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ABSTRACT We consider a monostatic wireless powered backscatter communication (WPBC) system,
where a device performs backscatter modulation and energy harvesting (EH) using the received signal from a
multi-antenna hybrid access point. The rate-energy regions of theWPBC are studied for power splitting (PS)
and time switching (TS) receivers in a comprehensive way by using the rate and EH functions reflecting the
effects of practical systems. For both linear and nonlinear EH models, we analyze the rate-energy regions of
the static PS and TS strategies and optimize the dynamic strategies exploiting the channel state information
(CSI) to extend the regions. The regions with the static strategies are obtained in closed-form expressions
and the dynamic strategies are obtained in explicit forms as a function of a dual variable, by approximating
the nonlinear EH model to a piecewise linear EH (PLEH) model. The results show that the dynamic PS and
TS strategies outperform their static counterparts and their gains are more prominent in the sensitivity region
of a nonlinear EH circuit and with a smaller number of antennas. It is also observed that the dynamic PS
strategy provides the best performance but can be replaced by the static one for a large number of antennas
to avoid the CSI. The strategies obtained explicitly by using the PLEH model are also shown to work well
with a practical EH model without a noticeable loss in the performance.

INDEX TERMS Backscatter communication, nonlinear energy harvesting, power splitting, rate-energy
region, time switching.

I. INTRODUCTION
The internet-of-things (IoT) is a key building block for
smart society by connecting various objects that sense their
environments and providing smart and autonomous controls
using the sensed data. Diverse applications of the future
IoT require sensing and communication devices to appear in
various form factors, including small size devices that can
be implementable with only a very small battery or even
without a battery. As a method of enabling such devices
sustainable for a long period, wireless power transfer (WPT)
using radio frequency (RF) signals has been introduced
into wireless communication protocols such as simultane-
ous wireless information and power transfer (SWIPT), wire-
less powered communication, wireless powered backscatter
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communication (WPBC) [1]–[4]. In particular, the WPBC is
promising for power deficient devices by removing active
modules for generating a carrier signal through backscatter
modulation [3], [4].

Backscatter communication (BC) systems have been
implemented in various configurations according to a source
entity emitting a carrier signal and a destination receiving the
backscatter signal for information decoding. Monostatic BC
systems implement a source and a destination in the same
entity [5], [6] while bistatic BC systems implement them in
different entities [7]–[11]. Meanwhile, ambient BC systems
utilize a transmitter of another services such asWiFi, cellular,
and broadcasting ambient around backscatter devices as a
source emitting the excitation signal [12]–[18].

This paper concerns with monostatic BC systems, where
a full-duplex hybrid access point (HAP) transmits an
excitation signal as well receives a backscatter signal
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simultaneously without self-interference [19]–[26]. Various
aspects of monostatic BC systems have been investigated
such as energy beamforming and channel estimation [19],
[20], [23], throughput maximization for time division mul-
tiple access (TDMA) [21], multisine waveform designs with
nonlinear energy harvesting [22], rate optimization for space
division multiple access (SDMA) [24], [25], and space-time
coding design formulti-antennaBC systems [26].Whilemost
of these studies dealt with energy transfer problems [19],
[20], [23] and rate transfer problems [24]–[26] separately,
the studies in [21], [22] considered both the energy and rate
transfer jointly for WPBC systems.

In monostatic WPBC systems using a common RF signal
for energy harvesting (EH) and backscatter modulation (BM),
there exists a fundamental trade-off between the harvested
energy and delivered rate. Such trade-offs have been inves-
tigated extensively for the SWIPT, delivering the information
and energy to a device in the same direction using a common
RF signal, by means of the rate-energy region [27]–[33].
More specifically, the rate-energy regions of the SWIPT were
investigated with linear EH circuits when time switching (TS)
and power splitting (PS) receiver architectures supporting EH
and information decoding (ID) simultaneously were imple-
mented with the dynamic strategies adaptive to the channel
state [27], [28] and the static ones [29]. Later, nonlinear
EH models [34]–[36] were introduced to the SWIPT for a
practical design, where the dynamic mode switching (MS)
strategy selecting a mode between EH and ID was optimized
in [30], [31], the static TS and PS strategies were consid-
ered for the optimization of a multi-sine waveform [32],
and the dynamic PS strategy was optimized very recently
in [33].

Rate-energy trade-offs in the WPBC have not been studied
as much as those in the SWIPT since BM was limited to
binary modulation schemes in the past. Hence, a trade-off of
a monostatic WPBC system was investigated with the on-off
binary BM in terms of the energy and signal-to-interference-
and-noise ratio, where binary one was sent by reflecting
the received signal fully and binary zero was presumed
for no reflection [22]. Recent advances in the BM design
enables high order quadrature amplitude modulation (QAM)
[37]–[39], which makes the rate-energy region studied for the
SWIPT also necessary for the WPBC to get an insight on the
achievable performance.

This paper investigates the rate-energy regions achieved
by monostatic WPBC systems under various configurations
in the receiver architecture, availability of the channel sate
information (CSI), nonlinearity of the EH function, and so
on. The main contributions of this paper can be summarized
as follows:
• We consider a point-to-point monostatic WPBC sys-
tem with a multi-antenna HAP employing matched fil-
ter MF) beamforming and a backscatter device (BD)
employing PS and TS receiver architectures. For the sys-
tem, we provide a unified expression on the rate-energy
region by adopting simple rate and energy functions

incorporating the effect of a practical modulation
scheme [40] and a practical EH circuit [35].

• The rate-energy regions of the WPBC achieved with the
static factors for the PS and TS receiver architectures are
derived in closed forms for both the linear and nonlinear
EH models.

• The dynamic PS, MS, and TS strategies optimizing the
rate-energy region of the WPBC are presented by solv-
ing the dual problem for both the linear and nonlinear
EH models, where the dynamic MS strategy is shown to
be equivalent to the dynamic TS strategy. The strategies
optimized for the WPBC appear in more complicated
forms when compared with those for the SWIPT [28],
[30], [31], [33] but the optimization process in this paper
is facilitated with a closed-form expression of the har-
vested energy for a given dual variable.

• The rate-energy regions of the WPBC are evaluated
from various aspects with PS and TS receiver architec-
tures, static and dynamic strategies, linear and non-linear
EH functions, and Gaussian and practical modulation
schemes. The rate-energy region behaviors are also
investigated with the number of antennas in comparison
with those of the SWIPT and those with a practical EH
circuit.

The rest of this paper is organized as follows. Section II
describes the system model and the rate-energy regions with
different strategies. The rate-energy regions of the WPBC
system are analyzed with the static strategies for PS and
TS receiver architectures in Section III. Dynamic strategies
adaptive to the channel state are optimized to extend the
rate-energy region of the PS and TS receivers for the linear
and nonlinear EH models in Section IV. The rate-energy
regions of the WPBC systems are investigated under various
configurations in Section V. Finally, concluding remarks are
provided in Section VI.
Notation: Rn

+ denotes the set of n-dimensional vec-
tors with non-negative real-valued entries, 0m denotes the
m-dimensional vector with all zero entries, and Im denotes
them×m identity matrix. The complex Gaussian distribution
with mean µ and covariance 6 is denoted by CN(µ,6) and
the expectation operation is denoted by E[·].
II. SYSTEM MODEL AND RATE-ENERGY REGIONS
A. SYSTEM MODEL
Consider a monostatic WPBC system described in Fig. 1
that consists of a HAP equipped with M antennas and a
single-antenna BD. The channel between the HAP and BD
with path-loss ω is expressed as h = [h1, h2, · · · , hM ]T ∼
CN(0M , ωIM ) by assuming that the channels go through
flat Rayleigh fading and the channel reciprocity holds. The
HAP transmits an excitation signal as well as receives the
backscatter signal in full-duplex as in [8], [19], [21]–[25].

