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ABSTRACT Our previous study established an asynchronous BCI system by using the oddball paradigm
to simultaneously induce event-related potentials (ERPs) and visual evoked potentials (VEPs) (E-V BCIs).
We found that stimulus onset asynchrony (SOA) is an important factor for performance since it significantly
affects the ERP and VEP. Increasing the SOA increases the ERP, which improves the accuracy of detecting
target stimuli. However, a larger SOA leads to a lower VEP frequency, which causes the VEP to have poor
accuracy when discriminating between the brain states. How to balance the two potentials and accuracies
is a problem. This study established eight SOAs from 100 ms to 375 ms that were composed of different
interstimulus intervals and the same stimulus duration of 80 ms. We used a probability-based Fisher linear
discriminant analysis (P-FLDA) classifier to calculate the classification accuracies of the ERP-based visual
speller, VEP-based brain state discrimination, and E-V BCI. The results show that as the SOA increases,
the amplitudes of N200 and P300 increase, and the accuracy also shows an increasing trend. However,
the frequency of the VEP and the accuracies of state discrimination show downward trends. The change
in accuracies of the E-V BCI system combining these two parts is nonlinear, and the SOA optimal value is
125 ms. The SOA of 125 ms yields the best accuracies of 95.83% and practical bit rate of 57.17 bits/min in
the E-V BCI system, which provides a guideline for selecting the SOA to improve the performance.

INDEX TERMS Brain–computer interfaces, asynchronous system, stimulus onset asynchrony, event-related
potential, visual evoked potential.

I. INTRODUCTION
Brain-computer interface (BCI) is a technology that decodes
brain signals to control instructions to an external device
between a human and a computer [1]–[4]. BCI has been
applied in many fields, such as medicinal areas [5], robotic
arms [6] and communication [7]. Event-related potentials
(ERPs), e.g., the N200 and P300 potentials, are brain poten-
tials representing the peak of the cerebral cortex in the
fixed latency period after the occurrence of low-probability
events [8]. Visual evoked potentials include steady-state
visual evoked potentials (SSVEPs) and transient visual
evoked potentials (TSVEPs). SSVEP and TSVEP refer to
the potentials corresponding to the stimulation frequencies
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after human vision is stimulated by more than 6 Hz and less
than 6 Hz, respectively [9]. The ERP and VEP are widely
used in BCI, such as for wheelchair control [10] and
rehabilitation [11].

Robots and vehicles are commonly used in BCI because
of their great contributions to industries and rehabilita-
tion [12], [13]. Visual stimuli could improve the performance
of an ERP-based BCI system by increasing potential ampli-
tudes. Our previous study compared the effect of images
filled with a pure background and humanoid robot images
on an ERP-based BCI. The results show that humanoid
robots induce larger N200 potentials in the frontal and central
areas [14], which improves BCI performance. Robot and
vehicle stimuli also use familiarity as human face stimuli
to increase amplitudes and improve accuracy [15]. There-
fore, we use robotic arms and vehicles as visual stimuli to
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induce ERP. BCIs based on visual stimuli include syn-
chronous and asynchronous systems. Studies on asyn-
chronous systems have received increasing attention since
they permit the subject to control devices at his/her pace.
The system only outputs instructions when the subject’s brain
is in the working state and does not process them when
the subject is idle so that the subject can control the device
flexibly and freely according to their own wishes. The chal-
lenge of an ERP-based asynchronous BCI is to discriminate
subjects’ working and idle states [16]. Many researchers
have combined the ERP with SSVEP and motor imagery
to recognize states by using the non-ERP paradigm as the
state switch [17]–[19]. Our previous study proposed using
only one odd-ball paradigm to realize asynchronization by
simultaneously inducing the ERP and TSVEP and combining
their classifications [20], [21].

