increase the running time
overhead to find the best clustering. Moreover, the sensitivity
of EC algorithms have not been systemically assessed. Addi-
tionally, the authors in [46] have performed some simulations
and found that common implementations of EC perform
poorly in determining the ground-truth number of clusters for
data with known structure. They also suggested to apply and
interpret EC with caution.

The authors in [47] have proposed an algorithm to accel-
erate mining global frequent itemsets (FIs) in large databases
by adopting a divide-and-conquer approach. This approach
is also referred to as mono-database mining. Similar works
have been proposed in [48], [49]. First, the whole transaction
database is partitioned into k non-overlapping partitions of
similar transactions small enough to fit in main memory.
Then, each partition is read one at a time and mined for
local frequent itemset discovery. Afterward, all the local FIs
from the k partitions are aggregated into global patterns
using a merging function such as the aggregation model
proposed in [35]. In the case of mono-database mining, one
can directly access the raw transactions for pattern discov-
ery. However, in the case of multi-database mining (MDM),
the local data is left in place due to data privacy, and the
patterns that has already been mined locally at each branch
are forwarded to a central site for clustering and analysis.
This not only allows us to preserve the safety of certain data
which need to be kept confidential for competitive reasons
but also reduces the cost of moving huge raw data over a
communication network. In such scenario, the task of min-
ing the local patterns is managed by each individual branch
locally.

Unlike clustering the transactions in one database, our
study focuses on clustering the local frequent itemsets com-
ing from nmultiple branch data sources and without specify-
ing the number of clusters beforehand. This aims to discover
the optimal database clusters sharing the same relevant pat-
terns which are then used to take regional decisions regard-
ing the branches exhibiting similar characteristics. In fact,
the local FIs in each cluster are analyzed individually to
discover new patterns such as high-vote patterns [33] and
exceptional patterns [34], [50], [51] that are useful formaking
special decisions regarding some branches. In the partitioning
approach [47]–[49], we can only discover the global patterns
that are supported by the whole organization.

III. MATERIALS AND METHODS
In this section, we describe our gradient-based clustering
approach. Some relevant concepts and definitions are also
presented to understand the main concepts used in this article.

A. PROBLEM STATEMENT
Let D = {D0,D2, . . . ,Dn−1} be a set of n transaction
databases, each located at one of the n different branches of a
large company. SegmentingD consists of finding the optimal
grouping of disjoint homogeneous database clusters that has
the largest intra-cluster similarity and the largest inter-cluster
distance possible. Let G = (D,E) be a similarity graph, such
that D represents the vertex set and E represents the edge
set, which is initially empty, i.e., E ← ∅. A similarity-based
clustering algorithm proceeds in two steps:

1) Given a similaritymeasure sim, the algorithm computes(n
2

)
similarity values between the n databases.

2) Edges (Dp,Dq) are sorted in the non-increasing order
of their corresponding similarities sim(Dp,Dq) and
added gradually to the graphG, such that at a similarity
level δ, there is an edge between two nodes Dp and Dq
if and only if sim(Dp,Dq) ≥ δ

Different candidate clusterings could be obtained by vary-
ing the similarity level δ. Therefore, a goodness measure is
needed to evaluate each candidate clustering to see whether
it satisfies a predefined optimality criterion. Depending on
its convexity for a minimization problem or on its concavity
for a maximization problem, the main purpose is to define
an objective parametric function L(θ ) in such a way that
finding the optimum of L(θ ) results in a clustering which has
the largest within-cluster similarity and the largest between-
cluster distance possible, while maintaining the number of
clusters smaller than n and larger than one.

B. BACKGROUND AND RELEVANT CONCEPTS
In this subsection, we define some relevant concepts related
to mining frequent itemsets in transaction databases and pro-
pose an encoding to efficiently represent the feature-set of
each database. We also define the scalar function used to
compute the similarity between two databases. Other defini-
tions related to the intra-cluster similarity and the inter-cluster
distance are also presented hereafter.

1) TRANSACTION DATABASE
A transaction database, denoted by Dp, is usually collected
by online transaction processing (OLTP) systems, which cap-
ture, store, and process thousands of transactions per second.
In fact, transaction/OLTP data sources could be in different
formats: relational (Oracle, SQL Server, MySQL, etc.), non-
relational databases (MongoDB, Cassandra, etc.) or flat files
(e.g., delimited text files (.txt), comma separated values text
files (.csv), etc.). Generally, a transaction in Dp includes a
unique ID number and a list of items. Depending on the
application, these items could be products purchased in one
trip (a shopping basket), words in a document, side effects
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of drugs on certain patients, base pairs in genes, clicks on a
particular web page, machine components broken down on
a certain date, etc. For data mining, analytics and decision-
making purposes, the data from OLTP operational sources is
imported into online analytical processing (OLAP) systems
(referred to as data warehouse) through a process named
extract, transform, load (ETL). Depending on the decisional
level, we can find two types of data warehouses:

• Enterprise Data Warehouse: it consists of a central
repository which may be mined to discover global pat-
terns useful for making global decisions on the whole
enterprise.

• Data Mart: which represents a cluster of some relevant
operational sources sharing similar characteristics such
as customers exhibiting the same purchasing behavior.
Mining a data mart is useful in identifying regional
patterns necessary for making decisions specific to a
certain area or a business unit.

2) FREQUENT ITEMSET MINING
Let Dp be a transaction database. A candidate itemset
Ik of size k from Dp is a set of k items, defined as
Ik = {x1, x2, · · · , xk}. The support of Ik in Dp, defined
as supp(Ik ,Dp) = |{T ∈ Dp | Ik ⊆ T }| ÷ |Dp|,
is the proportion of transactions T in Dp that include Ik .
An itemset Ik is frequent , if its support value is greater
than or equal to some user-specified minimum support α ∈
[0, 1], i.e., supp(Ik ,Dp) ≥ α. Let n be the number of all
unique items in Dp. The number of all candidate itemsets is
equal to 2n − 1.

Many algorithms [1]–[3], [52]–[54] have been proposed
in the literature to discover frequent patterns in transaction
databases. Generally, these algorithms adopt certain strate-
gies to reduce the number of all candidate itemsets (e.g., using
the downward closure), while making the least number of
passes over the whole dataset stored in the disk (two scans
at most over the data). For this purpose, efficient tree data
structures have been used (e.g., FP-tree structure) to compact
and encode the database by mapping each transaction onto a
path in the tree residing in the main memory. Due to its good
performance in terms of CPU and I/O overheads, we use FP-
Growth [3] in all our experiments to mine frequent itemsets
in the n local databases Dp, p = 0 . . . n− 1.

3) MULTI-DATABASE MINING FOR PATTERN DISCOVERY
Given n transaction databases D = {D0,D1, · · · ,Dn−1}

located at the n branches of a large company, the multi-
database mining (MDBM) onD is carried out following four
steps:

1) Forwarding the local frequent itemsets FIS(Dp, αp)
mined in each local database Dp at a given minimum
threshold αp to a centralized site for clustering.

2) Clustering ∪n−1p=0{FIS(Dp, αp)} into non-overlapping
clusters {C1,C2, · · · ,Ck} such that:

• ∪
k
i=1Ci = D and ∩ki=1Ci = ∅

• ∀ Dp,Dq ∈ Ci, sim(Dp,Dq) ≥ δ
• ∀ Dp ∈ Ci,∀ Dq ∈ Cj, sim(Dp,Dq) < δ

• A clustering quality measure goodness(D) reaches
its optimum at a similarity threshold δ.

3) Identifying new patterns by analyzing the local fre-
quent itemsets [29], [55], [56] in each individual cluster
Ci such as the high-vote patterns [33] highly supported
by all the databases within one cluster and the excep-
tional patterns [34], [50], [51] supported by only few
databases.

4) Synthesizing the global patterns from each cluster
using one of the various weighting models proposed in
the literature [30], [35], [57], [58].

In [35], the authors have proposed a method to synthesize
high frequency patterns from different data sources having
different sizes based on the number of transactions in each
local database. Using their method, the obtained results have
closely matched the global patterns discovered when per-
forming a mono-database mining on the union of all the
data sources. Therefore, the synthesized global support of
an itemset Ik in a given cluster C = {D1,D2, · · · ,Dm} is
defined as follows:

supp(Ik , C) = (
m∑
p=1

|Dp|)−1 ×
m∑
p=1

supp(Ik ,Dp)× |Dp| (2)

such that 1 ≤ m ≤ n and supp(Ik ,Dp) is the local
support of Ik in the p-th database. We note that |Dp| and
|Dp|/

∑m
p=1 |Dp| are the weight (number of transactions) and

the normalized weight of the transaction database localed at
branch p, respectively. The notion of assigning a weight to
each local database has been largely studied in the literature
[35], [57], [59]. This allows the different branches taking part
in the decision making process to have a weight, also called
a vote, proportionally related to the number of transactions
accumulated in their local databases.

4) SIMILARITY MEASURE
Each database Dp is encoded as a hash-table FIS(Dp, α) =
{∪

m
k=1〈Ik , supp(Ik ,Dp)〉} for all p = 0 . . . n − 1, where n

is the number of transaction databases, m is the number of
frequent itemsets or entries in FIS(Dp, α), Ik is the key or the
name of the k-th frequent itemset and supp(Ik ,Dp) ∈ [0, 1] is
the associated support value, which is the proportion of rows
in Dp containing Ik and α ∈ [0, 1] is the minimum support
threshold, such that supp(Ik ,Dp) ≥ α. When computing the
similarity between two databases, it is practical to use hash-
tables to efficiently lookup the keys (i.e., the itemsets) shared
in common. Although key collisions may occur, using a hash
function that is simple to compute and which distributes the
keys uniformly on the buckets of the hash-table will allow
us, in the average case, to check for the existence of a given
key in a constant time O(1). In our experiments, Python hash
built-in function is used for key duplicate search.