The HAP employs the MF beamforming wt = h∗
‖h‖ to

transmit the excitation signal at power P. The signal received
at the BD antenna is then expressed as

yB =
√
PhTwt + nB =

√
P‖h‖ + nB, (1)
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FIGURE 1. Monostatic WPBC with a multi-antenna HAP and a
single-antenna BD.

where nB ∼ CN(0, σ 2
B) is the antenna noise at the BD. The

BD splits the received signal (1) at power fractions β and 1−β
for the BM and EH, respectively, as illustrated in Fig. 1. Note
that β ∈ BP , [0, 1] is implementable only with the PS
receiver supporting both BM and EH simultaneously while
β ∈ BM , {0, 1} is implementable with the TS receiver
supporting only one mode between BM and EH at a time.

The BM signal reflected by the BD is given by sB =√
βyBs, where s is the modulation symbol generated by con-

trolling the impedance load at the BD subject to E[|s|2] = 1.
The BM signal received at the HAP is then expressed as

y = h
√
βyBs+ n =

√
Pβh‖h‖s+

√
βhnBs+ n, (2)

where n ∼ CN(0M , σ 2IM ) is the additive Gaussian noise
vector at the HAP. In practical backscattering scenarios,
the power β‖h‖2σ 2

B of the noise reflected by the BD is
negligible compared with the power σ 2 of the noise n at the
HAP due to the path loss. As in the literature [8], [21]–[25],
the noise reflected by the BD is ignored as

y ≈
√
Pβh‖h‖s+ n. (3)

The HAP detects symbol s by applying receive beamform-
ing wr to (3) as

z = wHr y =
√
PβwHr h‖h‖s+ w

H
r n. (4)

The signal-to-noise ratio (SNR) in detecting the symbol is
given by

γ = Pβ‖h‖2
wHr hh

Hwr
σ 2wHr wr

(5)

of which the maximum is achieved with MF beamforming
wr = ch for any nonzero constant c [41] such that

γ =
Pβ‖h‖4

σ 2 . (6)

Thus, the instantaneous rate delivered from the BD to the
HAP for given channel h can be expressed as

R = C
(
κ
P
σ 2 β‖h‖

4
)
, (7)

where C(x) = log2(1+ x) and κ is the SNR loss incurred by
employing a practicalmodulation scheme instead ofGaussian
symbols; κ = 1 for Gaussian symbols and κ ≈ −1.5

ln(5ε) for the
adaptive QAM employed at the bit error rate (BER) ε [40].

In the meantime, the signal
√
1− βyB at the BD is input

to the energy harvester, where the EH from the noise is not
considered as in [27]–[32] since the noise power (1−β)σ 2

B is
also negligible in comparisonwith the excitation signal power
P‖h‖2(1− β). The EH circuit of the BD harvests the energy
with the instantaneous input power pin = P(1 − β)‖h‖2

for the use of essential operations such as sensing and chip
processing. The harvested energy per unit time is expressed
as

Qh = 8h(P(1− β)‖h‖2), (8)

where 8h(·) is the input-output power function of the EH
circuit according to the EH model h.
For the EH, we consider the LEHmodel with EH efficiency

η as

8L(p) = ηp (9)

and the NLEH model based on the piecewise linear
EH (PLEH) developed in [34]–[36] as1

8N (p) =


0, if 0 ≤ p < pa,
η(p− pa), if pa ≤ p < pb,
Psat , if p ≥ pb,

(10)

where pa is the input power required to activate the EH
circuit and pb is the input power driving the EH circuit into
the saturation region at saturation power Psat . The PLEH
function (10) approximates the sensitivity inclusive sigmoid
EH (SSEH) function [34]

8S (p) =

0, if 0 ≤ p < pa,

Psat
1− e−µ(p−pa)

1+ e−µ(p−pc)
, if p ≥ pa

(11)

with the positive charging rate µ and the curvature point pc,
in a way of embracing the three crucial regions observed in
practical EH circuits; the sensitivity region of 0 ≤ p < pa
where the EH circuit is inactive, the linear region of pa ≤
p < pb with EH efficiency η, and the saturation region of
p ≥ pb. Although the linear region can be partitioned into
more pieces with different slopes for a better approximation
of the EH function as in [35], we adopt the PLEH model (10)
with three regions for a tractable analysis without a noticeable
change in the rate-energy regions.

B. RATE-ENERGY REGIONS
Using the rate function (7) and the EH function (8), we con-
sider the rate-energy regions of the WPBC with different
strategies in choosing the PS factor according to the channel
state2 X = ‖h‖2. the dynamic PS strategy chooses a different
PS factor β(X ) ∈ BP according to the channel state X while
the static PS strategy sets β = β̄ for all possible realizations

1The PLEH model is denoted by the subscript N to emphasize the non-
linearity while avoiding a confusion with the subscript P used for the PS
strategy.

2The channel state ‖h‖2 is denoted by X when it is interpreted as a random
variable and by x when it is interpreted as a realization of the randomvariable.
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of the channel state X . The dynamicMS strategy β(X ) ∈ BM
is a suboptimal approach of the dynamic PS strategy. We then
rewrite the instantaneous rate with β(X ) as

R(β(X ),X ) = C
(
γ0β(X )X2

)
(12)

from (7) with the effective SNR γ0 = κP/σ 2 at the trans-
mitter side and the instantaneous harvested energy with β(X )
as

Qh(β(X ),X ) = 8h(P(1− β(X ))X ) (13)

from (8).
The rate-energy region of the WPBC for the dynamic PS

or MS strategy {β(X ),X ∈ R+} can be expressed in a unified
form as

Cs,D
R−E ,

⋃
{β(X )∈Bs}

{
(r, q) ∈ R2

+|r ≤ E[R(β(X ),X ],

q ≤ E[Qh(β(X ),X )]
}

(14)

for s ∈ {P,M} and h ∈ {L,N }. With the static PS strategy
setting β(X ) = β̄ ∈ [0, 1] for all channel state X , the
region (14) becomes

CP,S
R−E = ∪

β̄∈[0,1]
{(r, q) ∈ R2

+|r ≤ R̄(β̄), q ≤ Q̄h(β̄)} (15)

with

R̄(β̄) , E[R(β̄,X )] = E
[
C(γ0β̄X2)

]
(16)

and

Q̄h(β̄) , E[Q(β̄,X )] = E[8h(P(1− β̄)X )]. (17)

In comparison, we also consider the TS strategies that
allocate a time fraction τ (X ) of each channel state X for BM
as β(X ) = 1 and the other fraction 1 − τ (X ) for EH as
β(X ) = 0. The dynamic TS strategy chooses a different TS
factor τ (X ) ∈ [0, 1] according to the channel state X while
the static TS strategy sets τ = τ̃ for all possible realizations
of the channel state X . The rate-energy region of the WPBC
with the dynamic TS strategy is expressed as

CT ,DR−E ,
⋃

{τ (X )∈[0,1]}

{
(r, q) ∈ R2

+|r ≤ E[τ (X )R(1,X )],

q ≤ E[(1− τ (X ))Qh(0,X )]
}

(18)

for h ∈ {L,N }. The region (18) with the static TS, τ (X ) =
τ̄ ∈ [0, 1] for all channel state X , is given by

CT ,S
R−E= ∪

τ̄∈[0,1]
{(r, q) ∈ R2

+|r ≤ τ̄ R̄(1),

q ≤ (1− τ̄ )Q̄h(0)}. (19)