In our proposed BCI system combined with ERP and
VEP (E-V BCI), we found that the setting of the stimulus
onset asynchrony (SOA) was very important since it could
influence the shape of the ERP and VEP. The SOA is the
time between the onsets of two consecutive stimuli [22].
It represents the number of stimuli appearing in a fixed
time; in other words, it stands for the probability of a stim-
ulus appearing in the time aspect. The probability would
affect the ERP since the ERP is related to the renewal of
working memory. Don-chin reported that a longer SOA is
more conducive to memory renewal and P300 formation [23].
Brendan et al. found that the amplitudes of ERP decreased
with shorter SOAs [24]. An interval that is too short will
lead to problems such as overlap between signals and repeti-
tion blindness, which makes the ERP amplitudes small [25].
Therefore, increasing the SOA is good for the E-VBCI since a
higher ERP can improve the classification accuracy of detect-
ing target stimuli. In contrast, improving the classification
accuracy of discriminating the work and idle states needs to
decrease the SOA. The formation of the VEP is based on a
constant switch between the onset and offset of all stimuli,
so the frequency of the VEP is closely related to the SOA.
Hu et al. believed that a lower frequency of stimulation could
lead to fatigue in the subjects and degradation of the system
performance [26]. Daisuke also found that a high frequency
of VEP reduced the probability of epileptic induction [27].
Our previous findings match with these researchers’ works:
increasing the SOA leads to an increasing trend of ERP recog-
nition accuracy and a downward trend of VEP-based recog-
nitions accuracy. The contradiction between the ERP-based
command recognition and VEP-based working state recog-
nition poses a great challenge to the asynchrony E-V BCI
when setting a SOA to yield both high accuracy and speed.
Hohne et al. found 175ms most suitable for the synchrony
ERP BCI system [28]. Whether it is also best for an asyn-
chrony ERP BCI system; and which one is more suitable
if 175ms is not the best, are studied in this current work to
obtain the best performance of E-V BCI system.

To find the optimal SOA value, this study sets up eight
SOAs including the same stimulus duration (STD) and

different inter-stimulus time (ISI) to conduct E-V BCI exper-
iments. The result show that the SOA optimal value is 125 ms
that yields the highest accuracies of 95.83% and practical
bit rate (PBR) of 57.17 bits/min in the E-V BCI system.
To our best of knowledge, we are the first to find the optimal
SOA value for an asynchronous system. The contribution
of this study is to give a guideline of selecting the SOA to
improve the performance of asynchronous systems. For an
asynchronous ERP BCI system, 125 ms is the best, instead
of 175 ms that is widely used in the synchronous system,
indicating that the optimal SOA should be different based on
the system type.

II. MATERIALS AND METHODS
A. PARTICIPANTS AND DATA ACQUISTION
Nine healthy subjects (23-26 years old, 24.8±2.37) with
normal or corrected-to-normal vision took part in this exper-
iment. All subjects were right-handed and had no history
of psychiatric disorders. They all signed voluntary consent
before the experiment and were told all possible conse-
quences of the study and the experimental procedure. The
experiment in this study was approved by the Ethics Review
Committee of Hebei University of Technology (Number:
HEBOThMEC2019001).

The study used the Neuroscan Synamps2 system to collect
14 channels (Fz, FCz, Cz, CPz, CP3, CP4, Pz, P3, P4, T5,
T6, Oz, O1, O2) of electroencephalogram (EEG) signals at a
sampling rate of 1000 Hz [29]. These 14 channels locate in
the sagittal line and posterior area of the brain that is helpful
to induce high ERP and VEP and reach better performance of
the BCI system [30], [31]. The impedance of the electrodes
was 5k� [32]. Reference electrodes were placed at the bilat-
eral mastoids. AFz was the ground.

B. EXPERIMENTAL PARADIGM DESIGN
In the E-V BCI system, the state in which the subject watches
an odd-based visual speller to choose a stimulus is a working
state; the state that subject watches the video shot to get
known of the environment and needn’t to output command
is an idle state.

1) VISUAL SPELLER
The visual speller is a 4×4 pattern composed of 16 command
images. The command images indicate either a motion per-
formed by a robotic arm or a vehicle. Table 1 lists the content
of these images. ‘‘v’’, ‘‘ra’’ and ‘‘vc’’ represent the vehicle,
robotic arm and vehicle camera, respectively. The resolution
and size of the command image are 794 × 596 pixels and
4.12 × 3.41 cm, respectively. The interface adopts the row
and column method [33] to flash the command images. Each
row/column of command images flashes randomly. When a
command image finishes flashing, it is replaced by a shield
image. The shield image consists of a black square and a
white point. Figure 1(a) and (b) show that the third column
and the third row flash, and the others are shielded by shield
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TABLE 1. Visual stimulus.

images. The command image that the subject focuses on is
the target stimulus, and the subject ignores is the nontarget
stimulus. The process in which one row/column is shown
and shielded is a flash. A repetition is that all rows and
columns flash once and contains 12 flashes, and 10 repetitions
constitute a trial.