In the context of multi-database mining, the goal is to put
the databases that share a large number of frequent itemsets
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having close support values into the same cluster. Inspired by
the similarity function proposed in [22], our method consists
of using the correction factor cf ∈ [0,1) proposed in [60] to
estimate the support values of the infrequent itemsets (i.e.,
itemsets whose supports are under the minimum threshold
α), leading to a more accurate similarity measure. Hence,
the similarity between two databases Dp and Dp for p =
0 . . . n− 2, q = p+ 1 . . . n− 1 is defined as follows:

sim(Dp,Dq) =

∑
min(9(Ik ,Dp), 9(Ik ,Dq))
Ik∈{FIS(Dp,α) ∪ FIS(Dq,α)}∑
max(9(Ik ,Dp), 9(Ik ,Dq))
Ik∈{FIS(Dp,α) ∪ FIS(Dq,α)}

(3)

where

9(Ik ,Dp) =


supp(Ik ,Dp) if Ik ∈ FIS(Dp, α)
(i.e., supp(Ik , Dp) ≥ α);
cf × α otherwise cf ∈ [0, 1)

When cf = 0, we get the same similarity measure proposed
in [22].
Theorem 1: The similarity function sim(Dp,Dq) has the

following properties:
1) 0 ≤ sim(Dp,Dq) ≤ 1 (non-negativity)
2) sim(Dp,Dq) = sim(Dq,Dp) (symmetry)
3) sim(Dp,Dp) = 1 (identity)
4) 0 ≤ (1− sim(Dp,Dq)) = dist(Dp,Dq) ≤ 1
Proof: For each Ik ∈ {FIS(Dp, α) ∪ FIS(Dq, α)},

min(9(Ik ,Dp), 9(Ik ,Dq))≤max(9(Ik , Dp), 9(Ik ,Dq)).
Therefore:

0 ≤
∑
Ik

min(9(Ik ,Dp), 9(Ik ,Dq))

≤

∑
Ik

max(9(Ik ,Dp), 9(Ik ,Dq)) ≤
∑
Ik

1

By dividing each side of the inequality by
∑

Ik max(9(Ik ,Dp),
9(Ik ,Dq)), we get property (1). Since min and max
are commutative operations (i.e., min(x, y) = min(y, x)
and max(x, y) = max(y, x)), property (2) is sat-
isfied. Property (3) is valid because min(9(Ik ,Dp),
9(Ik ,Dp))=max(9(Ik ,Dp), 9(Ik ,Dp)) for the same database
Dp. For property (4), we have 0 ≤ sim(Dp,Dq) ≤

1
yields
−→−1 ≤ −sim(Dp,Dq) ≤ 0

yields
−→0 ≤ 1 − sim(Dp,Dq) ≤

1
yields
−→0 ≤ dist(Dp,Dq) ≤ 1 �
Each transaction database objectDp is represented as a bag

of words, where each word is a frequent itemset Ik associated
with a nonnegative weight, i.e., 9(Ik ,Dp) = supp(Ik ,Dp) ∈
[α, 1] if Ik ∈ FIS(Dp, α) and 9(Ik ,Dp) = (cf × α) ∈ [0, α),
otherwise. Note that if we replace all the weights 9(Ik ,Dp)
with binary values, either one if Ik ∈ FIS(Dp, α) or zero
otherwise, sim(Dp,Dq) just simplifies to the Jaccard simi-
larity. Unlike the similarity measure proposed in [22], when
an itemset Ik is infrequent in Dp, i.e., 〈Ik , supp(Ik ,Dp)〉 /∈
FIS(Dp, α), we do not assume that it has zero support. In fact,
an infrequent itemset may exist in the database with some
frequency below the minimum threshold α.

To demonstrate the importance of estimating the support
of infrequent itemsets in our similarity measure, we have the
following example. Let D1, D2 and D3 be three databases
with their number of transactions 10,000, 30,000 and 10,000,
respectively. The support values of their corresponding item-
sets are presented in Table 5. Let the minimum support value
be α = 0.20. Itemset AC is not reported from D3 since its
support is less than α, with supp(A C,D3) = 0.15. Also,
the itemsets A D and C E are not reported from D1, because
supp(A D,D1) = 0.08 < α and supp(C E,D1) = 0.07 <
α. Now, if we calculate the similarity between D1 and D3
using measure (3) with a correction factor cf = 0, we get
sim(D1,D3) = 0.0+0.0+0.0

0.30+0.40+0.50 = 0. Since sim proposed
in [22] takes into account only the frequent itemsets shared
between two databases, and in this case A C , A D and C E are
not common to both databasesD1 andD3, then the numerator
of sim will be nil. However, A C , A D and C E do really exist
in the previous databases and we should have estimated their
support values to get more accurate similarities.

By using a correction factor cf = 0.5, the estimated
support values are obtained as follows: supp(A C,D3) =
supp(A D,D1) = supp(C E,D1) = cf × α = 0.1,
which are approximately close to the real values. Now, if we
calculate the similarity between D1 and D3 while includ-
ing the estimated support values, we get sim(D1,D3) =
0.1+0.1+0.1

0.30+0.40+0.50 = 0.25. The similarities between the remain-
ing databases are presented in Table 6 with a correction
factor cf = 0 (i.e., as proposed in [22]) and cf = 0.5
under our measure (3). After clustering the three databases
using the algorithm proposed in [24] with a correction factor
cf = 0 and cf = 0.5, we got the results presented in
Table 7. We notice that D1 does not belong to the cluster
{D2,D3} when cf = 0 because sim(D1,D3) = 0. After
using cf = 0.5, D1 is now added to {D2,D3} and goodness
[22] of {D1,D2,D3} is larger than that of {D1}, {D2,D3}.
Consequently, the proposed similarity measure in (3) returns
more accurate results when using a correction factor cf > 0.

Choosing an appropriate value for cf is related to
the itemsets distribution in the database. In other words,
the more subsets of an itemset Ik are frequent (i.e., ∀xi ⊆
Ik , supp(xi,Dp) ≥ α) with a large support value ≈ 1,
the higher the probability to find these frequent subsets
appearing together in the same rows of Dp. In this case,
cf must be chosen close to 1. When there is no prior
information on the data distribution, setting cf = 0.5 is
a suitable choice in practice. To estimate the support val-
ues of infrequent patterns, the authors in [61], [62] have
used probabilistic models based on maximum entropy and
Markov random field to predict the number of rows in the
data containing a given itemset. However, these models need
to compute all the combinations of sub-pattern frequencies
which can be time consuming especially when the sizes
and number of the infrequent patterns are large. Hereafter,
we present three methods to estimate and compute the sup-
port of an infrequent itemset Ik given some of its frequent
sub-sets.
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Method 1. Since the support of an infrequent k-itemset Ik
is below the minimum support threshold < α, we can esti-
mate the support of I by subtracting a certain value from α.
This value is mainly dependent on the distribution of the fre-
quent subsets xi ⊆ Ik of size< k . That is, themore the subsets
of an itemset Ik are frequent (i.e., ∀xi ⊆ Ik , supp(xi,Dp) ≥ α)
with a large support value ≈ 1, the higher the probabil-
ity to find these frequent subsets appearing together in the
same rows of Dp, and in this case a small value should be
taken out from α. Conversely, the less the frequent subsets
of Ik , the larger the value that should be taken out from α.
Therefore, we can use the following heuristic to estimate the
support of an infrequent k-itemset using the supports of its
frequent subsets:

supp(Ik ,Dp)=α ×

(
1−

(k
l

)
−
∑

xi⊆Ik ,|xi|=l supp(xi,Dp)(k
l

) )
(4)

TABLE 5. Transaction databases with their corresponding itemsets under
the minimum support threshold α = 0.20.

TABLE 6. Similarity matrix between the three databases from Table 5
with cf = 0 as proposed in [22] against cf = 0.5 under our similarity
measure sim (3).

TABLE 7. Clustering of the three databases from Table 5 with cf = 0 as
proposed in [22] against cf = 0.5 under our similarity measure sim (3).

such that, at the l-th level (k − 1 ≥ l ≥ 1), there are
(k
l

)
sub-

itemsets of size l. In (4), l takes the value of the level where
at least one sub-itemset is found frequent. For example, let us
consider the infrequent itemset Ik = ABC of size k = 3, such

that supp(ABC,Dp) < α (e.g., α = 0.2). we notice that ABC
has

(3
2

)
= 3 sub-itemsets of size l = 2, namely, {AB, AC ,

BC}, and also has
(3
1

)
= 3 sub-itemsets of size l = 1, {A, B,

C}. If the first two frequent subsets of size < k are AB and
AC with supp(AB,Dp) = 0.21 and supp(AC,Dp) = 0.3, then
l = 2 and supp(ABC,Dp) = 0.2 × (1 − 3−(0.21+0.3+0)

3 ) =
0.034. If we suppose that AB and AC have higher supports
with supp(AB,Dp) = 0.4 and supp(AC,Dp) = 0.5, then
the estimated support should be even closer to α, that is,
supp(ABC,Dp) = 0.2 × (1 − 3−(0.4+0.5+0)

3 ) = 0.06. If at
l = 2, no frequent 2-subset is found, then we check the
subsets at the lower level, i.e., at l = 1. If all the 2k − 2
subsets are infrequent, then supp(Ik ,Dp) = 0.

Method 2. We can also approach this estimation problem
by examining the support values of the frequent subsets.
Consider the same infrequent 3-itemset ABC . Let us suppose
α = 0.2 and the subsets AB and AC are frequent, such that
supp(AB,Dp) = 0.7 and supp(AC,Dp) = 0.4, respectively.
Clearly, since ABC is infrequent (i.e., ABC /∈ FIS(Dp, α)),
both AB and AC appear together with a percentage of less
than 20% of the transactions in Dp (i.e., supp(ABC,Dp) <
20%). Also, the percentage of transactions where AB does
not occur is 1 − 0.7 = 30%. Since supp(AC,Dp) = 0.4 >
30%, then at least 0.4 − 0.3 = 10% of the transactions
must be shared between AB and AC , which means the pos-
sibility that supp(ABC,Dp) = 0 is excluded. Therefore,
in order to estimate the support of ABC , we can calculate
supp(ABC,Dp) = 10%+ (α− 10%)× ε, where ε ∈ [0, 1) is
selected by the domain expert. If supp(AC,Dp) < 30%, then
supp(ABC,Dp) could be equal to zero, and therefore setting
supp(ABC,Dp) = (α × 0.5) is a reasonable choice. We note
that AB and AC are any (k−1)-frequent subsets of ABC , such
that AB ∪ AC = ABC .
Method 3. There is also an exact method to find the

real support of an infrequent itemset in a database Dp. Let
Ik = I [1].I [2] · · · I [k] be a k−itemset consisting of k items
I [1], I [2], · · · , I [k], and each item I [i] in Dp is associated
with a data structure denoted I [i].tidlist , which holds all the
IDs (kept in the a sorted order) of the transactions contain-
ing I [i]. These tidlists are only created the first time Dp
is scanned for frequent itemsets discovery. The support of
Ik in Dp could be obtained using the following operation:

Ik =
|∩
k
i=1{I [i].tidlist}|
|Dp|

. As we can see, this exact method comes
with a space cost associated with storing the tidlists of each
item in Dp.

5) CLUSTERING ASSESSMENT MEASURES
Let C={C1,C2, . . . ,Ck} be a candidate clustering of D =
{D0,D1, . . . ,Dn−1} generated at a similarity level δ ∈ [0, 1]
such that ∪ki=1Ci = D and ∩ki=1Ci = ∅. From a graph-
theoretic standpoint, each cluster Ci is a graph component
in G = (D,E) and an edge is added between two vertices
Dp andDq if and only if sim(Dp,Dq) ≥ δ. In this subsection,
we present some clustering goodness measures used to assess
the quality of a candidate clustering C .
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The goodness measure proposed in [22] and used for clus-
tering evaluation in [24] is based on maximizing both the
intra-cluster similarity W (D) and the inter-cluster distance
B(D), while minimizing the number of clusters f (D). Pre-
cisely, goodness measure is defined as follows:

goodness(D) = W (D)+ B(D)− f (D) (5)

where

W (D) =
∑
Ct∈C

∑
Di,Dj∈Ct ;i<j

sim(Di,Dj)× 1{(Di,Dj) ∈ E}

(6)

and

B(D) =
∑

Ct ,Cv∈C;t<v

∑
Di∈Ct ,Dj∈Cv;i<j

(1− sim(Di,Dj)) (7)

such that W (D) is a monotonic non-decreasing function on
the range [0,1], that is, W (i)

≤ W (i+1) and B(D) is a mono-
tonic non-increasing function on [0,1], because B(i) ≥ B(i+1).
The superscript i refers to the i-th generated clustering, such
that at i = 1, each cluster is a singleton containing one
database. The number of clusters f (D) is also a monotonic
non-increasing function satisfying f (i) ≥ f (i+1). Since two
vertices of the same graph component might not be connected
by an edge (i.e., {Di,Dj} ∈ Ck but (Di,Dj) /∈ E), we use
the indicator term 1{(Di,Dj) ∈ E} to consider only vertices
connected by an edge in G = (D,E). This is because each
goodness measure is evaluated on a clustering generated at a
given similarity level δ and if there is no edge betweenDi and
Dj, the similarity between Di and Dj should be less than δ,
and therefore sim(Di,Dj) should be discarded. The candidate
clustering that has the maximum value of goodness(D) is
selected as the optimal clustering.