III. RATE-ENERGY REGIONS WITH STATIC STRATEGIES
This section analyzes the rate-energy regions (15) and (19)
with the static strategies for a baseline performance for which
the closed-form expressions of (16) and (17) are obtained.
The expectation in (16) and (17) is performed over the chan-
nel state X = ‖h‖2 which is a gamma random variable
with a shape parameter M and a scale parameter ω from
h ∼ CN(0M , ωIM ) with the probability density function
(pdf)

fX (x) =
xM−1

0(M )ωM
e−

x
ω , x ≥ 0, (20)

where 0(m) =
∫
∞

0 tm−1e−tdt .
We first express the average rate (16) as

R̄(β̄) =
∫
∞

0
G1,2
2,2

(
1, 1
1, 0

∣∣∣∣ γ0β̄x2) xM−1e−
x
ω

ωM0(M ) ln 2
dx. (21)

using C(x) = 1
ln 2 ln(1 + x) and the Meijer G-function

[42], [43]

ln(1+ x) = G1,2
2,2

(
1, 1
1, 0

∣∣∣∣ x) . (22)

We then have a closed-form expression of (21) as

R̄(β̄) =
1

%(β̄)

∫
∞

0
G1,2
2,2

( M+1
2 , M+12

M+1
2 , M−12

∣∣∣∣γ0β̄x2) e− x
ω dx

=
ω

%(β̄)
√
π
G1,4
4,2

(
0, 12 ,

M+1
2 , M+12

M+1
2 , M−12

∣∣∣∣ 4γ0β̄ω2
)

(23)

for %(β̄) = ωM0(M )(γ0β̄)
M−1
2 ln 2 from the properties [42]

xνGm,np,q

(
ap
bq

∣∣∣∣ x)= Gm,np,q

(
ap + ν
bq + ν

∣∣∣∣ x) (24)

and∫
∞

0
e−

x
ωGm,np,q

(
ap
bq

∣∣∣∣ρx2)dx = ω
√
π
Gm,n+2p+2,q

(
0, 12 , ap
bq

∣∣∣∣4ρω2
)
.

(25)

The average harvested energy (17) is also derived as

Q̄L(β̄) = ηP(1− β̄)E[X ] = ηP(1− β̄)Mω (26)

for the LEH (9) and

Q̄N (β̄) = ηP(1− β̄)Mω
[
GM+1

(xa,β̄
ω
,
xb,β̄
ω

)
−
xa,β̄
Mω

GM (
xa,β̄
ω
,
xb,β̄
ω

)
]
+ Psatα

(
M ,

xb,β̄
ω

)
(27)

for the nonlinear PLEH (10), where

xv,β =
pv

P(1− β)
(28)

for v ∈ {a, b},

α(m, x) =
0(m, x)
0(m)

(29)

being the regularized Gamma function with 0(m, x) =∫
∞

x tm−1e−tdt satisfying 0(m+ 1, x) = m0(m, x)+ xme−x ,
and

Gm(x1, x2) = α(m, x1)− α(m, x2). (30)
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IV. RATE-ENERGY REGIONS WITH DYNAMIC
STRATEGIES
A. DYNAMIC PS STRATEGY
This subsection derives the dynamic PS strategy that opti-
mizes the rate-energy region (14) for s = P, that is, β(X ) ∈
BP = [0, 1]. The region is optimized by maximizing the
average rate under the requirement of the average harvested
energy Q as

max
{β(X )∈BP}

E[R(β(X ),X )] (31a)

s.t. E[Qh(β(X ),X )] ≥ Q (31b)

for 0 ≤ Q ≤ Q̄h(0), where h ∈ {L,N }. The average rate in
the objective function given by

E[R(β(X ),X )] =
∫
∞

0
C(γ0β(x)x2)fX (x)dx (32)

is concave for {β(x) ∈ [0, 1], x ∈ R+} from C(z) = log2(1+
z), where {β(x) ∈ [0, 1], x ∈ R+} can be interpreted as a
vector β of an infinite length. The average harvested energy
in the constraint (31b) is given by

E[Qh(β(X ),X )] =
∫
∞

0
8h(Px(1− β(x)))fX (x)dx (33)

so that the constraint with h = L is linear for {β(x) ∈
[0, 1], x ∈ R+}. The constraint with h = N is quasi-convex
for {β(x) ∈ [0, 1], x ∈ R+} since 8N (p) is a non-decreasing
function of p. Thus, the primal problem (31) for the dynamic
PS strategy satisfies the time sharing condition defined in [44]
that guarantees a zero duality gap for both cases of LEH and
nonlinear PLEH.

Thus, we solve the problem (31) through dual optimization
as in [28], [30], [31] by forming the Lagrangian

LP,h({β(X )}, λ) = E[R(β(X ),X )]
+λ(E[Qh(β(X ),X )]−Q)

=

∫
∞

0
lP,h(β(x), λ, x)fX (x)dx, (34)

where λ ≥ 0 is the Lagrangian dual variable and

lP,h(β, λ, x) = C(γ0βx2)+ λ{8h(P(1− β)x)−Q}. (35)

The Lagrangian dual function for the PS strategy is then given
by

gP,h(λ) = max
{β(X )∈BP}

LP,h({β(X )}, λ) (36)

with the optimal PS strategy

βP,h(x|λ) = arg max
β∈BP

lP,h(β, λ, x) (37)

for given λ ∈ R+ and x ∈ R+.
The optimal dual variable λ?P,h = argmin

λ≥0
gP,h(λ) for h ∈

{L,N } is found by searching the value satisfying

Q̄P,h|λ , E[8h(P(1− βP,h(x|λ))x)] = Q (38)

from the complementary slackness [45]. The optimal
dynamic strategy is then obtained with λ?P,h as

β?P,h(x) = βP,h(x|λ
?
P,h) (39)

for h ∈ {L,N }.
In the following theorems, we derive more explicit expres-

sions of (37) for the LEH and PLEH by using the notation

Bq = {x2 − ϕqx +
1
γ0
≥ 0} (40)

=


{x < tq,1 or x > tq,2} if ϕ2q >

4
γ0

φ if ϕ2q ≤
4
γ0

(41)

for a set associated with a positive function ϕq identified by
the subscript q, where

tq,1=
1
2
ϕq−

√
1
4
ϕ2q−

1
γ0
, tq,2=

1
2
ϕq+

√
1
4
ϕ2q−

1
γ0
. (42)

Theorem 1: The dynamic PS strategy (37) for the LEH (9)
is expressed as

βP,L(x|λ) =



0 if x < x0,
1

γ0 x2

(
x
x0
− 1

)
if x0 < x < t0,1 or x > t0,2,

1 if t0,1 ≤ x ≤ t0,2
(43)

for λ < 1
2λip with λip =

√
γ0

ηP ln 2 while

βP,L(x|λ) =

0 if x < x0,
1

γ0 x2

(
x
x0
− 1

)
if x ≥ x0

(44)

for λ ≥ 1
2λip, where x0 = λ

ηP ln 2
γ0

and {t0,i}2i=1 are given
by (42) with ϕ0 = 1

x0γ0
.3

Proof: See Appendix A-A. �
Remark: In Theorem 1, λip is the value of λ leading to x0 =

1
√
γ0

which is the inflection point of the rate function C(γ0x2)

leading to ∂2

∂x2
C(γ0x2) = 0.