The SOA is the stimulus interval in the visual speller,
which is from the last command image to the next command
image [24]. It includes the STD in which the stimuli are
shown and the ISI, which is the interval between two stimuli
shown. The SOA ranges from 100 ms to 375 ms, in which
the ISI ranges from 20 ms to 295 ms and the STD remains
at 80 ms. The 100 ms and 375 ms are set to guarantee
high amplitude of ERP and PBR of the system. In order
to take 150 ms, 175 ms and 225 ms that are widely used
in BCI into experiment design, we set 25ms interval from
100 ms to 175 ms, and 50 ms interval from 175 ms to
375 ms [34], [28], [35]. Each SOA value corresponds to a
flashing frequency. The frequency (Hz) is 1/SOA (ms)×1000.
Table 2 shows the eight SOAs and the corresponding
frequencies.

TABLE 2. The value of SOA in the experiment.

2) VIDEO WATCHING
This study puts the subject in an idle state by letting him
watch a video. The subjects are in a relaxed state and have no
need to output a command. The video is recorded by a camera
mounted on the platform of the vehicle with a resolution of
640 × 480 pixels, as shown in Figure 1 (c). The video plays
the environment around the vehicle in the first-person view.
The driving environment is a laboratory. This video watching
experiment simulates daily situations of the BCI task: the

FIGURE 1. Visual speller (a) The third-column command images flashes.
(b) The third-row command images flashes. (c) Video of the vehicle.

subject watches the video window to become familiar with
the environment or make a decision without intending to
output a command.

C. EXPERIMENTAL PROCEDUCE
Subjects are seated 60 cm in front of the two 19-inch
LCD computer screens. The screens both have a resolution
of 1920×1080 pixels and a screen refresh rate of 60 Hz. The
two screens separately display the visual speller (left screen)
and the video (right screen).

In eight E-V BCI experiments, all the settings are the same
except for the SOAs. Figure 2 (a) shows the components
of the eight SOAs. Figure 2 (b) is the flow chart of the
E-V BCI system experiment. Each subject is required to
perform eight E-V BCI experiments in random order of SOA
with a 2-minute rest between experiments [36]. In each E-V
BCI experiment, the brain is in the working state when the
subject performs the visual speller and the idle state when
the subject is watching the video. The subjects’ brain states
switch between working and idle states. The subject first
stares at the target stimulus in the visual speller to output an
instruction for a trial time and ignores video watching. Then,
the subject switches his attention from the visual speller to
the video watching, and the interval time is set to 500 ms,
which is the shortest interval for the subjects to change their
perspective [37]. During this period, the system does not
recognize the EEG. The subject focuses on video watching to
observe environments in front of the vehicle for a trial time.
When watching the video, the subject looks at the content of
the video on the right screen and does nothing while the left
screen flashes the stimuli as usual. The subjects completed
16 trials of visual speller and 16 trials of video watching
in one E-V BCI experiment. Each subject is required to
complete 8 E-V BCI experiments with different SOAs.
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FIGURE 2. The experimental process.

D. FEATURE EXTRACTION AND CLASSIFICATION
The feature extraction section describes how to extract time
features of the ERP, and how to extract the frequency features
of the TSVEP.

1) ERP FEATURES
For each visual stimulus, firstly, the EEG data from 50 ms
to 750 ms poststimulus are cut. Secondly, a 3rd-order But-
terworth filter (0.1-20 Hz) is used to filter the data segment
to reduce power frequency interference and other noise [38].
Then, the 50 ms data prestimulus is used as the baseline
for correction to reduce the slow potential drift and other
artifacts. Finally, the data are downsampled to 40 Hz to
obtain 28-dimensional feature vector from each channel [39],
[40]. This paper adopts 14 channels as the feature channels
to yield a 392-dimensional feature. Artifact removal is not
performed since the ERP is obvious [14], [41].