Another goodness measure goodness2(D) was proposed in
[25]:

goodness2(D) =
sum-dist(D)
(n2 − n)/2

+
coupling(D)
(n2 − n)/2

+
f (D)− 1
n− 1

(8)

where

sum-dist(D) =
∑
Ct∈C

∑
Di,Dj∈Ct ;i<j

(1− sim(Di,Dj))

×1{(Di,Dj) ∈ E} (9)

and

coupling(D) =
∑

Ct ,Cv∈C;t<v

∑
Di∈Ct ,Dj∈Cv;i<j

sim(Di,Dj) (10)

We note that sum-dist(D) (intra-cluster distance) is a mono-
tonic non-decreasing function, whereas coupling(D) (inter-
cluster similarity) is a monotonic non-increasing function on
[0,1]. The candidate clustering that has the minimum value of
goodness2(D) is selected as the optimal clustering.

The authors in [23] have proposed another goodness mea-
sure, denoted goodness3(D), defined as follows:

goodness3(D) =
intra-sim(D)+ inter-dist(D)

f (D)
(11)

where

intra-sim(D)

=
1

f (D)

∑
Ct∈C


1, |Ct | = 1∑

Di,Dj∈Ct sim(Di,Dj)×1{(Di,Dj)∈E}

(|Ct |2 − |Ct |)/2
,

|Ct | > 1
(12)

and

inter-dist(D)

=


0, f (D) = 1∑
Ct ,Cv∈C

2×
∑

Di∈Ct ,Dj∈Cv;i<j(1− sim(Di,Dj))

|Ct | × |Cv| × (f (D)2 − f (D))
,

f > 1

(13)

Because intra-sim(D) and inter-dist(D) are not only depen-
dent on the number of clusters but also on the size of each
cluster, both of them are non-monotonic on the range [0,1].
We notice that for f (D) = n, we have intra-sim(D) = 1 and
for f (D) = 1, goodness3(D) = intra-sim(D). The candidate
clustering that gets the maximum value of goodness3(D) is
selected as the best clustering.

We define the Silhouette coefficient SC(D) ∈ [−1, 1] pro-
posed in [39], [63], which is used to check how appropriately
the cluster labels have been assigned to the n databases:

SC(D) =
1
n

n−1∑
i=0

s(Di) (14)

where

s(Di) =


b(Di)− a(Di)

max{a(Di), b(Di)}
if |Ci| > 1;

0, if |Ci| = 1

(15)

and

a(Di)

=

∑
Di,Dj∈Ci,Di 6=Dj

(1− sim(Di,Dj))× 1{(Di,Dj) ∈ E}

|Ci − 1|
(16)

b(Di)

= min
Di /∈Cj

1
|Cj|

∑
Dj∈Cj

(1− sim(Di,Dj)) (17)

We note that Di ∈ Ci and Dj ∈ Cj. A large value of
SC(D) ≈ 1 indicates that the databases are highly matched to
their own clusters (i.e., high cohesion) and loosely matched
to neighboring clusters (i.e., low coupling).
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C. PROPOSED LOSS FUNCTION
In this section, we define our loss function L(θ ) and show how
it is optimized. Let XT = [sim(D0,D1), sim(D0,D2), . . . ,
sim(Dn−2,Dn−1)] be the input vector of the pairwise
similarities calculated between the n databases D =

{D0,D2, . . . ,Dn−1} and let θT = [θ0,1, θ0,2, . . . , θn−2,n−1] ∈
R(

n
2) be the model parameters we need to learn via dual

gradient descent optimization algorithm. Let ϕ(θp,q) be a
membership function that returns 1 if Dp and Dq belong to
the same cluster and 0 otherwise.

1) INTRA-CLUSTER SIMILARITY
Theweighted intra-cluster similarity of a candidate clustering
on D is defined as follows:

Wθ (D) =
n−2∑
p=0

n−1∑
q=p+1

sim(Dp,Dq)× ϕ(θp,q) = XT · ϕ(θ )

(18)

where

ϕ(θp,q) =

{
1, if θp,q ≥ 1
0, if θp,q < 1

In Wθ (D), we only sum the similarity values between the
vertices connected by an edge inG = (D,E). The presence of
an edge between two verticesDp andDq is determined by the
value of its corresponding weight θp,q. That is, (Dp,Dq) ∈ E
if and only if θp,q ≥ 1.

2) INTER-CLUSTER DISTANCE
The weighted inter-cluster distance of a candidate clustering
on D is defined as follows:

Bθ (D) =
n−2∑
p=0

n−1∑
q=p+1

(1− sim(Dp,Dq))× (1− ϕ(θp,q))

= (1− X )T · (1− ϕ(θ )) (19)

In Bθ (D), we only sum the distances between the vertices not
connected by an edge in G = (D,E).

3) NUMBER OF CLUSTERS
Let n be the number of nodes in the graph G = (D,E)
and cluster(Dp) is a function that returns the cluster label
assigned to Dp. Initially, the number of clusters is set to n,
then it decrements by one after each union operation between
cluster(Dp) and cluster(Dq). Therefore, in order to find the
current number of clusters, we need to subtract the num-
ber of all union operations done so far from n. However,
a union operation between two disconnected clusters (i.e.,
cluster(Dp) 6= cluster(Dq)) is performed only if the weight
associated with the edge (Dp,Dq) is greater than or equal to
1, that is if θp,q ≥ 1. Hence, the number of clusters in G,

denoted by fθ (D), is given as follows:

fθ (D) = n−
n−2∑
p=0

n−1∑
q=p+1

1{cluster(Dp) 6= cluster(Dq)}

×ϕ(θp,q) (20)

such that 1{·} is the indicator function indicating the
truth or falsehood of the statement passed in as argument.
We should note that the maximum number of union opera-
tions we can perform inG is n−1. Consequently, fθ (D) takes
values from n down to n− (n− 1) = 1.

4) LOSS FUNCTION DEFINITION
Initially, we set the weight vector of our model equal
to the

(n
2

)
pairwise similarities between the n databases

{D1,D2, . . . ,Dn}, that is, θT← XT . We then set the num-
ber of clusters equal to the number of databases n, that is,
fθ (D)← n. After the initialization, we define the minimiza-
tion problem as follows:

θ̂ = argmin
θ

L(θ )

= argmin
θ

1
2
(fθ (D)−Wθ (D))2

= argmin
θ

1
2
(fθ (D)− ϕ(θT ) · X )2

= argmin
θ

1
2
(fθ (D)−

n−2∑
p=0

n−1∑
q=p+1

sim(Dp,Dq)× ϕ(θp,q))2

where ϕ : R(
n
2)→ {0, 1}(

n
2) | ϕ(θp,q)

=
sgn(θp,q − 1)+ 1

2

=

{
1, if θp,q ≥ 1
0, if θp,q < 1

(21)

such that sgn : R(
n
2) → {−1, 1}(

n
2) is the signum func-

tion. The loss function L(θ ) depends on two monotonic
functions, the number of clusters fθ (D), which is a non-
increasing function, and the intra-cluster similarity Wθ (D),
which is a non-decreasing function. Ideally, our goal is to
reach the critical multi-dimensional point θ where the two
scalar functions fθ (D) and Wθ (D) are the closest possible.
The normalized weight ϕ(θp,q) corresponding to a similarity
value sim(Dp,Dq) is either 1 when Dp and Dq are in the
same cluster or 0 when they are in different clusters. We also
note that ϕ(·) is a shifted unit step function and its graph is
depicted in Fig. 1 (a). Therefore, in order to minimize L(θ ),
we need to maximize the intra-cluster similarity Wθ (D), but
at the same time, we need to maintain the absolute difference
|(fθ (D) −Wθ (D)| as small as possible so as to avoid putting
all the databases into the same cluster, which is the case
when the intra-cluster similarity reaches its maximum value
at fθ (D) = 1.
Example 2: Let us use the proposed similarity measure

given in (3) to compute the pairwise similarities between the
six databases presented with their FIs in Table 2. The 6 × 6
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FIGURE 1. (a): represents the shifted unit step activation function ϕ(·) in blue and its partial derivative in orange. (b): represents the continuous
piecewise linear activation function g(·) in green and its partial derivative in red.

similarity matrix is given in Fig. 2 (a). Then, we evaluate
goodness(D) [22], goodness2(D) [25], goodness3(D) [23],
our proposed loss function L(θ ) and the Silhouette coeffi-
cient [39] on different clusterings generated from the 6 × 6
similarity matrix in Fig. 2 (a) and plot their corresponding
graphs in Fig. 2 (b). Due to scale differences, we multi-
ply goodness2(D) [25], goodness3(D) [23] and Silhouette
coefficient SC [39] by a factor of 2 to stretch them in the
y-axis direction and we divide L(θ ) by a factor of 2 to
shrink it in the y-axis direction. We note that the global
optimum (minimum or maximum) of each goodness evalu-
ation measure is shown as a black point on its corresponding
graph.

To generate the candidate clusterings, we use the algo-
rithm BestDatabaseClustering [24], which proceeds as fol-
lows: initially, our similarity graph G = (D,E) has no edge,
i.e., |D| = n (n=6 in this example) and E = ∅. Then,
at each similarity level δi ∈ [0, 1], edges (Dp,Dq) satisfying
sim(Dp,Dq) ≥ δi are added to E . The similarity level δi
(i = 1 · · ·m) is selected from the m unique sorted pairwise
similarity values sim(Dp,Dq) computed between the n trans-
action databases, such that p = 0 · · · n−2, q = p+1 · · · n−1
and δ1 > δ2 > · · · δi−1 > δi > δi+1 > · · · > δm and
m ≤ (n2 − n)/2. After adding all the edges (Dp,Dq) at δi,
each graph component of G = (D,E) represents a cluster of
databases in our clustering.

From Fig. 2, we notice that all the goodness measures
have a global optimum at similarity level δ4 = 0.36 with
L(θ ) = 0.039, goodness(D) = 9.97, goodness2(D) = 0.40
and goodness3(D) = 0.71. The obtained clusters correspond
exactly to the two colored regions shown in Fig. 2 (a),
where the Silhouette coefficient SC=0.43 reaches its max-
imum value, that is, {D1,D2,D3} and {D4,D5,D6}. We also
observe that our proposed loss function exhibits a quasi-
convex behavior. That is, it decreases to the global minimum

L(θ (4)) = 0.039 at δ4 = 0.36 and then increases from that
point on.