Theorem 2 (): The dynamic PS strategy (37) for the non-
linear PLEH (10) at given dual variable λ is expressed
as (45), as shown at the bottom of the next page,4 where
xv = pv/P for v ∈ {a, b},

DN2(x|λ) = C(γ0x2)− ληP(x − xa), (46)

tb,2 is expressed as (42) with ϕb = xb + 1
γ0x0

, and Bw is
expressed as (40) with

ϕw = −
1
γ0x0

W−1(−e−x0γ0 xa−1) (47)

for the Lambert W function Wk (·) [46].

3In (43) and (44), x0, t0,1, and t0,2 are functions of λ but the argument λ
is omitted for the simplicity in the notation.

4We assume that xb >
2√
γ0

since xb ≈ 10−3 and γ0 � 108 in practice.
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Proof: See Appendix A-B. �

Q̄P,L|λ = ηPMω
{
1−GM+1(

t0,2
ω
,
t0,1
ω

)
}

−
ηP
γ0 x0

{
GM (

x0
ω
,
t0,1
ω

)+ α(M ,
t0,2
ω

)
}

+
ηP
γ0ω

{
IM−1(

x0
ω
)− IM−1(

t0,1
ω

)+ IM−1(
t0,2
ω

)
}
(48)

Q̄P,N |λ = ηPMωGM+1(
tw,2
ω
,
tb,2
ω

)+ ηPxbα(M ,
tb,2
ω

)

−
ηP
γ0x0

GM (
tw,2
ω
,
tb,2
ω

)

+
ηP
γ0ω
{IM−1(

tw,2
ω

)− IM−1(
tb,2
ω

)}. (49)

Lemma 1: If xa > 1
√
γ0
, (45) for 0 < λ < 1

2λip is given by

βP,N (x|λ) =


1 if x < tw,2,

1
γ0 x2

(
x
x0
− 1

)
if tw,2 ≤ x ≤ tb,2,

1− xb
x if x > tb,2,

(50)

where tw,2 is expressed as (42) with (47).
Proof: See Appendix A-C.

�
The average harvested energy is then derived as (48) with

the dynamic PS factor (43) for the LEH and as (49) with
the dynamic PS factor (50) for the PLEH, where I0(x) =
−Ei(−x) = −

∫
∞

x
1
ue
−udu and Im(x) =

0(m)
0(m+1)α(m, x)

for m > 0. The average harvested energy with the
dynamic PS factor (44) for the LEH is obtained as (43) with
t0,1 = t0,2 = ∞.

B. DYNAMIC MS STRATEGY
This subsection derives the dynamic MS strategy that opti-
mizes the rate-energy region (14) for s = M , that is, β(X ) ∈
BM = {0, 1}. The strategy is obtained by solving

max
{β(X )∈BM }

E[R(β(X ),X )] (51a)

s.t. E[Qh(β(X ),X )] ≥ Q (51b)

for 0 ≤ Q ≤ Q̄h(0) and h ∈ {L,N }. The problem (51),
which is almost the same with the problem (31) except for
β(X ) ∈ BM , also satisfies the time sharing condition that
guarantees a zero duality gap from the same reasoning pro-
vided in [31]. Thus, we can solve the problem (51) through

dual optimization by following the approaches applied for the
problem with the dynamic PS strategy.

In brief, the Lagrangian dual function for the dynamic MS
strategy is given by

gM ,h(λ) = max
{β(X )∈BM }

LP,h({β(X )}, λ) (52)

with the optimal MS strategy

βM ,h(x|λ) = arg max
β∈BM

lP,h(β, λ, x) (53)

for given λ ∈ R+ and x ∈ R+, where h ∈ {L,N }. Note that
LP,h({β(X )}, λ) and lP,h(β, λ, x) are the functions used for
the dynamic PS strategy defined in (34) and (35), respectively.
Since there exist only two candidates for the optimal MS
strategy, the optimal MS strategy is obtained as

βM ,h(x|λ) =

{
1 if Dh(x|λ) > 0
0 if Dh(x|λ) < 0,

(54)

where Dh(x|λ) = lP,h(1, λ, x)− lP,h(0, λ, x) is given by

Dh(x|λ) = C(γ0 x2)− λ8h(Px). (55)

The following theorems provide more explicit expressions
for the optimal MS strategy (54) with the LEH and PLEH,
respectively.
Theorem 3: The dynamicMS strategy (54) for the LEH (9)

is expressed as

βM ,L(x|λ) =

{
1 if zL,1 ≤ x ≤ zL,2, 0 < λ < λip

√
z̆,

0 otherwise
(56)

where zL,1 and zL,2 are the zeros of DL(x|λ) for x > 0 and
z̆ u 0.6476 is the zero of

g(y) = ln
(
2
y
(1+

√
1− y)

)
− 1−

√
1− y (57)

for y ∈ [0, 1].
Proof: See Appendix B-A. �

Theorem 4: The dynamic MS strategy (54) for the non-
linear PLEH (10) is given as in Table 1 according to Nz
zeros {zN ,i}

Nz
i=1 of DN2(x|λ) found in xa ≤ x < xb, where

λs =
C(γ0x2b )
Psat

and zS =
√
2λPsat−1
√
γ0

.
Proof: See Appendix B-B. �

Lemma 2: If xa > 1
√
γ0
, a non-trivial dynamic TS solution

exists only when λ ≥ λs.
Proof: See Appendix B-C. �

βP,N (x|λ) =


0 if x ∈ X̃0 , {x < x0, xa ≤ x < xb,DN2(x|λ) ≤ 0},

1
γ0 x2

(
x
x0
− 1

)
if x ∈ X̃z , {{max(x0, xa) ≤ x < max(xb, tb,2)} ∩Bw}

1− xb
x if x ∈ X̃b , {x ≥ max(xb, tb,2)},

1 otherwise,

(45)
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TABLE 1. Dynamic MS strategy and average harvested energy for given dual variable.

The average harvested energy with the dynamic MS strat-
egy (56) is given as

Q̄M ,L|λ =
ηPω
0(M )

GM+1

(zL,1
ω
,
zL,2
ω

)
(58)

for the LEH and as Table 1 for the PLEH. For the LEH,
the optimal dual variable is found in 0 < λ < λip

√
z̆ since

the average harvested energy is themaximumvalue Q̄M ,L|λ =
Q̄L(0) with the trivial solution βM ,L(x|λ) = 0 if λ ≥ λip

√
z̆.

The optimal dual variable λ?M ,h = argmin
λ≥0

gM ,h(λ) of the

dynamic MS strategy for h ∈ {L,N } is found as in the
dynamic PS strategy by searching the value satisfying

Q̄M ,h|λ , E[8h(P(1− βM ,h(x|λ))x)] = Q (59)

using (58) and Table 1, which leads to the optimalMS strategy
β?M ,h(x) = βM ,h(x|λ

?
M ,h) for h ∈ {L,N }.

C. DYNAMIC TS STRATEGY
The dynamic TS strategy that optimizes the rate-energy
region (18) is obtained by solving

max
{τ (X )∈[0,1]}

E[τ (X )R(1,X )] (60a)

s.t. E[(1− τ (X ))Qh(0,X )] ≥ Q, (60b)

which is a linear program with respect to {τ (x) ∈ [0, 1], x ∈
R+}. Thus, the optimal solution of (60) is obtained with the
Lagrangian dual optimization again. The Lagrangian of (60)
is expressed as

LT ,h({τ (X )}, λ) =
∫
∞

0
lT ,h(τ (x), λ, x)fX (x)dx (61)

with

lT ,h(τ, λ, x) = τC(γ0x2)+ λ{(1− τ )8h(Px)−Q} (62)

for h ∈ {L,N }. The optimal TS allocation maximizing the
Lagrangian dual function is achieved with

τh(x|λ) = arg max
τ∈[0,1]

lT ,h(τ, λ, x) (63)

for given λ and x ∈ R+, where

lT ,h(τ, λ, x) = τDh(x|λ)+ λ{8h(Px)−Q} (64)

with Dh(x|λ) = C(γ0x2) − λ8h(Px) defined in (55). Since
lT ,h(τ, λ, x) is a linear function of τ , it is immediate that

τh(x|λ) =

{
1 if Dh(x|λ) > 0
0 if Dh(x|λ) < 0.