2) TSVEP FEATURES
The data from 1000 ms prestimulus to 1000 ms poststim-
ulus are cut for each flash. Each epoch corresponds to a
flash; therefore, a repetition yields eight epochs. Then, the

eight epochs in a repetition are averaged to obtain a data
segment. We use a 3rd-order Butterworth filter to filter every
segment from 0.1 Hz to 20 Hz. Finally, we use a fast Fourier
transform (FFT) to extract the amplitude characteristics in
the frequency domain of each segment. FFT is a common
method used to extract signals in the frequency domain of
the VEP. It is a fast method of FT to shorten the operation
time [42], [43].

x(k) =
n=0∑
N−1

x(n)× e
−j2πkn
N (k = 0, 1 . . . ,N − 1) (1)

where x(n) is the EEG signal at time point n, N is the length
of a data epoch, and k is the frequency.

The feature extraction part of the algorithm selects the data
from 0 Hz to 20 Hz to form a 20-dimensional feature vector.
The VEP potential is usually in the occipital region of the
brain [44], so the feature channel is Oz.

3) CLASSIFICATION
This study uses the P-FLDA [21] to distinguish the subject’s
brain state and the target stimulus. P-FLDA is a method
which transforms the value calculated by the FLDA into a
probability. It has the advantage of being able to translate the
results of different data into the same range, narrowing the
order of magnitude between the data. ERP and VEP are fused
through the P-FLDA classifier to form the probability value,
and the result of the fusion is used to judge the idle state and
target stimulus of the brain.

E. EVALUATION
This study uses accuracy and PBR to evaluate the perfor-
mances of the E-V BCI and E BCI.

1) ACCURACY
The equation for calculating accuracy is as follows:

Acc =
Nc
NALL

(2)

where Nc is the number of trials judged correctly, and NALL is
the total number of trials.

This study included three types of accuracy: Accvisual
speller, Accvideowatching and AccE−VBCI. The Accvisual speller
value represents the ratio between the number of trials in
which the target stimuli are judged correctly to the total
number of trials under the visual speller condition. The
Accvisual speller indicates the accuracy of sending instructions
correctly, which only uses the ERP features to detect the
target stimulus. The Accvideowatching value represents the ratio
between the number of trials in which the idle states and
the working state are judged correctly and the total number
of trials under the visual speller and video watching experi-
ments. Accvideowatching indicates the accuracy in recognizing
brain states, which only uses the VEP features to discriminate
the states. The AccE−VBCI value represents the ratio between
the number of trials in which the target stimuli or the idle
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FIGURE 3. The waveforms of target stimulus in Fz, FCz, Cz, CPz, Pz, and Oz channels.

states are judged correctly and the total number of trials in
both the visual speller and video watching experiments. The
AccE−VBCI indicates the accuracy in recognizing brain states
and sending instructions correctly, which uses both the ERP
features and the VEP features to detect the two states and the
target stimulus.

2) PBR
PBR is used to estimate the speed of the system in a real-
world setting [45]. The PBR is calculated using AccE−VBCI
and information transfer rate (ITR). The equation is as
follows:

PBR = ITR× [1− 2× (1− Acc)] (3)

ITR =
{
lbQ+Acc+lbAcc+(1−Acc)×lb×

(1−Acc)
Q−1

}
×M

M =
60× 1000
T × Nr + t

(4)

where Q is the number of visual stimuli, M is the number
of commands output in one minute, Nr is the number of
repetitions in a trial, T is the duration of a repetition, and t is
the time to switch between visual speller and video watching,
which is set as 500 ms.

3) STATISTICAL ANALYSIS
This paper uses the Wilcoxon signed-rank test to investigate
the differences between the different SOA conditions. The
significance level is set at 0.05 [46].

III. RESULT
This section shows the results of the experiment. In addition,
all the results are averaged by nine subjects. The ERP ampli-
tude, classification accuracy and PBR obtained constitute
significant differences in statistical analysis (p < 5× 10−2).