Table 8 shows the different values of our loss function
L(θ (i)) obtained on each clustering generated at a similar-
ity level δi. For illustrative purposes and space limitation,
we only report the weights whose values are ≥ 1 in the sec-
ond column of Table 8. The weights θ (0)p,q are initially set to
sim(Dp,Dq), for all 1 ≤ p < q ≤ n, then for each iteration
i > 0, the weights are updated until they reach the maximum
value of 1. The updating rule is given in (27). Fig. 3 depicts
the graph representations of the candidate clusterings shown
in Table 8.
Example 3: To illustrate the limitations of the previous

goodness measures, we present another example illustrated
in Fig. 4. The subfigure (a) in Fig. 4 represents a heat-map
similarity matrix that comes from the experiments performed
in [25], where pairwise similarities are computed between
eight databases {D1,D2,. . . ,D8} generated from the synthetic
dataset T10I4D100K [64]. Whereas Fig. 4 (b) represents the
graphs corresponding to goodness(D) [22], goodness2(D)
[25], goodness3(D) [23], our proposed loss function L(θ )
and the Silhouette coefficient [39] evaluated on different
clusterings generated from the 8 × 8 similarity matrix in
Fig. 4 (a).
The candidate clusterings are generated using the same

process described in the previous example. Also, due to scale
differences, we multiply goodness2(D) [25], goodness3(D)
[23] and Silhouette coefficient SC [39] by a factor of 10 to
stretch them in the y-axis direction. The use of a heat-map
matrix provides a visual tool to intuitively observe the natural
database clusters. A darker color represents a higher similar-
ity value and a brighter color corresponds to a lower value.
Therefore, similar databases will form homogeneous color
regions when put together. Furthermore, the Silhouette plot
[39] measures how appropriately the databases have been
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clustered and its maximum value is used to determine the
natural number of clusters.

As we notice in Fig. 4 (b), goodness(D) has one local
maximum point (13.64) at δ = 0.21 with a number of clusters
f (D) = 2, and has one global maximum point (17.26) at
δ = 0.45, which corresponds to the maximum value of
the Silhouette coefficient (SC = 0.301), and also matches
the four clusters {D1,D2,D3}, {D4,D5,D6}, {D7} and {D8}

highlighted by the four homogeneous color regions in Fig. 4
(a). The challenge we might face when using goodness(D)
is the fact that it is neither convex nor concave on the range
[0,1], which makes it difficult to optimize. Furthermore, due
to its non-convexity, goodness(D) requires running over all
the similarity levels δ in order to find the global maximum.
This could be time consuming, especially when the number
of all generated candidate clusterings is large.

On the other hand, goodness2(D) has one local minimum
point (0.67) at δ = 0.45 and f (D) = 4, and has one global
minimum point (0.58) at δ = 0.21 and f (D) = 2, which cor-
responds exactly to two clusters {D1,D2,D3,D4,D5,D6},
{D7,D8}. Clearly, the resulting clustering does not match
the four clusters discovered by the Silhouette coefficient at
δ = 0.45. Also, the graph of goodness2(D) is neither con-
cave nor convex on the whole interval [0,1]. Additionally,
goodness3(D) has one global maximum point (0.56) at δ =
0.21 and f (D) = 2, which also corresponds to the two clusters
{D1,D2,D3,D4,D5,D6}, {D7,D8} that do not match the
homogeneous color regions depicted in Fig. 4 (a). Now, if we
examine the graph of our loss function L(θ ), we notice that
it has only one global minimum point (0.32) at δ = 0.45
and fθ (D) = 4, which corresponds exactly to the 4 clusters
{D1,D2,D3}, {D4,D5,D6}, {D7} and {D8} shown Fig. 4
(a). From the previous results, we notice that using the non-
convex function goodness(D) [22] and our quasi-convex loss
function L(θ ), we have discovered the clustering maximizing
the Silhoutte Coefficient with SC = 0.301 at δ = 0.45.
Meanwhile, using the non-convex functions goodness2(D)
[25] and goodness3(D) [23], we did not succeed in identifying
the correct clusters.

5) OBJECTIVE OPTIMIZATION
In this subsection, we use dual gradient descent with back-
propagation to find the optimal weights minimizing our loss
function. Since the partial derivative of the unit step func-
tion ϕ(·) with respect to a weight variable θp,q is equal to
zero, the weight vector θ cannot be updated during back-
propagation. This is why we need to apply another differ-
entiable activation function g : R(

n
2) → [0, 1](

n
2), which is

defined as follows:

g(θp,q) = max{θp,q, 0} − ϕ(θp,q)× (θp,q − 1)

=


1, if θp,q ≥ 1
θp,q, if θp,q ∈ (0, 1)
0, if θp,q ≤ 0

∂g(θp,q)
∂θq,q

=
sgn(θp,q)+ 1

2
− ϕ(θp,q) =


0, if θp,q ≥ 1
1, if θp,q ∈ (0, 1)
0, if θp,q ≤ 0

where ∂g(θp,q)
∂θq,q

is the partial derivative of g(·) with respect
to the weight θp,q. We also note that g(·) is the continuous
piecewise linear activation function depicted in Fig. 1 (b).
Therefore, the final constrained objective, also called the
primal problem, is defined as follows:

θ̂ = argmin
θ

1
2
(fθ (D)− hθ (D))2

= argmin
θ

1
2
(fθ (D)− g(θT ) · X )2

= argmin
θ

1
2
(fθ (D)−

n−2∑
p=0

n−1∑
q=p+1

sim(Dp,Dq)× g(θp,q))2

s.t. hθ (D)−Wθ (D) = (g(θT )− ϕ(θT )) · X = 0 (22)

Since we have g(·) ≥ ϕ(·), the value of hθ (D) is larger
than or equal to the actual intra-cluster similarity Wθ (D).
Consequently, hθ (D) becomes rapidly larger than fθ (D) due
to the contribution of the weights with values θp,q < 1
in calculating hθ (D). This condition forces the optimization
algorithm to terminate soon preventing the large weights
(i.e., 1 − θp,q ≤ ε|ε ∈]0, 1e−10]) to reach the maximum
value of 1, and hence the corresponding similar database
pairs (Dp,Dq) remain in different clusters. To solve and
relax this optimization problem, we need to introduce the
constraint hθ (D)-Wθ (D) = 0 into the objective function using
the Lagrange multiplier λ. We then use an unconstrained
optimization algorithm such as dual gradient descent to find
the optimal weights minimizing the objective function. Let
L : R(

n
2) × R→ R be the Lagrangian function, which takes

the constraint in the primal problem (22) and integrates it into
the objective function L(·):

L(θ, λ) =
1
2
(fθ (D)− hθ (D))2 + λ(hθ (D)−Wθ (D))

=

{
L(θ ), if hθ (D)−Wθ (D) = 0
+∞, if hθ (D)−Wθ (D) 6= 0 and λ→+∞

(23)

The weight vector θ is referred to as primal variable, and λ as
dual variable. If the constraint in (22) is satisfied, our objec-
tive function remains the same, otherwise, since we have
included a non-zero term in the objective function, we need to
associate a penalty to the violation of the constraint by using
the scalar parameter λ > 0. Now, let us define the Lagrange
dual function ξ : R→ R over λ:

ξ (λ) = inf
θ∈R(

n
2)

L(θ, λ) (24)

where inf is the infimum (i.e., the greatest lower bound) over
the weight vector θ . The minimum value of the Lagrange dual
function is a lower bound on the optimal value of the original
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FIGURE 2. (a): 6× 6 similarity matrix from the six databases shown in Table 1. (b): represents the graphs corresponding to goodness(D) [22],
goodness2(D)× 2 [25], goodness3(D)× 2 [23], the Silhouette coefficient ×2 [39], the number of clusters and our loss function L(θ)÷ 2.

TABLE 8. Computing our loss function L(θ) on all the candidate clusterings generated from the six databases shown in Table 1.

loss function (See Theorem 2). That is, if θ̂ is the minimum
of the original loss L(·) then:

ξ (λ) = inf
θ∈R(

n
2)

L(θ, λ) ≤ L(θ̂ , λ) = L(θ̂ ) (25)

Therefore, solving the Lagrange dual problem corresponds
to finding the best lower bound on the optimal value of
the primal problem in (22). To do so, we need to solve the
following maximization problem:

max
λ∈R

ξ (λ) =max
λ∈R

min
θ∈R(

n
2)

L(θ, λ) (26)

Since min
θ

L(θ, λ) does not have a simple closed form solu-

tion, dual gradient descent is used to solve the Lagrange
dual problem. In fact, as shown in [65], by performing gra-
dient descent on the primal variable θ while doing gradient

ascent on the dual variable λ, the algorithm eventually con-
verges to the critical points of the Lagrangian L(θ, λ). Then,
by plugging back the solution θ (i) into the original function
L(·), we check if the final convergence test holds. That is,
if L(θ (i)) ≤ L(θ (i−1)), then θ (i) is the local minimum solution
at the iteration i. Otherwise, since L(·) is quasi-convex (See
Theorem 3), θ (i−1) is returned as the global minimizer of L(·).

The gradient vectors ∇θL(θ, λ) and ∇λL(θ, λ) are calcu-
lated as follows:

∇θL(θ, λ)

=

[
∂L(θ, λ)
∂θ0,1

,
∂L(θ, λ)
∂θ0,2

, . . . ,
∂L(θ, λ)
∂θn−2, n−1

]T
= (−fθ (D)+ hθ (D)+ λ)× X � (∇θg(θ)−∇θϕ(θ ))

= (−fθ (D)+ hθ (D)+ λ) ×
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FIGURE 3. The graph representations of the candidate clusterings shown in Table 8. The figure depicts 6 candidate clusterings obtained at different
similarity levels δi ∈ [0,1], i = 1 · · ·6 and the value of our loss function L(θ) for each candidate clustering. The optimal clustering obtained at the global
minimum min L(θ) = 0.0039 is {D1,D2,D3}, {D4,D5,D6}.



sim(D0,D1)× (
∂g(θ0,1)
∂θ0,1

−
∂ϕ(θ0,1)
∂θ0,1

)

sim(D0,D2)× (
∂g(θ0,2)
∂θ0,2

−
∂ϕ(θ0,2)
∂θ0,2

)

...

sim(Dn−2,Dn−1)× (
∂g(θn−2,n−1)
∂θn−2,n−1

−
∂ϕ(θn−2,n−1)
∂θn−2,n−1

)


∇λL(θ, λ)

=
∂L(θ, λ)
∂λ

= (hθ (D)−Wθ (D))

The math operator� represents the element-wise multiplica-
tion. Finally, given a learning rate value η, the parameters θ (i)

and λ(i) at the iteration i are updated iteratively as follows:

θ (i) = θ (i−1) − η(−fθ (i−1)(D)+ hθ (i−1)(D)+ λ(i−1))

×X �∇θ (i−1)g(θ
(i−1)) (27)

λ(i) = λ(i−1) + η(hθ (i) (D)−Wθ (i) (D)) (28)

As demonstrated in [65], the differential optimization algo-
rithm will converge to a stationary point of the Lagrangian
L(θ, λ) when performing gradient descent on θ while doing
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FIGURE 4. (a): 8× 8 similarity matrix from the experiments performed in [25]. The pairwise similarities are computed between eight databases generated
from a synthetic dataset T10I4D100K [64]. (b): represents the graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25], goodness3(D)× 10 [23],
the Silhouette Coefficient SC × 10 [39], the number of generated clusters and our loss function L(θ).

gradient ascent on λ (i.e., notice how λ(i−1) is incremented
by the gradient ∇λ(i−1)L(θ (i), λ(i−1))). Therefore, we end up
calculating a good local minimum of the original objective
L(θ ) under the constraint hθ (D) − Wθ (D) = 0, and since
L(θ ) is quasi-convex (See Theorem 3), the obtained local
minimum is nothing but the global minimizer of L(θ ).
Theorem 2: Let θ̂ be the optimal weight vector of the

primal problem defined by the original objective function L(·)
and λ ∈ R. The following inequality is satisfied:

min
θ∈R(

n
2)

L(θ, λ) ≤ L(θ̂ ) (29)

Proof: The minimum value of the Lagrangian is less
than or equal to the value of the Lagrangian evaluated at
another value, say θ̂ . Therefore, we have :

min L(θ, λ) ≤ L(θ̂ , λ)

=
1
2
(f
θ̂
(D)−h

θ̂
(D))2−λ

��
���

���:0
(h
θ̂
(D)−W

θ̂
(D))

= L(θ̂ )

The factor of λ is canceled out because θ̂ is the optimal
solution of the original objective L(·), which means it is fea-
sible and it verifies the equality constraint h

θ̂
(D) = W

θ̂
(D).