(65)

Note that the dynamic TS strategy allocates BM as
β = 1 for τh(x|λ) and EH as β = 0 for 1 − τh(x|λ),
which implies that the optimal dynamic TS strategy (65)
is equivalent to the dynamic MS strategy provided in (54).
Thus, the dynamic TS strategies for the LEH and nonlinear
PLEH are equivalent to the dynamic MS strategies provided
in Theorems 3 and 4, respectively, by replacing βh(x|λ) with
τh(x|λ) for h ∈ {L,N }. Thus, the optimal dual variable
λ?T ,h = argmin

λ≥0
gT ,h(λ) of the dynamic TS strategy for h ∈

{L,N } is also identical to λ?M ,h of the dynamic MS strategy
and hence the optimal dynamic TS strategy is also given by
τ ?h(x) = β?M ,h(x).
Remark: We would like to mention that the optimal dual

variable λ?s,h for each strategy s and EH model h can be
found more efficiently by using the average harvested energy
derived for given λ. Once λ?s,h is found, the optimal factor of
the method is straightforward from Theorems 1-4.

V. PERFORMANCE EVALUATION
This section investigates the average rate-energy regions of
the WPBC system under various configurations by using
η = 0.5734 for the LEH (9) and using η = 0.5918, pa = 64
µW, pb = 8.389 mW, and Psat = 4.927 mW for the NLEH
based on the PLEH (10) developed to approximate the SSEH
function withµ = 274, pc = 1.058×10−3, and pa = 64µW
employed in [34], [36]. We set the transmit power of the HAP
to P = 3 W, noise power of the HAP to σ 2

= −80 dBm, and
path-loss at distance d to ω = 0.001d−2.5. Simulation results
are obtained with 106 channel realizations for each point.

A. PERFORMANCES WITH DIFFERENT STRATEGIES
This subsection validates the static and dynamic strate-
gies derived for the WPBC system by investigating their
rate-energy regions through analysis and simulation. We
investigate the rate-energy regions of the system with the
adaptive QAM at BER ε = 10−3 resulting in κ = 0.28 for
the LEHmodel (9) and nonlinear PLEHmodel (10); different
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FIGURE 2. Rate-energy regions of the WPBC with the LEH when d = 5 m,
M = 1,2,4, and the adaptive QAM at BER ε = 10−3 is employed.

FIGURE 3. Rate-energy regions of the WPBC with the PLEH when
d = 5 m, M = 1,2,4, and the adaptive QAM at BER ε = 10−3 is employed.

ranges of the input power for the PLEH is considered by
varying the number of antennas and the distance of the BD.
Since the dynamic MS strategy is equivalent to the dynamic
TS strategy, we compare the performances of the PS and TS
strategies mostly herein.

Figs. 2 and 3 show the rate-energy regions with various
strategies when d = 5 m and the number of antennas varies
asM = 1, 2, and 4. The LEH and PLEHmodels are employed
in Figs. 2 and 3, respectively, where the results from both
simulation (denoted by ‘Simul.’) and analysis (denoted by
‘Anal.’) are provided for the static strategies while the results
from simulation are provided for the dynamic ones. It is
confirmed that the results from analysis agree with those
from simulation and the dynamic PS (TS) strategy outper-
forms its static counterpart by exploiting the CSI. In addition,
the rate-energy region gets larger as M increases and the
best performance is achieved with the dynamic PS. In case
of the LEH, the dynamic PS, static PS, dynamic TS, and
static TS are the order of performance for given M , which
indicates that the receiver architecture rather than the CSI
dominates the performance. In case of the PLEH, the dynamic

FIGURE 4. Dynamic PS and MS factors for (a) LEH and (b) PLEH when
d = 5 m, M = 4, and Q = 40 µW.

TS outperforms the static PS for a smaller number of antennas
asM = 1 and 2, where a larger variation of the channel fading
increases the probability of the PLEH circuit operating in the
sensitivity region. If the EH circuit encounters the sensitivity
region more often, the dynamic TS choosing one mode tends
to be more preferable than the static PS splitting the received
signal for BM and EH always.

The optimal dynamic PS factor β?P,h(x) and optimal
dynamic MS factor β?M ,h(x) (equivalent to the dynamic TS
factor τ ?h(x)) providing the results of Figs. 2 and 3 forM = 4
and Q = 40 µW are shown as a function of the channel
state x in Fig. 4(a) for h = L and in Fig. 4(b) for h = N .
The static PS factor β̄ is also shown as a benchmark, and
xa = 2.1 × 10−5 and xb = 2.8 × 10−3 are specified for
the PLEH. In the figures, γ0 = 8.5 × 1010, which leads to
λ?P,L = 1.5×104, λ?M ,L(λ

?
T ,L) = 5.1×106, λ?P,N = 3.0×104,

and λ?M ,L(λ
?
T ,N ) = 5.9 × 106. In the case, β?P,L(x) is given

by (43) with x0 ≈ t0,1 = 2.2× 10−7 and t0,2 = 5.4× 10−5,
and β?M ,L(x) is given by (56) with zL,1 = 4.4 × 10−18 and
zL,2 = 1.0 × 10−4 in Fig. 4(a), where zL,1 is out of the
range. In the meantime, since xa > 1

√
γ0

for the PLEH,
β?P,N (x) is given by (45) from Lemma 1 and β?M ,N (x) is given
by βM ,N (x|λ) for λ ≥ λs and Nz = 1 in Table 1 from
Lemma 2, where tw,2 = 7.7 × 10−5, tb,2 = 2.8 × 10−3,
zN ,1 = 9.6 × 10−5, and zS � 1. The dynamic MS (TS)
strategies behaves similar for the LEH and PLEH since the
average channel power, E[X ] = Mω = 7.2× 10−5, is in the
region of the BM being preferred than the EH.

To identify a performance tendency with the PLEH oper-
ating around the saturation region, we consider a closer dis-
tance as d = 2 m and a larger number antennas as M =
8, 16, 32 in obtaining the rate-energy regions in Fig. 5. The
gain of the dynamic TS over the static TS is reduced as
M increases due to the reduced fading fluctuation. In the
meantime, the rate-energy regions of the PS strategies are
almost indistinguishable and get close to the upper-bound
formed by the maximum rate R̄(1) and energy Q̄N (0) as M
increases since the fading fluctuation is reduced significantly.

VOLUME 9, 2021 10851



G. Sacarelo, Y. H. Kim: Rate-Energy Tradeoffs of WPBC With Power Splitting and Time Switching

FIGURE 5. Rate-energy regions of the WPBC with the PLEH when
d = 2 m, M = 8, 16, 32, and the adaptive QAM at BER 10−3 is employed.

FIGURE 6. Dynamic PS and MS factors of the WPBC with the PLEH when
d = 2 m, M = 16, and the adaptive QAM at BER 10−3 is employed:
(a) Q = 0.1 mW, (b) Q = 2.0 mW, and (c) Q = 4.4 mW.

It should be noted that the dynamic PS provides a gain over
the static PS near to the maximum harvesting energy since the
dynamic PS in the saturation region can allocate the excess
power of the EH to the BM according to the channel state
unlike the dynamic TS.