A. TIME-DOMAIN ANALYSIS
Figure 3 shows the waveforms of N200 and P300 in Fz, FCz,
Cz, CPz, Pz, and Oz induced by the target stimulus. The time
range is from 0 ms to 700 ms. In the frontal and central areas
(Fz, FCz, Cz and CPz), N200 and P300 are evoked at approx-
imately 290 ms and 410 ms after stimulus. In the parietal and
occipital areas, N200 potential and P300 potential are induced
at approximately 190 ms and 390 ms after stimulus. The
amplitudes of N200 and P300 increase gradually as the SOA
increases. Table 3 shows the P100 peak to N200 peak and the
N200 peak to P300 peak. we can reference out the variability
caused earlier in the waveform and gain reliable insights
concerning the peaks of N200 and P300. The P100 peak to
N200 peak reaches the highest and the lowest amplitudes
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FIGURE 4. The waveforms of nontarget stimulus in Fz channel. (b) The waveforms of nontarget stimulus in Oz
channel.

of 5.6µV and 4.1µVwhen the SOAwas 125 ms and 150 ms,
respectively, and the N200 peak to the P300 peak reaches the
highest and the lowest amplitudes when the SOA was 275 ms
and 150 ms, 8.0 µV and 5.2 µV, respectively.

To show the periodic change in waveform induced by
the visual stimulus clearly, we plot the waveforms evoked
by the nontarget stimulus in Figure 4. The colored squares
in Figure 4 mark these waveforms with a cycle in chan-
nel Fz and Oz. These two channels have the same trend:
As SOA increases, the waveform cycle changes. This ten-
dency of becoming dense is caused by the increase of the
SOA. Attention can cause changes in the FZ channel [47],
and the OZ is the main channel that produces ERP.

B. FREQUENCY-DOMAIN ANALYSIS
Figure 5 shows the frequency spectrum of signal under the
eight visual speller conditions and video watching condition.

TABLE 3. The amplitude OF N200, P300 IN Cz, AND VEP IN Oz.

The frequency range is from 0 Hz to 20 Hz. The vertical
coordinate is the amplitude. When the subject is focusing on
the visual speller, the peak spectrum from 6.71 Hz to 2.07 Hz
(p = 4.7× 10−2) as the SOA increases, as shown in Table 3.
These peak spectra are mainly concentrated in 0 Hz to10 Hz.

Compared with the peak spectrum induced by the visual
speller, that of video watching is very small: 0.03 µV
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FIGURE 5. The frequency domain waveforms of VEP in Oz channel.

at 4.88 Hz. In the frequency domain, the amplitude peak
differences induced by the visual speller and video watching
provide a good basis for distinguishing the two types of
signals.

C. THE ACCURACY ANALYSIS
Figure 6 plots Accvisual speller, Accvideowatching andAccE−VBCI
across the 9 subjects. With the increase of repetition, the three
kinds of accuracy all show an increasing trend. While,
the three accuracies vary differently as SOA increases.
When the SOA increases, the Accvisualspeller increases from
91.67% to 95.83%, while the Accvideowatching decreases from
98.96% to 90.97%. The opposite trends of Accvisual speller and
Accvideowatching leads to a non-linear variation in AccE−VBCI.
When SOA is 125 ms, the AccE−VBCI is the highest of
95.83% and the corresponding PBR also reaches the highest

of 57.17 bits/min. The results indicate that the optimal SOA
value for an asynchronous BCI system is 125 ms.

D. THE PBR OF E-V BCI
Figure 7 shows the PBR of the E-V BCI system under eight
SOAs. Firstly, with increasing repetition, the PBR increases
and then decreases. And the PBR reaches the highest when
the repetitions are two. Secondly, as the SOA increasing,
the PBR tends to decline. When the SOA is 125 ms, the
PBR reaches the highest of 57.17 bits/min. This indicates that
PBR is also affected by SOA. The E-V BCI system reaches
the highest PBR in SOA for 125 ms.

Table 4 shows the effect of the SOA on the accuracy and
PBR. Bold represents the highest value of the item. The
ACCvisual speller reaches the highest of 95.83% when the SOA
is 175 ms, and the ACC videowatching reaches the highest
of 98.96%when the SOA is 125ms. For the E-VBCI, both the
accuracy and PBR reach the highest when the SOA is 125 ms,
and they are 95.83% and 57.17 bit/min, respectively.