Hence, by solving the Lagrangian (i.e., the relaxed problem),
we obtain a lower bound on the optimal value of the original
objective function L(·) �

6) QUASI-CONVEXITY OF THE LOSS FUNCTION
The examples presented above in Fig. 2 and Fig. 4 show that
our proposed loss function exhibits a quasi-convex behavior.
That is, it decreases to the global minimum and then increases
from that point on. In this subsection, we attempt to prove our
claim mathematically.
Theorem 3: The proposed loss function L is quasi-convex

satisfying the following inequality given in [66]:

L(εθ (i) + (1− ε)θ (i+1)) ≤ max{L(θ (i)),L(θ (i+1))} (30)

for all θ (i), θ (i+1)∈ R(
n
2) and ε ∈ [0, 1] (31)

A continuous function L : R(
n
2)→R is quasi-convex if and

only if at least one of the following conditions cited in [66]
holds true:
• L is non-decreasing.
• L is non-increasing.
• There is a vector θ (i) ∈ R(

n
2), such that for θ (i−1) ≤

θ (i), L is non-increasing, and for θ (i+1) ≥ θ (i), L is non-
decreasing and θ (i) is the global minimizer of L.
Proof: To demonstrate that L(θ ) is quasi-convex,

we need to prove the validity of (30). First, We have fθ (D)
is a non-increasing function on the unit interval [0,1], and
hence is both quasi-convex and quasi-concave satisfying the
following inequality:

f (εθ (i) + (1− ε)θ (i+1)) ≤ max{f (θ (i)), f (θ (i+1))}

for all θ (i), θ (i+1)∈ R(
n
2) and ε ∈ [0, 1]

On the other hand, Wθ (D) is a non-decreasing function on
[0,1] and is also both quasi-convex and quasi-concave satis-
fying the following inequality:

W (εθ (i) + (1− ε)θ (i+1)) ≥ min{W (θ (i)),W (θ (i+1))}

for all θ (i), θ (i+1)∈ R(
n
2) and ε ∈ [0, 1]

By subtracting the two last inequalities, we get the following:

(f (εθ (i) + (1− ε)θ (i+1))−W (εθ (i) + (1− ε)θ (i+1)))

≤ (max{f (θ (i)), f (θ (i+1))} −min{W (θ (i)),W (θ (i+1))})

Since f (θ (i)) ≥ f (θ (i+1)) and W (θ (i)) ≤ W (θ (i+1)), the right
side of the resulting inequality is equal to f (θ (i)) − W (θ (i)),
which is set equal to max{f (θ (i)) − W (θ (i)), f (θ (i+1)) −
W (θ (i+1))}. Then, by squaring and dividing both sides of the
inequality by two, we get a variation on Jensen’s inequality
for quasi-convex functions [66] as defined in (30). Therefore,
our proposed loss function is quasi-convex. �

D. PROPOSED CLUSTERING MODEL
Let G = (D,E) be a similarity graph, such that D =

{D0,D1, . . . ,Dn−1} represents the vertex set of n transaction
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databases and E represents the edge set, which is initially
empty, E ← ∅. First, each transaction database Dp (p =
0 . . . n − 1) is mined using FP-Growth algorithm [3]. After-
ward, we call our similarity function sim (3) on the local
frequent itemsets (FIs) to compute the

(n
2

)
pairwise simi-

larities between the n databases denoted by XT , such that
XT = [sim(D0,D1), sim(D0,D2), . . . , sim(Dn−2,Dn−1)].

Each similarity value sim(Dp,Dq) ∈ [0, 1] is associated
with a weight θp,q ∈ R such that similar databases will have
a weight θp,q ≥ 1, and dissimilar databases will be associated
to a weight θp,q ∈ [0, 1[. We also note that database pairs
(Dp,Dp) with the largest weight θp,q are the first to be put
into the same cluster. Let θT = [θ0,1, θ0,2, . . . , θn−2,n−1]
and XT be the parameters and the input vector fed into our
perceptron-based neural network model, respectively. The
proposed model is adapted to our unsupervised learning task.
In fact, we do not try to learn the hyperplanes or decision
boundaries to classify a training data in a supervised way
(e.g., logistic regression) given their respective class labels.
Instead, we use a feed-forward neural network to model the
intra-cluster similarityWθ (D), which is plugged into our loss
function.

The simplest and straightforward way to model the
similarity intra-cluster in our loss function is to use
a weighted sum of the pairwise similarities, that is,
Wθ (D) =

∑n−2
p=0

∑n−1
q=p+1 sim(Dp,Dq)× ϕ(θp,q), where each

term ϕ(θp,q) ∈ {0, 1} decides whether the corresponding
similarity value sim(Dp,Dq) should take part in calculating
Wθ (D). That is, if ϕ(θp,q) = 1, an edge is added between Dp
and Dq in G, sim(Dp,Dq) is added up toWθ (D), the number
of clusters is decremented by one and the corresponding
databases {Dp,Dq} are put into the same cluster. Otherwise,
if ϕ(θp,q) = 0, we just keep updating the weights θp,q
using gradient descent and back-propagation until conver-
gence. Adding hidden layers between the input layer and
the output unit (as it is the case in multi-layer perceptron
(MLP) and deep neural networks (DNN)), will just add
new weights and more complexity to our model, when we
can simply model our loss function using one input layer,
consisting of the pairwise similarities, and one output unit
computingWθ (D).

After obtaining the
(n
2

)
similarity values and initializing the

learning rate η, our approach could be described as follows:
initially, the weight vector θ is set equal to the input vector
X , then we use dual gradient decent with back-propagation
to train our model to find the optimal weights minimizing
our quadratic quasi-convex loss function L(θ ). Through each
learning cycle η, the weights θp,q (i.e., the primal variables)
are updated by making adjusted steps in the opposite direc-
tion of the gradient of the Lagrangian denoted by the term
−η∇θL(θ, λ), while the Lagrangemultiplier λ (i.e., dual vari-
able) is updated by moving in the direction of the gradient of
the Lagrangian denoted by the term+η∇λL(θ, λ). Afterward,
the weights θp,q that exceed the maximum value of one, will
have their corresponding database pairs {Dp,Dp} put into the
same cluster.

The number of clusters fθ (D) is initially set to the number
of databases n. Then, by introducing fθ (D) into the loss func-
tion L(θ ), our algorithm automatically determines the optimal
number of clusters that leads to minimizing L(θ ). In order to
maintain and track the database clusters, their sizes and their
number fθ (D), we use a disjoint-set forest data structure [67]
consisting of an array of n integers managed by two main
operations union and cluster. The union subroutine is used
to link two disjoint clusters (each cluster is represented by
a tree) by making the root of the smaller tree point to the
root of the larger one. On the other hand, the cluster function
is called recursively to find the cluster label assigned to the
database parameter by moving down the tree towards the
root. The pseudo-codes of cluster and union are provided in
Algorithm 2 and Algorithm 3, respectively.

The algorithm terminates once the global minimum of the
loss function has been reached. That is, for each iteration i,
if L(θ (i−1)) ≥ L(θ (i)), the algorithm updates the weights,
the number of clusters, the cluster labels and then stores
a copy of the clustering found so far. Otherwise, L(θ (i−1))
is the actual global minimum, and therefore, the algorithm
outputs the optimal clustering of the n multiple databases at
iteration i− 1. The overall time complexity of our algorithm
is O(k ×

(n
2

)
), such that k is the number of iterations before

convergence and
(n
2

)
=

n2−n
2 is the size of the weight vector

θT . The proposed model is illustrated in Fig. 5.

1) LEARNING RATE TUNNING
Decaying the initial value of the learning rate is an impor-
tant hyper-parameter tunning in gradient-based learning algo-
rithms. In fact, choosing a small learning rate may prevent
the neural network to learn the optimal weights, whereas a
large learning rate may let gradient descent overshoot the
global minimum. Therefore, it is often beneficial to decrease
the learning rate over time as we approach convergence.
Initially,we set the learning rate η equal to a certain design
value η0 ∈ {1e−1, 1e−2, 1e−3 . . . , 1e−10}. We then use a
standard decay schedule to decrease η at each iteration i as
follows:

η = η0 ×
1.0

1.0+ decay_rate× i
(32)

such that decay_rate ∈ [1e−1, 1] is another constant hyper-
parameter that determines the rate by which η0 is decayed,
and i is the current iteration number, also called epoch. A grid
search is then conducted to sample a randomly set of points
(η0, decay_rate) within a two dimensional grid in order to
explore the values returning the optimal weights.

2) EDGE INDEXING
Theorem 4: Let (Dp,Dq) be the k-th database pair such

that p = 0 to n − 2, q = p + 1 to n − 1 and k = 1 to
(n
2

)
.

Then, the indices p and q can be obtained as follows:

p = n− 1− ε (33)
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FIGURE 5. The proposed clustering model illustrated in steps numbered from (1) to (9). After step (3), the algorithm iterates over the steps (4)-(7). If the
convergence test at step (7) is satisfied, the procedure terminates at step (8a), otherwise, the loop continues after steps (8b) and (9).

11160 VOLUME 9, 2021



S. Miloudi et al.: Gradient-Based Clustering for Multi-Database Mining

q = (p+ 1)+ ε(ε + 1)/2−
((

n
2

)
− k + 1

)
(34)

where

ε =


(√

8×
((n

2

)
− k + 1

)
+ 1− 1

)
2

 ,
(
n
2

)
=
n2 − n

2

The operator d·e returns the least integer greater than or equal
to the argument.