The dynamic PS and MS factors leading to the results of
d = 2 m and M = 16 in Fig. 5 (thus, E[X ] = 2.8 × 10−3)
are also shown in Fig. 6 for Q = 0.1, 2.0, and 4.4 mW.
Again, the optimal dynamic PS factor is given by (45), where
λ?P,N and t?b,2 − tw,2 increase as Q increases for more EH.
The dynamic MS factor is given in the form of βM ,N (x|λ) for
λ ≥ λs and Nz = 1 in Table (1), where λ?M ,N increases as Q
increases. The rate-energy regions imply that the dynamic PS
strategy is more efficient than the dynamic MS (TS) strategy
in the saturation region by utilizing the remained power in the
EH for the BM.

B. FURTHER INVESTIGATIONS
We investigate the rate-energy regions of the WPBC with
practical modulation and EH models and in comparison with
the regions of the SWIPT.

FIGURE 7. Rate-energy regions of the WPBC with different modulations
when d = 5 m and M = 4 for the LEH.

FIGURE 8. Rate-energy regions of the WPBC with different modulations
when d = 5 m and M = 4 for the PLEH.

Figs. 7 and 8 exhibit the effect of the modulation scheme
on the rate-energy regions of the WPBC with the LEH and
PLEH, respectively, when d = 5 m and M = 4. Since a
practical modulation scheme reduces the effective SNR γ0 at
the transmitter side and the reduction increases for a higher
reliability, the rate performance gets worse by employing the
adaptive QAM instead of Gaussian symbols and by decreas-
ing the target BER ε for the adaptive QAM.

Fig. 9 compares the rate-energy regions of the WPBC with
the static strategies when the PLEH (10) and the SSEH (11)
are adopted for the NLEH model of the BD. The regions are
evaluated with the BD at d = 5 m using Gaussian symbols
forM = 4 in Fig. 9(a) andM = 32 in Fig. 9(b). Note that the
regions of the PLEH is obtained with the analysis provided
in this paper while the regions of the SSEH is obtained with
simulations. The figures show that the analytical results with
the PLEH are almost indistinguishable from the simulation
results with the SSEH that represents the actual NLEHmodel.

We also provide the rate-energy regions of theWPBCwhen
the strategies developed with the PLEH are applied to the
BD with the SSEH for the actual NLEH model in Fig. 10
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FIGURE 9. Rate-energy regions of the WPBC with the PLEH and the SSEH
for the NLEH model of the BD when d = 5 m and Gaussian symbols are
used: (a) M = 4 (b) M = 32.

FIGURE 10. Rate-energy regions of the WPBC when the strategies for the
PLEH is applied to the BD with the SSEH when d = 5 m and Gaussian
symbols are used: (a) M = 4 (b) M = 32.

when the other conditions remain unchanged from Fig. 9.
In the figures, PLEH/SSEH denotes the results obtained by
applying the strategies derived with the PLEH to the BD with
the SSEH while PLEH/PLEH denotes the results obtained
in this paper by assuming the PLEH for the NLEH model
of the BD. The results show that the rate-energy regions
of PLEH/SSEH and PLEH/PLEH coincide each other for
the strategy employed. Therefore, it is confirmed that the
dynamic PS and TS strategies obtained in explicit forms with
the PLEH in this paper are applicable to the BD with the
SSEH at a negligible loss.

Finally, we compare the rate-energy regions of the WPBC
and SWIPT using Gaussian symbols for BM and the PLEH
approximation for the NLEH in Fig. 11 when their device
is located at d = 5 m. We set M = 4 in Fig. 11(a) and
M = 32 in Fig. 11(b). The energy behaviors are identical
for the WPBC and SWIPT since the energy flow is in the
same direction from the HAP to the device for both cases.

FIGURE 11. Rate-energy regions of the WPBC and SWIPT using Gaussian
symbols for BM and the PLEH for the NLEH when d = 5 with (a) M = 4
and (b) M = 32.

On the other hand, the rate performance of the WPBC is
much worse than that of the SWIPT since the WPBC suffers
from double path loss and double fading from the HAP to
the BD and then from the BD to the HAP while the SWIPT
suffers from a single path loss and a single fading from the
HAP to the device. The rate gap between the WPBC and
SWIPT is reduced by increasing the number of antennas at
the HAPwhich increases the received SNR as well as reduces
the double fading effect.

C. DISCUSSIONS
We now discuss some practical implications of the observa-
tions made in the preceding subsections. The dynamic PS
strategy is the best from a performance perspective in par-
ticular with the NLEH models exhibiting a sensitivity region.
However, the dynamic PS can be replaced by the static PS to
avoid the CSI especially when the number of antennas at the
HAP is large. The TS strategies can be employed instead of
the PS ones to lower the receiver complexity but at the cost
of a considerable performance loss. The rate-energy regions
with a practical modulation scheme exhibit a similar shape
with those of Gaussian symbols so that the strategies for a
practical modulation scheme are obtained immediately from
those for Gaussian symbols by adding a SNR margin deter-
mined by the reliability condition. The rate-energy regions
obtained with the PLEH provide a good approximation to the
regions with a practical EH so that the dynamic strategies
derived in explicit forms for the PLEH in this paper can
be applied to the WPBC with the practical EH. Due to the
double path loss and double fading, the rate-energy regions of
the WPBC are compressed considerably in comparison with
those of the SWIPT. However, the performance gap between
the WPBC and SWIPT decreases by increasing the number
of antennas at the HAP owing to double beamforming at the
transmitter and receiver.

The strategies and their rate-energy regions obtained for
the monostatic WPBCwith a single BD herein can be applied
to the WPBC supporting multiple BDs in a centralized
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manner using TDMA and round-robin scheduling. In this
case, the rate and energy are reduced according to the portion
of a time slot allocated to each BD in the time frame when
each BD performs EH and BM in its assigned time slot
according to the strategy designed for a single BD. How-
ever, the performance of the WPBC with multiple BDs can
be improved further by employing sophisticatedly designed
strategies and resource allocation methods among the BDs
sharing the resources. For instance, even in the aforemen-
tioned TDMA, one BD can harvest energy during the time
slots allocated for the other BDs, which would change the
PS and TS strategies. Furthermore, the rate-energy regions
of the WPBC supporting multiple BDs in SDMA can appear
in various forms according to the transmit and receive beam-
forming methods in suppressing the interference as well as
how to define the rate-and-energy regions with the rates and
energies of multiple BDs. Thus, various optimizations of
the multiuser WPBC with PS and TS strategies would be
interesting subjects to be tackled as future studies.

VI. CONCLUSION
The rate-energy regions of a monostatic multi-antenna
WPBC system were investigated comprehensively with dif-
ferent receiver architectures, the availability of the CSI, and
different EH models. The rate-energy regions achieved with
the static PS and TS strategies have been analyzed and
expressed in closed forms by adopting rate and EH functions
reflecting the effect of a practical modulation scheme and
a NLEH circuit, respectively. The dynamic PS, MS, and
TS strategies have been optimized for each channel state
to enlarge the rate-energy region and have been given in
closed forms if their optimal dual variable is found, where the
dynamic TS strategy is shown to be equivalent to the dynamic
MS one. Various investigations show that the rate-energy
regions are expanded significantly with the PS strategies
rather than the TS (MS) ones at the cost of the receiver
complexity, and with the dynamic strategies rather than the
static ones at the cost of the CSI. The gain of the dynamic
strategies over the static ones is larger with a smaller number
of antennas at the HAP or in the sensitivity region of the
NLEH while it becomes insignificant with a large number
of antennas at the HAP. The results also show that the PS
and TS strategies obtained with the PLEH in explicit forms
are applicable to the BD with the practical EH model at a
negligible loss.