E. THE REPORTS OF VISUAL FATIGUE
After the subjects finished the experiment, we collected their
visual fatigue report. The report records two feelings of
subjects that what do you feel is the impact of SOA values
on visual fatigue and what is the difference between the
experimental feeling of asynchronous BCI and synchronous
BCI. Most subjects felt that the smaller the SOA, the more
fatigued they were. And they also felt more comfortable
in asynchronous system than synchronous one because they
were free to choose the time of output instruction.

IV. DISCUSSION
A. THE SOA AFFECTS BOTH THE ACCURACY AND SPEED
OF THE E-V BCI SYSTEM
The SOA is positively related to the amplitudes of N200 and
P300 but negatively related to the spectrum of the VEP.

FIGURE 6. The accuracy of the BCI system.
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TABLE 4. The accuracy and PBR.

FIGURE 7. The PBR of the E-V BCI.

Therefore, when the SOA increases, the accuracy of iden-
tifying the target stimulus increases, while the accuracy of
discriminating the brain states decreases. The integrated
accuracy, the accuracy of discriminating the target stimulus
and the two states, is more affected by the accuracy of dis-
criminating the two states. Figure 6 shows that the tendency
of AccE−VBCI is similar to that of Accvideowatching but not
to that of Accvisual speller. This is possibly because after the
fusion of ERP and VEP, the classification result of VEP is
more dominant than that of ERP in the recognition of brain
state.

The SOA has a direct impact on the speed of outputting
commands, which is represented by the PBR. Figure 7 shows
that as the SOA increasing, the PBR is generally a decreasing
trend. In addition, the SOA is the time interval between the
stimuli. Therefore, increasing it leads to spending longer time
completing a trial.

The difference between the ERP-based and VEP-based
recognitions results in a non-linear relationship between the
performances of the E-V BCI and the SOA. Figure 8 shows
that with the increase in SOA, Accvisual speller is a trend
that first increases, then decreases, and then increases.
Accvideowatching and AccE−VBCI tend to increase first and
then decrease. This is because the AccE−VBCI is a combina-
tion of Accvisual speller and Accvideowatching but is more similar

FIGURE 8. The accuracy under three repetition.

to Accvideowatching. When the SOA is 125 ms, the AccE−VBCI
reaches the best value, which is 95.83%. Accvisual speller
is 91.67% and Accvideowatching is 98.96%. PBR is
57.17 bits/min. Therefore, when the SOA is 125 ms, the E-V
BCI achieves the best system performance.

B. A COMPARE WITH OTHER ASYNCHRONOUS SYSTEMS
The state identification of subject’s state plays an impor-
tant role in improving the asynchronous system perfor-
mance. Many researchers combine potentials to identify the
working state of asynchronous systems. Santamaría-Vázquez
et al. detected the SSVEP elicited by peripheral stimuli of
ERP-based spellers to achieve asynchronous control, and
reached an average accuracy of 95.5% for control state detec-
tion [34]. Zhang et al. proposed an individualized frequency
band based optimized complex network (IFB-OCN) and to
recognize the control and idle states for an asynchronous
SSVEP system, with an average accuracy of 93.5 % [48].
Compared to them, we used the odd-ball paradigm to design
the asynchronous BCI system, and used ERP and TSVEP to
identify the working status and target. Our accuracy reached
95.83%, which is higher than them. Our asynchronous sys-
tem has advantages in identifying system states and target,
which provides a method for designing high-performance
asynchronous BCI system.
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V. CONCLUSION
This study sets eight stimulus intervals to study the effect
of the SOAs on the asynchronous ERP and VEP-based BCI.
Increasing the SOA can increase the amplitude of N200 and
P300, but changes the dominant frequency of the VEP. The
contradiction between identifying target and identifying the
brain states makes the accuracy of asynchronous BCI system
varies non-linear as SOA variation. Our study demonstrates
that the SOA of 125 ms is optimal value for asynchronous
BCI system to yield high accuracy and speed, which gives
us insights for designing high-performance asynchronous
ERP BCI.

In Fig 5 in frequency domain, besides the overall outlook,
it would be more insightful that we extract specific frequency
bands as features. The data of delta, theta and alpha frequency
bands could be as feature vectors to distinguish target and
non-target. In the future, we would use these frequency bands
as the feature vector to improve the accuracy.
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