Proof: Let M be the n × n similarity table built using
the similarity measure (3). Because M is a symmetric matrix,
we would just consider the entries above the main diagonal.
Precisely, there are

(n
2

)
similarity values associated with

(n
2

)
edges indexed from 1 to

(n
2

)
.The 1st row of M is associated

with n−1 edges (D0,D1), (D0,D2), . . . , (D0,Dn−1), the 2nd

row with n − 2 edges (D1,D2), (D1,D3), . . . , (D1,Dn−1),
and so on until the last row, the (n − 1)th row, which is
associated with one edge (Dn−2,Dn−1). Thus, the last ε rows
in M are associated with ε(ε + 1)/2 edges. For a given
edge index k , there are

(n
2

)
− k + 1 edges counting from

the k th edge to the last edge, the
(n
2

)th edge. To find the
row index p of the k th edge, we have to subtract ε from
n − 1, such that ε is the integer value that satisfies the
following: ε(ε + 1)/2 ≥

(n
2

)
− k + 1. By solving the

inequality we find: (ε + 1/2)2 ≥ (8
((n

2

)
− k + 1

)
+ 1)/4,

ε ≥
(√

8×
((n

2

)
− k + 1

)
+ 1− 1

)
/2. Therefore, p = n −

1 − ε such that ε =
⌈(√

8×
((n

2

)
− k + 1

)
+ 1− 1

)
/2
⌉
.

The column index of the first edge in row p is always p + 1.
Hence, to find the column index q of the k th edge, we have
to add the offset (ε(ε + 1)/2−

((n
2

)
− k + 1

)
) to the column

index p+ 1. �
The proposed edge indexing is an index to vertices map-

ping that reduces the space required to store the n2 similar-
ity matrix by more than half. Therefore, instead of storing
the

(n
2

)
similarity values in a contiguous symmetric table of

size n2, we just need to allocate a one-dimensional array of(n
2

)
floats in the main memory. Then, for each index k =

1 . . .
(n
2

)
, we can use equations (33) and (34) to retrieve the

corresponding end-vertices (Dp,Dq) in a constant time O(1).
It is worth noting that all the symmetric similarity matrices
depicted in this article are only shown for illustrative pur-
poses. In practice, they are represented by

(n
2

)
float arrays

in the main memory. Assuming we have a large number of
objects to cluster, say n = 10, 000. The naive approach to
storing a n2 similarity matrix requires n2 floats=10, 0002×8
bytes≈762.93 megabytes. Although there is no useful infor-
mation in capturing the main diagonal (i.e., sim(Di,Di) = 1)
and the lower off-main diagonal entries (i.e., sim(Dj,Di) =
sim(Di,Dj)), the traditional approach allocates 64-bit for
every single similarity value. Now, storing only the upper off-
main diagonal values requires

(n
2

)
floats≈381.43 megabytes.

That is a 381.50 megabytes savings, with nearly no time
overhead.

E. DATA STRUCTURE AND ALGORITHMS
In this section, we present and analyze the pseudo-code of our
gradient-based clustering algorithm for multi-database min-
ing shown in Algorithm 1: GDMDBClustering, which uses
the two subroutines given in Algorithm 2: cluster and Algo-
rithm 3: union. The proposed algorithm follows an agglomer-
ative approach, where it starts with n singleton clusters, then
database pairs are gradually merged until convergence to the
global minimum of the loss function L(θ ). We use the nota-
tion superscript i enclosed in round brackets, i.e., θ (i)p,q, to indi-
cate the iteration at which a variable θp,q has been assigned
a value. Our algorithm takes the number of learning cycles,
the initial leaning rate η0 and the

(n
2

)
pairwise similarities

XT = [sim(D0,D1), sim(D0,D2), . . . , sim(Dn−2,Dn−1)] as
arguments, and then outputs the optimal clustering at which
the loss function L(θ ) reaches the global minimum.

Lines 2 to 10 initialize the model parameters and the vari-
ables used in our algorithm. At line 2, the weight vector θT =
[θ0,1, θ0,2, . . . , θn−2,n−1] is set to XT . The time complexity
of line 2 is O(

(n
2

)
). At line 3, we initialize the disjoint-set

forest data structure [67] used to maintain the cluster labels
assigned to the nmultiple databases. It consists of an array A
of n integers managed by two operations union and cluster.
Initially, we set A[p] to (-1) for p = 0 to n − 1. That is,
each database Dp is in the cluster Cp of size |A[p]|=1 (i.e.,
singleton), and p is the root node of the tree representing Cp
in the disjoint-set data structure A. The time complexity of
line 3 is O(n).
At line 4, we use an array B to record the weights θp,q

that have already exceeded the maximum unit value, so as to
avoid checking their corresponding databases (Dp,Dq) later
in the algorithm. The time complexity of line 4 is O(

(n
2

)
).

At lines 5-7, we initialize the rest of the variables. That is,
we set the current number of clusters fθ (0) (D) to n, whereas the
Lagrange multiplier λ(0) is set to the root of the Lagrangian,
and the intra-graph similarity Wθ (0) (D) is set to zero. The
time complexity of each line of code from 5 to 7 is constant
O(1). At line 8, we calculate the hypothesis function hθ (0) (D),
which is defined as the dot product of the input XT and the
normalized weight vector g(θ (0)). The time complexity of line
8 is O(

(n
2

)
). At lines 9 and 10, we calculate the loss function

L(θ (0)) and initialize the iteration number, respectively.
At line 11, the while-loop iterates over the model param-

eters (i.e., the weight vector θ (i) and the Lagrange multiplier
λ(i)) and the cluster labels to make the required updates. In the
worst case, the loop terminates once the maximum number
of iteration has been reached or once the number of clusters
fθ (i) (D) becomes 1. At line 12, we update the learning rate.
At lines 13 and 14, the weight vector θ (i) and the Lagrange
multiplier λ(i) are updated using the equations (27) and (28)
respectively. The time complexity of lines 13 and 14 is dom-
inated by the size of the weight vector, which is estimated
to be O(

(n
2

)
). At line 15, we get the indices of the weights

that have just reached the maximum unit value and store
them into index_vec. This line takes O(

(n
2

)
) time. At lines 16-
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Algorithm 1: GDMDBClustering

Data: n: number of databases, XT = [sim(D0,D1), sim(D0,D2), . . . , sim(Dn−2,Dn−1)]: pairwise similarity values
Hyper-parameters: epochs: number of learning cycles, η0: initial learning rate, decay_rate: decay rate
Result: Abest [0 . . . n− 1]: cluster labels assigned to the n databases, fθ (i) (D): number of clusters.

1 begin
2 θ (0)← X F Initialize the weight parameters

3 for p← 0 to n− 1 do A[p]←−1 F Initialize the labels assigned to the n databases

4 for k ← 0 to
(n
2

)
− 1 do B[k]← false F Vector B records which edges have already been processed

5 fθ (0) (D)← n F Initialize the number of clusters

6 λ(0)←−(fθ (0) (D)− hθ (0) (D)) F Initialize the Lagrange multiplier

7 Wθ (0) (D)← 0 F Initialize the intra-graph similarity at iteration 0

8 hθ (0) (D)← XT · g(θ (0)) F Compute the hypothesis function at iteration 0

9 L(θ (0))← (0.5)× (fθ (0) (D)−Wθ (0) (D))2 F Compute the loss function at iteration 0

10 i← 1 F Initialize the iteration counter

11 while i < epochs ∧ fθ (i) (D) > 1 do
12 η← η0 ÷ (1+ decay_rate× i) F Update the learning rate

13 θ (i)← θ (i−1) − η∇θ (i−1)L(θ (i−1), λ(i−1)) F Update the weight vector using (27)

14 λ(i)← λ(i−1) + η ∇λ(i−1)L(θ (i), λ(i−1)) F Update the Lagrange multiplier using (28)

15 index_vec← argwherek (ϕ(θ (i)) = 1 ∧ B = false) F Get the edge indices with weights ≥ 1

16 for k ∈ index_vec do
17 Let (Dp,Dq) be the k-th database pair F Vertices (Dp,Dq) obtained by equations (33) and (34)

18 B[k]← true F Mark the current edge as already processed

19 Cp← cluster(p,A) F Get the cluster label assigned to Dp

20 Cq← cluster(q,A) F Get the cluster label assigned to Dq

21 if Cp 6= Cq then
22 union(Cp,Cq,A) F Cluster merging: link the smaller cluster to the larger one

23 fθ (i) (D)← fθ (i−1)(D)− 1 F Decrement the number of clusters after a union operation

24 Wθ (i) (D)← XT · ϕ(θ (i)) F Compute the intra-graph similarity at iteration i

25 hθ (i) (D)← XT · g(θ (i)) F Compute the hypothesis function at iteration i

26 L(θ (i))← (0.5)× (fθ (i) (D)−Wθ (i) (D))2 F Compute the loss function at iteration i

F Test the criterion of optimality

27 if L(θ (i)) ≤ L(θ (i−1)) then
28 Abest [0 . . . n− 1]← A[0 . . . n− 1] F Store the current clustering

29 else
30 break while loop F Algorithm terminates after reaching the global minimum

31 i← i+ 1

32 return(Abest , fθ (i−1)(D))

23, the for-loop examines each index k in index_vec to get
the cluster labels and update the number of clusters fθ (i) (D)
accordingly.

At line 17, we use the equations (33) and (34) to deter-
mine the database pair (Dp,Dq) located at the index k. Then,
at line 18, the corresponding k-th weight is marked as already
processed. At lines 19 and 20, the function cluster is called
on both Dp and Dq to determine their corresponding cluster
labels. If A[p] < 0, then p the root node of the tree represent-
ing the cluster Cp, and cluster(p,A) returns p as the cluster
label assigned to Dp, such that |A[p]| is the size of Cp (i.e.,
the number of databases in Cp). Otherwise, if A[p] ≥ 0,
then a recursive call of cluster(p,A) returns the cluster label

assigned to Dp by moving down the tree from the node p
towards the root node.

Once we have the two cluster labels, we test whether the
two databases Dp and Dq belong to different clusters at line
21. If cluster(p,A) is equal to cluster(q,A), then Dp and
Dq are already in the same cluster and therefore, no change
occurs. Otherwise, a union operation is performed to link the
root of the smaller tree (i.e., smaller cluster) to the root of the
larger one (i.e., larger cluster) at line 22.

After each union operation, the size of the resulting cluster
is set to the sum of the two cluster sizes and the number of
clusters fθ (i) (D) gets decremented by one at line 23. The time
complexity of a cluster operation is estimated to be O(α(n)),
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Algorithm 2: cluster
Data: A[0..n-1]: Array representing the n cluster labels

p: the index of Dp in A[0..n-1]
Result: The cluster label of Dp

1 begin
2 if A[p] ≥ 0 then

F If p is not a root node then
move down the tree towards the
root

3 A[p]←cluster(A[p], A)
4 return A[p]
5 end
6 else
7 return p F return the root
8

9 end
10 end

Algorithm 3: union
Data: A[0..n-1]: Array representing the n cluster labels

Cp, Cq: Two cluster labels (root nodes)
Result: Applies an updating operation on array A

1 begin
2 if |A[Cp]| > |A[Cq]| then
3 A[Cp]← A[Cp]+ A[Cq] F sum up the

two cluster sizes
4 A[Cq]← Cp F establish a link to

the root of the larger cluster
5 end
6 else
7 A[Cq]← A[Cq]+ A[Cp]
8 A[Cp]← Cq
9 end
10 end

where α(n) is a function that grows very slowly, also known
as the inverse of the Ackermann function [67]. In practice,
α(n) ≤ 4, and we have α(n) > 4 for very large n values
� 1080 as demonstrated in the chapter Data Structures for
Disjoint Sets [67]. In the other hand, the time complexity of a
union operation is constantO(1). Therefore, the running time
of the for-loop at line 16 is O(

(n
2

)
).