APPENDIX A
PROOFS FOR DYNAMIC PS STRATEGY
A. PROOF OF THEOREM 1
The LEH (9) leads to

lP,L(β, λ, x) = C(βγ0 x2)+ λ{ηP(1− β)x −Q} (66)

which is a concave function of β. Since the first derivative

∂

∂β
lP,L(β, λ, x) =

γ0 x2

(1+ βγ0 x2) ln 2
− ληPx (67)

has a unique zero

βz =
1

γ0 x2

(
x
x0
− 1

)
, (68)

the right-hand side of (66) has a unique maximum in β ∈
[0, 1] which is achieved at β = βz if 0 ≤ βz ≤ 1, at β = 0 if
βz < 0, and at β = 1 if βz > 1. Hence, we have

βP,L(x|λ) =


0 if x ∈ X0,

βz if x ∈ Xz,

1 if x ∈ X1,

(69)

where

X0 = {βz < 0} = {x < x0}, (70)

Xz = {0 ≤ βz ≤ 1} = {x ≥ x0} ∩B0, (71)

X1 = {βz > 1} = {x ≥ x0} ∩Bc
0 (72)

withB0 defined as (40) with ϕ0.
If x0 < 1

2
√
γ0

(or equivalently λ < 1
2λip), we have ϕ20 >

4
γ0

and thus B0 = {x < t0,1 or x > t0,2}. Since x0 < t0,1
from t0,1 = 1

γ0t0,2
and t0,2 < 1

γ0x0
, we have Xz = {x0 <

x < t0,1 or x > t0,2} and X1 = {t0,1 ≤ x ≤ t0,2} which
lead to (43). If λ ≥ 1

2λip, B0 = R+ and Bc
0 = φ and thus

Xz = {x ≥ x0} and X1 = φ which can be obtained by letting
t0,1 = t0,2 = ∞ in (43).

B. PROOF OF THEOREM 2
Let us write the objective function (35) for h = N as

lP,N (β, λ, x)=


lN1(β, λ, x) if (1− β)x ≤ xa,
lN2(β, λ, x) if xa < (1− β)x < xb,
lN3(β, λ, x) if (1− β)x ≥ xb,

(73)

where

lN1(β, λ, x) = C(γ0βx2)− λQ, (74)

lN2(β, λ, x) = lN1(β, λ, x)+ ληP{(1− β)x − xa}, (75)

lN3(β, λ, x) = C(γ0βx2)+ λ[Psat −Q]. (76)

Case of x < xa: Since (1−β)x ≤ xa for β ∈ [0, 1], we have
lP,N (β, λ, x) = lN1(β, λ, x) that is an increasing function of
β. Therefore, we have

βP,N (x|λ) = 1 for x < xa. (77)

Case of x ≥ xa: We rewrite (73) as a function of β as

lP,N (β, λ, x) =


lN3(β, λ, x) if 0 ≤ β ≤ β+b ,
lN2(β, λ, x) if β+b ≤ β ≤ βa,
lN1(β, λ, x) if βa < β ≤ 1,

(78)

where βa = 1 − xa
x , βb = 1 − xb

x , and β
+

b = max(βb, 0).
Note that lP,N (β, λ, x) consists of an increasing function
lN3(β, λ, x), a concave function lN2(β, λ, x), and an increas-
ing function lN1(β, λ, x) of β which are continuous at β =
β+b and β = βa. Thus, the maximum of lP,N (β, λ, x) occurs
at one of possible candidates {β+b , βz, 1}, where βz is the zero
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of ∂
∂β
lN2(β, λ, x) = 0; the maximum occurs at either β = β+b

or β = 1 if βz < β+b , at either β = βz or β = 1 if
β+b < βz < βa, and at β = 1 if βa < βz. Hence, βP,N (x|λ)
maximizing lP,N (β, λ, x) is expressed as

βP,N (x|λ) =



β+b if βz ≤ β
+

b ,
lN2(β

+

b , λ, x) ≥ lN1(1, λ, x),
βz if β+b < βz ≤ βa,

lN2(βz, λ, x) ≥ lN1(1, λ, x),
1 otherwise.

(79)

We combine (77) and (79) (after replacing β+b = 0 for
xa ≤ x < xb and β

+

b = βb for x ≥ xb) into

βP,N (x|λ) =


0 if x ∈ X̃0,
βb if x ∈ X̃b,
βz if x ∈ X̃z,
1 otherwise,

(80)

where

X̃0={xa ≤ x < xb, βz ≤ 0, 1(0, λ, x) ≥ 0}, (81)

X̃b={x ≥ xb, βz ≤ βb, 1(βb, λ, x) ≥ 0}, (82)

X̃z={x ≥ xa, β
+

b ≤ βz} ∩ {βz ≤ βa,1(βz, λ, x) ≥ 0} (83)

with

1(β, λ, x)

= lN2(β, λ, x)− lN1(1, λ, x)

= log2

(
1+ γ0βx2

1+ γ0x2

)
+ λ[ηP {(1− β)x − xa}]. (84)

In the following, we show that (81)–(83) are equivalent to
the expressions in (45).
Case of X̃0: It is straightforward for (81) since {βz ≤ 0} =
{x ≤ x0} and 1(0, λ, x) = −DN2(x|λ).
Case of X̃b: Note that

{βz ≤ βv} = {x2 − ϕvx +
1
γ0
≥ 0} = Bv (85)

with ϕv = xv + 1
γ0x0

for v ∈ {a, b} and

{1(βb, λ, x) ≥ 0} = {x2 − ϕsx +
1
γ0
≥ 0} = Bs (86)

with ϕs =
xb

1−e−λPsat . Thus, (82) is rewritten as X̃b = {x ≥
xb} ∩Bb ∩Bs. For xb � xa, we haveBb ∩Bs = Bb since

ϕb − ϕs =

(
1−

1+ ε
2ε(1−xa/xb)

)
1

ε(1− e−λPsat )
≥ 0 (87)

with λPsat = x0γ0(xb − xa) ln 2 and ε = x0γ0xb. Thus,
we have

X̃b = {x ≥ xb} ∩Bb. (88)

From xb > 2
√
γ0
, we have ϕ2b >

4
γ0

leading to

Bb = {x ≤ tb,1 or x ≥ tb,2}, (89)

where tb,1 < xb since tb,1 = 1
γ0 tb,2

< xb
2 from tb,2 ≥

xb
2 and

4
γ0
< x2b . Therefore, (88) becomes X̃b given in (45).

Case of X̃z: We first decompose X̃z1 = {x ≥ xa, β
+

b ≤ βz}

in (83) into

{x ≥ xa, βb < 0, βz≥0} ∪ {x ≥ xa, βb ≥ 0, βz≥βb}, (90)

where {βb < 0} = {x < xb}, {βz ≥ 0} = {x ≥ x0}, and
{βz ≥ βb} = Bc

b from (85). Thus, (90) with (89) becomes

X̃z1 = {xa ≤ x < xb, x ≥ x0} ∪ {x ≥ xb, tb,1 ≤ x ≤ tb,2}

= {max(xa, x0) ≤ x < max(xb, tb,2)}. (91)

Next, we express X̃z2 = {βz ≤ βa,1(βz, λ, x) ≥ 0} in (83)
as X̃z2 = Ba ∩Dz from (85), whereDz = {1(βz, λ, x) ≥ 0}
is rewritten as

Dz = {q(x)− ln q(x) ≥ x0γ0 xa + 1} (92)

with q(x) = x0(1+γ0 x2)
x . By introducing the Labmert W

function, we can express (92) as

Dz = {q(x) ≤ w0 or q(x) ≥ w−1}

= {x2 − ϕwx +
1
γ0
≥ 0} ∪ {x2 − ϕw′x +

1
γ0
≤ 0}, (93)

where wk = −Wk (−e−x0γ0 xa−1) for k = −1, 0, ϕw =
w−1
x0γ0

,
and ϕw′ =

w0
x0γ0

. We further note that

ϕw′ ≤ ϕa ≤ ϕw (94)

from w0 ≤ 1 + γ0x0xa ≤ w−1 since w0 < 1 and w−1 ≥
x0γ0 xa+ 1 fromW−1(−e−x) = −x− ln(W−1(−e−x)) ≤ −x
for x ≥ 1. Therefore, we have

X̃z2 = Dz = {x2 − ϕwx +
1
γ0
≥ 0} = Bw. (95)

Thus, the set (83) with (91) and (95) becomes X̃z in (45).