At lines 24 and 25, the cost of calculating the intra-cluster
similarity Wθ (i) (D) and the hypothesis function hθ (i) (D) is
O(
(n
2

)
). At line 26, we calculate the loss function L(θ (i)) at the

i-th iteration in a constant timeO(1). At lines 27-30, we check
the condition of optimality and see whether the global mini-
mum of the cost function has been reached. That is, for each
iteration i, if L(θ (i)) ≤ L(θ (i−1)), the algorithm stores a copy
of the optimal clustering found so far and performs the next
iteration. Otherwise, L(θ (i−1)) is the global minimum, and
consequently, the algorithm returns the final clustering of the
n multiple databases at iteration i − 1. The time complexity

of lines 27-30 is influenced by the operation of copying the n
cluster labels. However, we can easily manage to delete this
step by adding nlog2(n) extra bits to the disjoint-set forest
data structure. This will help to store a copy of an individual
cluster label before updating it. Therefore, the overall time
complexity of our algorithm is O(k(

(n
2

)
)) such that k is the

number of iterations before convergence and (
(n
2

)
) is the size

of the weight vector θT .

IV. RESULTS AND DISCUSSION
In this section we present our experimental setup, data pre-
processing step and discuss the obtained results in details.

A. DATA PREPARATION AND EXPERIMENTAL SETUP
To assess the performance of our algorithm in terms of accu-
racy and running time, we have conducted various experi-
ments on public and synthetic data samples generated for
clustering. We carried out the experiments on real world
datasets, including Mushroom, Zoo and Iris, available for
download from the UCI Machine Learning Repository [68],
and we used a synthetic dataset T10I4D100K available on
the Frequent Itemset Mining Dataset Repository [64]. These
datasets are heterogeneous in terms of size (i.e., number
of rows), number of clusters and number of rows per clus-
ter. For multi-database mining scenario, we divided each
dataset horizontally into n ∈ {4, 6, 10, 12} partitions denoted
D1,D2, . . . ,Dn. Then, by varying the minimum support
threshold α ∈ {0.03, 0.2, 0.5}, we got different sets of
frequent itemsets (FIs) using FP-Growth algorithm [3]. The
details of the partitions and the FIs mined from each partition
are presented in Table 9.

Once the data-preparation is done, we use our similarity
measure sim (3) on the pairs of database partitions from each
dataset to compute the similarity matrices we need for our
experiments. Afterward, we cluster the database partitions
using our proposed algorithm equipped with our loss func-
tion L(θ ) and BestDatabaseClustering [24] equipped with
one of the three goodness measures, namely goodness(D)
[22], goodness2(D) [25], goodness3(D) [23]. We chose the
algorithm BestDatabaseClustering [24] as a baseline for our
experiments because it is the fastest in practice as it was
proven by the theoretical and experimental results obtained
by the authors in [24]. For visualization purposes and due
to scale differences, we multiply both of goodness2(D) [25]
and goodness3(D) [23] by a factor of 10 to stretch them in
the y-axis direction and sometimes divide L(θ ) by a factor
of 10 or 2 to shrink it in the y-axis direction. The obtained
results in terms of clustering, synthesized FIs from each
cluster and running time are used for our evaluation and
comparative study.

We present all the experimental results in Fig. 6 to Fig. 12
with all the details summarized in Table 10, where δ ∈ [0, 1]
in Table 10 denotes the optimal similarity level at which each
clustering quality measure reaches its optimal value (maxi-
mum or minimum). Additionally, η0 = 0.001 is the learning
rate specified at the start of the training, and max_epochs =
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TABLE 9. Details of the datasets, their partitions and the frequent itemsets (FIs) distribution per partition and per cluster under a minimum support
threshold α.

1000 is the maximum number of iterations set for all the
experiments. The learning rate decreases with each epoch i
using (32). We should note that the global optimum (mini-
mum or maximum) of each goodness evaluation measure is
shown as a black point on its corresponding graph. In Table 9,
we compare the number of frequent itemsets (FIs) mined
from the whole dataset (the fifth column of Table 9) with the
FIs synthesized from the individual ground truth clusters (the
most right column of Table 9). The purpose is to demonstrate
the importance of clustering the multiple databases into cohe-
sive groups prior to mining the global patterns.

All the algorithms have been implemented in Python ver-
sion 3.6.7 and run on Google Colaboratory, a free Jupyter
notebook environment running on Ubuntu-18.04 server
equipped with Intel(R) Xeon(R) CPU clocked @2.30GHz
with 12.6 GB available RAM and 33 GB available Disk.

B. EXPERIMENTAL RESULTS AND DISCUSSION
1) QUASI-CONVEXITY ANALYSIS AND CLUSTERING
ACCURACY
We ran the first part of our experiments on some similarity
matrices computed during the data preparation step and on

some matrices taken from the experiments done in [22],
[23], [36] . The purpose of this study is to plot and analyze
the behavior of the graphs produced by our proposed loss
function L(θ ) and the existing clustering evaluation measures
in [22], [23], [25]. We also compare the clustering returned
by our algorithm with the cluster labels generated by Best-
DatabaseClustering [24]. The experimental results are shown
in Fig. 6 to Fig. 12. Each figure depicts two subfigures, (a)
and (b), which represent, respectively, the heat-map similarity
matrix of size n × n and the graphs corresponding to our
loss function L(θ ), the number of generated clusters, the Sil-
houette coefficient SC [39], goodness(D) [22], goodness2(D)
[25] and goodness3(D) [23].
We note that, the heat-map similarity matrix provides a

visual tool for external clustering assessment, such that a
darker color corresponds to a higher similarity value, whereas
a brighter color corresponds to a lower similarity value.
Therefore, unlike dissimilar databases, similar databases tend
to form homogeneous color regions representing the clusters
we need to discover. When the actual number of clusters
and class labels are unknown such as the case for dataset
T10I4D100K [64], we use the clustering labels produced at
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TABLE 10. Clustering results shown in figures Fig. 6 to Fig. 12 obtained using the different evaluation measures, goodness(D) [22], goodness2(D) [25],
goodness3(D) [23], the Silhouette Coefficient SC [39] and our proposed loss function L(θ), where δ is the similarity level corresponding to the global
optimum of each clustering evaluation function.

the maximum value of the Silhouette coefficient SC [39] as a
ground truth indicator for comparison.

Let us start our experiments by considering the
same dataset example presented in [22]. Let D =

{D1,D2, . . . ,D7} be a set of seven transaction databases,
where each database has set of transactions enclosed in
parentheses and each transaction has some items separated
by commas as shown in Table 11.

The number of transactions corresponding to the seven
databases are 3, 3, 3, 4, 4, 3 and 4, respectively. Let α = 0.42
be the minimum support threshold set by the user. The FIs
mined in each local database are given in Table 12. If we use
the equation given in (1) to compute the global support of
each itemset Ik ∈ ∪7p=1{FIS(Dp, 0.42)} in the whole dataset
D, we notice that all the synthesized global itemsets are
infrequent (i.e., ∀ Ik ∈ FIS(D, 0.42), supp(Ik ,D) < α =

0.42). Therefore, no novel pattern has been found. This is
because irrelevant databases took part in the synthesizing
process. Now, let us cluster the seven databases using our
algorithm and BestDatabaseClustering [24] equipped with
the goodness measures goodness(D) [22], goodness2(D) [25]
and goodness3(D) [23]. The obtained results are shown in
Fig. 6 and Table 10.

From Fig. 6 (b) and the first row of Table 10, we can
see that using our loss function L(θ ) and goodness(D)
[22], we succeeded in finding the optimal clustering,
C1 = {D1,D2,D3},C2 = {D4},C3 = {D5,D6,D7} at

TABLE 11. Transaction databases (TD) from [22].

δ = 0.44 with a maximum Silhouette coefficient SC(D) =
0.46. Conversely, goodness2(D) [25] and goodness3(D) [23]
have failed to identify the expected clustering that maximizes
the Silhouette coefficient. Moreover, we notice that our loss
function has a quasi-convex behavior, which allows us to end
the clustering process just after the global minimum point.
On the other hand, goodness(D) [22] and goodness2(D) [25]
have few local optimum points, which requires the algorithm
to continue visiting all the similarity levels before terminating
and returning the optimal clustering.

Now, using the same synthesizing model in (1) on
each cluster separately, we discover new valid frequent
itemsets with a support above the minimum support
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TABLE 12. Frequent itemsets (FIs) mined from databasesDi in Table 11
under a minimum support threshold α = 0.42 and for i = 1 to n = 7.

threshold α = 0.42. Precisely, FIS(C1, 0.42) =

{〈A, 1〉, 〈AC, 0.77〉, 〈C, 0.77〉},FIS(C2, 0.42)=FIS(D4, 0.42)
and FIS(C3, 0.42) = {〈I , 0.818〉, 〈IH , 0.54〉, 〈H , 0.63〉}.
In other words, more than 77% of the transactions in C1
contain itemsets A, AC and C , and more than 54% of the
transactions in C3 contain I , IH and H . As we can see,
analyzing the local frequent itemsets coming from the same
cluster allowed us to discover novel and useful information
for the decision making process.

Next, we have conducted some experiments on the real-
world and synthetic datasets described in Table 9. We notice
in Fig. 7 (b) and Fig. 12 (b) (the second and seventh rows
of Table 10) that goodness2(D) [25] and goodness3(D) [23]
reach their optimum values when the number of clusters
f (D) = 1, that is, when all the databases are in the same
cluster. The same behavior occurs in Fig. 8 (b), Fig. 11 (b) and
Fig. 12 (b) (the third, the sixth and seventh rows of Table 10)
where both goodness(D) [22] and goodness2(D) [25] have
identified the trivial 1-class clustering as optimal. Using our
loss function L(θ ) instead, we were able to find the clustering
maximizing the Silhouette coefficient SC . In fact, we can see
that in Fig. 12 (b) and the seventh row of Table 10, our loss
function was the only one to identify the optimal clustering
at δ = 0.846.
From the above experiments, we observe that goodness(D)

[22], goodness2(D) [25] and goodness3(D) [23] are neither
quasi-convex nor quasi-concave on the whole set of the
similarity domain. Consequently, we notice the presence of
local optima, which makes finding the global optimum an
NP-hard problem due to the unpredictable behavior of the
objective. On the other hand, L(θ ) is quasi-convex with no
local minima. That is, for any two multi-dimensional weight
vectors θ (i), θ (i+1)∈ R(

n
2), such that L(θ (i)) ≥ L(θ (i+1)),

the line joining the points (θ (i),L(θ (i))) and (θ (i+1),L(θ (i)))
lies above the graph of the loss function L(θ ), which is the
case in all the figures from Fig. 6 to Fig. 12. Therefore, using
L(θ ), our algorithm guarantees convergence to the global
minimum.

TABLE 13. Frequent itemsets (FIs) mined from the database partitions
Di of the Iris dataset under a minimum support threshold α = 0.2 for
i = 1 to n = 6.