C. PROOF OF LEMMA 1
If λ < 1

2λip (that is, x0 < 1
2
√
γ0
), we have ϕ2w > 4

γ0
from

ϕw ≥ ϕa = xa + 1
x0γ0

. Thus, Bw = {x ≤ tw,1 or x ≥ tw,2},
where tw,2 > xa since tw,2 ≥ xa + 1

2x0γ0
> xa. Note that

tw,1 = 1
γ0 tw,2

< 1
γ0 xa

becomes tw,1 < 1
√
γ0
< xa if xa > 1

√
γ0
.

If λ < 1
2λip and xa >

1
√
γ0
, we have x0 < xa so that X̃0 = φ,

X̃z = {tw,2 ≤ x ≤ tb,2}, and X̃b = {x ≥ tb,2}.

APPENDIX B
PROOFS FOR DYNAMIC MS STRATEGY
A. PROOF OF THEOREM 3
From (66), (55) is expressed as

DL(x|λ) = C(γ0x2)− ληPx (96)

of which the first derivative with respect to x is given by

∂DL(x|λ)
∂x

= −
λγ0ηP
1+ γ0x2

(
x2 −

2
x0γ0

x +
1
γ0

)
. (97)
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If x0 ≥ 1
√
γ0
, ∂DL (x|λ)

∂x ≤ 0 so that DL(x|λ) is decreasing from
DL(0|λ) = 0 and consequently DL(x|λ) ≤ 0 for x ≥ 0. If
x0 < 1

√
γ0
, DL(x|λ) is decreasing for x < tL,1 or x > tL,2

and is increasing for tL,1 < x < tL,2, where tL,1 and tL,2 are
the two real roots of ∂

∂xDL(x|λ) = 0 expressed as (42) with
q = L and ϕL = 2

x0γ0
.

IfDL(tL,2|λ) > 0,DL(x|λ) has two zeros zL,1 and zL,2 such
that DL(x|λ) < 0 for x < zL,1 or x > zL,2 and DL(x|λ) > 0
for zL,1 < x < zL,2. If DL(tL,2|λ) ≤ 0, we have DL(x|λ) ≤ 0
for x ≥ 0 so that βT ,L(x|λ) = 0. The condition DL(tL,2|λ) >

0 is equivalent to x0 <
√

z̆
γ0

and again to λ < λip
√
z̆, where

z̆ u 0.6476 is the zero of (57) found by the numerical method.

B. PROOF OF THEOREM 4
For the nonlinear PLEH, (55) for h = N becomes

DN (x|λ) =


C(γ0x2) if 0 ≤ x < xa,
DN2(x|λ) if xa ≤ x < xb,
DN3(x|λ) if x ≥ xb,

(98)

where DN2(x|λ) is given in (46) and

DN3(x|λ) = C(γ0x2)− λPsat . (99)

Case of 0 ≤ x < xa: Since DN (x|λ) > 0 for all λ > 0,
we have

βM ,N (x|λ) = 1 for 0 ≤ x ≤ xa. (100)

Case of x ≥ xa: Although DN3(x|λ) is an increasing
function of x ∈ [xb,∞), DN2(x|λ) exhibits a more compli-
cated behavior according to the zeros of ∂

∂xDN2(x|λ), where
∂
∂xDN2(x|λ) = ∂

∂xDL(x|λ). From (97), ∂
∂xDN2(x|λ) has no

zero if x0 ≥ 1
√
γ0

(that is, λ ≥ λip) while it has two zeros tL,1
and tL,2 if λ < λip.

If λ ≥ λip, DN2(x|λ) is a decreasing function for xa ≤
x < xb with DN2(xa|λ) > 0 while DN3(x|λ) is an increasing
function for x > xb. Hence, we have a non-trivial solution
resulting in Q̄T ,N |λ > 0 only if DN2(xb|λ) < 0 (or equiva-

lently λ > λs ,
C(γ0x2b )
Psat

) as

βM ,N (x|λ) =

{
1 if xa ≤ x < zN ,1 or x > zS ,
0 if zN ,1 ≤ x < zS ,

(101)

where zN ,1 is the unique zero of DN2(x|λ) in xa ≤ x ≤ xb
and zS =

√
2λPsat−1
γ0

is the zero of DN3(x|λ). Since λip � λs
in practical scenarios with a large value of γ0, the solution is
given by (101) if λ > λip.

If λ < λip, DN2(x|λ) is decreasing for x < tL,1, increasing
for tL,1 ≤ x < tL,2, and decreasing for x ≥ tL,2 with
DN2(xa|λ) > 0. Thus, DN2(x|λ) can have Nz zeros in xa ≤
x ≤ xb, where Nz ∈ {0, 1, 2, 3} varies according to the
locations of tL,1 and tL,2 in xa ≤ x < xb. Let {zN ,i}

Nz
i=1 denote

the zeros of DN2(x|λ) in xa ≤ x ≤ xb. If λs < λ < λip in
which DN2(xb|λ) < 0, we have Nz = 1 or 3. The dyanmic

MS strategy for Nz = 1 is given by (101). The dyanmic MS
strategy for Nz = 3 is expressed as

βM ,N (x|λ) =


1 if xa ≤ x < zN ,1 or

zN ,2 < x < zN ,3 or x < zS ,
0 if zN ,1< x< zN ,2 or zN ,3< x< zS

(102)

since DN2(x|λ) > 0 for xa < x < zN ,1 or zN ,2 < x <

zN ,3 or x > zS and DN2(x|λ) < 0 for zN ,1 < x < zN ,2
or zN ,3 < x < zzS . If λ ≤ λs with DN2(xb|λ) ≥ 0, we have
Nz = 0 or 2, where Nz = 0 is trivial. If Nz = 2,DN2(x|λ) > 0
for xa < x < zN ,1, DN2(x|λ) < 0 for zN ,1 < x < zN ,2,
DN2(x|λ) > 0 for zN ,2 < x < xb, and DN3(x|λ) > 0 for
x > xb. Thus, the TS solution is given by

βM ,N (x|λ) =

{
1 if xa ≤ x < zN ,1 or x > zN ,2,
0 if zN ,1 ≤ x < zN ,2.

(103)

Finally, we have Table 1 by combining (100)
with (101)-(103).

C. PROOF OF LEMMA 2
If xa > 1

√
γ0
, DN2(x|λ) is concave in xa ≤ x < xb with

DN2(xa|λ) > 0. If λ < λs, DN2(xb|λ) > 0 leading to a trivial
solutions with βM ,N (x|λ) = 1. If λ ≥ λs, DN2(xb|λ) < 0 and
thus the solution is given in Table 1 with Nz = 1.
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