In Table 9, we show the ground-truth clustering and com-
pare the FIs mined from a whole dataset (the fifth column of
Table 9) against the FIs mined from each individual cluster
of the same dataset (the most right column of Table 9).
We can clearly see that mining the datasets Zoo [68] and
Iris [68] under a predefined minimum support threshold α
does not return any valid frequent itemset (FI). Exceptionally,
in Mushroom [68], only few noisy patterns have been mined.
On the other hand, synthesizing the global patterns from each
individual cluster of the datasets Zoo [68] and Iris [68], results
in improving the quality of the global patterns mined from
each dataset, which is indicated by the number of useful
patterns obtained from each cluster.

To support these observations, let us examine in details
the clustering applied on the Iris dataset. Let Diris =

{D1,D2, . . . ,D6} be the set of six database partitions
obtained from the Iris dataset such that each database has
25 instances from one of the three classes C1=Iris-Setosa,
C2=Iris-Versicolour or C3=Iris-Virginica. The details of
the 6 partitions are given in Table 9. We note that each
sample in Diris has 4 attributes, namely A1: ‘‘Sepal length
in cm’’, A2: ‘‘Sepal width in cm’’, A3: ‘‘Petal length in
cm’’ and A4=‘‘Petal width in cm’’. Therefore, the names
of the FIs mined from each partition Di are in the form of
‘‘Attribute=length/width’’.

Let α = 0.2 be the minimum support threshold set by the
user. The local frequent itemsets (FIs) mined in each local
database partition are given in Table 13. Let us estimate the
global support of each itemset Ik ∈ ∪6i=1{FIS(Di, 0.2)} in
Diris using the formula (1) proposed in [35].We notice that all
the global itemsets synthesized from the six databases are not
valid or infrequent (i.e., ∀ Ik ∈ FIS(Diris, 0.2), supp(Ik ,D) <
α). Again, this is mainly due to the irrelevant data involved
during the synthesizing process. Now, if we cluster the six
databases using our proposed algorithm and then synthe-
size the global itemsets from each cluster individually, we
get the following patterns: FIS(C1 = {D1,D2}, 0.2) =
{〈A3 = 1.5, 0.26〉, 〈A3 = 1.4, 0.26〉, 〈A4 = 0.2, 0.58〉},
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FIGURE 6. (a): 7×7 similarity matrix from the databases in Table 11. The mined frequent itemsets (FIs) are extracted under a minimum threshold α = 0.42
and the pairwise similarities are obtained using (3). (b): represents the graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25],
goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10 [39], the generated number of clusters and our loss function L(θ).

FIGURE 7. (a): 12×12 similarity table between the twelve databases partitioned from the real dataset Zoo [68]. The mined frequent itemsets (FIs) are
extracted under a minimum threshold α = 0.5. We then apply the similarity measure (3) on the twelve FIs to get the pairwise similarities. (b): represents
the graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25], goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10 [39], the generated
number of clusters and our proposed loss function L(θ)÷ 10.

FIGURE 8. (a): 4×4 similarity table between four databases partitioned from the real dataset Mushroom [68]. The mined frequent itemsets (FIs) are
extracted under a minimum threshold α = 0.5. We then apply the similarity measure (3) on the four FIs to get the pairwise similarities. (b): represents the
graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25], goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10 [39], the generated
number of clusters and our proposed loss function L(θ).

FIS(C2 = {D3,D4}, 0.2) = {〈A4 = 1.3, 0.26〉} and
FIS(C3 = {D5,D6}, 0.2) = {〈A2 = 3.0, 0.24〉, 〈A4 =
1.8, 0.22〉}. Hence, the obtained clustering contributed in

discovering novel and useful patterns from the local patterns
already mined in the local databases. For instance, the new
pattern 〈A3 = 1.5, 0.26〉 in FIS(C1, 0.2) indicates that 26%
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FIGURE 9. (a): 6×6 similarity table between six databases partitioned from the real dataset Iris [68]. The mined frequent itemsets (FIs) are extracted
under a minimum threshold α = 0.2. We then apply the similarity measure (3) on the six FIs to get the pairwise similarities. (b): represents the graphs
corresponding to goodness(D) [22], goodness2(D)× 10 [25], goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10 [39], the generated number of
clusters and our proposed loss function L(θ).

FIGURE 10. (a): 6×6 similarity matrix between two databases partitioned from Zoo dataset [68] and four databases partitioned from Mushroom dataset
[68]. (b): represents the graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25], goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10
[39], the generated number of clusters and our proposed loss function L(θ).

FIGURE 11. (a): 4×4 similarity matrix obtained from [36]. (b): represents the graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25],
goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10 [39], the generated number of clusters and our proposed loss function L(θ).

of Iris-Setosa plants have a Petal length=1.5cm. In Fig. 9
(b) and the fourth row of Table 10, all the clustering qual-
ity measures have identified the ground truth clustering at
δ = 0.3.
All the previous results confirm that our quasi-convex

loss function has successfully identified the relevant clusters

matching the ground truth and improving the valid FIs dis-
covered from each cluster of the datasets in Table 9.

2) RUNNING TIME AND CLUSTERING PERFORMANCE
In the second part of our experiments, we are interested in
comparing the clustering output and the execution time of our
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FIGURE 12. (a): 10×10 similarity table between the ten databases partitioned from the synthetic dataset T10I4D100K [64]. The mined frequent itemsets
(FIs) are extracted under a minimum threshold α = 0.03. We then apply the similarity measure (3) on the ten FIs to get the pairwise similarities. (b):
represents the graphs corresponding to goodness(D) [22], goodness2(D)× 10 [25], goodness3(D)× 10 [23], the Silhouette Coefficient SC × 10 [39],
the generated number of clusters and our proposed loss function L(θ)÷ 10.

FIGURE 13. (a): the time performance of our proposed algorithm against BestDatabaseClustering [24] on n = 30 to 120 random data samples under a
learning rate η = 0.001. The x-axis represents the number of databases (n) in the 3 subfigures (a), (b) and (c). The y-axis in subfigure (a) represents the
running time in milliseconds. (b): represents the number of clusters discovered by both algorithms and the actual number of clusters. (c): represents the
number of iterations performed by our algorithm and the number of unique and total similarity values between the n current databases.

algorithm against the clustering algorithm for multi-database
mining BestDatabaseClustering [24] on the same multiple
data samples. Therefore, we have used scikit-learn random
sample generator (sklearn.datasets.make_blobs) [69] to gen-
erate from n = 30 to 120 samples, with m features (m = 2
by default), and with a predetermined number of centers that
is equal to b n2c. Then, each feature Ik is normalized into the
range [0,1] using the min-max scaling method [70], which is
defined as follows:

Ik =
Ik −min(Ik )

max(Ik )−min(Ik )
, for k = 1..m (35)

where min(Ik ) and max(Ik ) are the minimum and the maxi-
mum values in the k-th column feature vector, respectively.

We then use an adapted version of sim (3) (i.e., instead
of working on hash tables, we pass m-dimensional feature
vectors as arguments to sim) to compute the

(n
2

)
pairwise

similarity values between the n current data samples. Since
the attributes Ik are not actual frequent itemsets mined from
each sample, we have set the correction factor to zero. We run
both algorithms on each

(n
2

)
pairwise similarity values and

plot their outputs in Fig. 13. Precisely, for each n×n similarity
matrix, we collect the execution time (represented inmillisec-
onds) in Fig. 13 (a) and the number of clusters returned by
both algorithms in Fig. 13 (b). Meanwhile, in Fig. 13 (c),
we record the number of iterations ran by our algorithm and
the number of distinct similarity values. We should note that
during the experiment, we have not added up the CPU time
required to compute the similarity values, since the same
similarity function (3) was used for both algorithms.

As the number of data samples (n) increases, we notice
a rapid increase in the execution time of BestDatabaseClus-
tering [24]. This is due to the fact that its time complexity,
estimated as O(n2log2(h)), is strongly related to n and h
(the number of distinct similarity values). Also, in order to
find the optimal clustering at which goodness(Dn) is maxi-
mum, BestDatabaseClustering needs to browse all the h ≤
(n2 − n)/2 distinct similarity values due to the fact that
goodness(Dn) is neither concave nor quasi-concave on the
interval [0,1].

By studying the number of clusters returned by both algo-
rithms in Fig. 13 (b), we observe that most of the time,
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BestDatabaseClustering fails to find the relevant clusters and
tend to generate either n singleton clusters or one cluster of
the n data samples. This is depicted by the existence of peaks
(where the curve reaches its maximum value at f (Dn) = n)
and valleys (where the curve is flat at f (Dn) = 1) on the
dashed magenta line. In fact, the clustering normalized root-
mean-square error (nrmse) for BestDatabaseClustering [24]
is estimated as nrmse = 0.72, such that:

nrmse =

√
1
N ×

∑N=120
n=30 (f (Dn)− f ∧(Dn))2

b
120
2 c − b

30
2 c

(36)

whereDn is the generated dataset, n is the number of samples
in Dn, f (Dn) is the number of clusters discovered by Best-
DatabaseClustering [24] and f ∧(Dn) is the actual number of
clusters set to b n2c. Conversely, as n increases, our algorithm
generates a number of clusters that is close to the actual
number of clusters, that is, fθ (Dn) ≈ b n2c. The cluster-
ing normalized root-mean-square error for our algorithm is
nrmse = 0.041. Overall, the running time of our algorithm
stays relatively steady with respect to n. In fact, our algorithm
depends mostly on the number of iterations required to find
the global minimum, which is dependent on the learning
step size η and decay rate decay_rate. A grid search is often
conducted to sample a randomly set of points (η, decay_rate)
within a two-dimensional grid in order to explore the values
returning the optimal weight vector θ .

Our algorithm terminates as soon as the global minimum
of the loss function L(θ ) has been reached. This is why the
running time of our algorithm is most of the time smaller than
that of BestDatabaseClustering. In some cases where the sim-
ilarity values calculated for each n data samples are too small
(' 0), the corresponding weights values θ remain relatively
away from the maximum value of one (θp,q � 1). Hence, our
algorithm needs some few iterations of updating operations
to converge, especially if the learning rate is too small. This
is the case for the n ∈ [30, 40] data samples produced by
the generator sklearn.datasets.make_blobs. To overcome the
latter problem, we just need to increase the learning rate
and/or reduce the decay rate when the mean of the pairwise
similarity values in the current n data samples is below a
certain threshold predefined by the user.

V. CONCLUSION
In this article, we presented a learning algorithm to minimize
a quasi-convex loss function used as a clustering evalua-
tion measure. Various experiments have been conducted on
public, synthetic and random data samples. The proposed
algorithm outperforms the existing clustering algorithm for
multi-database mining and returns optimal results in terms
of running time and accuracy. From the experimental results,
we can see that the running of our algorithm is strongly
dependent on the number of iterations needed to satisfy the
optimality criterion, which is also dependent on the choice
of the initial learning and decay rates. In this work, we used a
standard decayingmethod to adjust the learning rate over time

as we approach convergence. For our future work, we will
explore new methods aiming to reduce the number of iter-
ations by choosing an appropriate step size. For this pur-
pose, we will investigate techniques such as cyclical learning
rates for training neural networks. This allows the learning
rate to cyclically oscillate between two predefined bounds,
a minimum and maximum learning rates selected by the
user, leading to a faster convergence. Finally, in real-world
applications, clusters may overlap and database objects could
belong to different clusters with different membership prob-
abilities. Such grouping is called soft-clustering. As for our
future work, we would be interested in proposing an extended
version of the current algorithm that takes into account the
fuzzy nature of cluster memberships.
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