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ABSTRACT In this paper, we present a simple-structure Pedestrian Dead Reckon (PDR) system based
on commercial IMU sensor and UWB ranging system. In PDR system, the accuracy of step and heading
angle estimation completely decide the precision of location result. In order to select proper zero-velocity
intervals for step and heading estimations in the foot stance/still stage, amodified zero-velocity detectionway
called Heuristic Step Detection (HSD) has been designed based on zero-velocity update algorithm (ZUPT).
Based on the modified zero-velocity detection algorithm, i.e., HSD, an Kalman-type filter is used to get
rough heading angle by fusing zero-velocity information and single UWB anchor ranging results. After that,
a constrained sigma point based filter is used to further constrain heading angle range. Moreover, the range
measures, provided by a UWB localization system with only one reference anchor, are used to correct the
pedestrian step length. Trough UWB ranging measures analysis between two consecutive steps, the step
length and pedestrian heading direction correcting processes are related to each other, and as a result, a more
stable positioning result can be gotten. The corresponding practical experiments are conducted in real indoor
environment over 2000 meters, and the results show that, compared with only INS-aided PDR, our scheme
can reduce the average position error by more than 80%, and it can achieve long-term high accuracy and
robust localization results.

INDEX TERMS Pedestrian dead reckon, ultra-wide band, indoor localization, fusion strategy.

I. INTRODUCTION
Nowadays, more and more intelligent services are based
on real-time location, such as vehicle navigation [1], emer-
gency service [2], and so on [3]. In outdoor scenarios, the
Chinese BeiDou Navigation System (BDS), the Russian
Gronus (GLONASS), the American Global Positioning Sys-
tem (GPS), and the European Galileo positioning and naviga-
tion system can provide comparatively high-quality location
service [4]. However, due to the building and urban canyon
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blocking effect, the electromagnetic satellite signals will be
attenuated or distorted under indoor environment [5]. More-
over, people spend most of time staying in room, it has great
research potentiality and commercial value in indoor loca-
tion system development. Therefore, many solutions have
been designed to solve indoor localization problems. Iner-
tia Navigation System (INS) is a self-constrained system,
it can provide corresponding acceleration information and
gyroscope readings of sensor motion in real time. In this
reason, INS is being widely used in many indoor location
scenarios. Pedestrian Dead Reckoning (PDR) is pedestrian
localization approach aided by INS [6], [7], it can iteratively
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and rapidly calculate the pedestrian position using heading
information provided by INS and the given step length infor-
mation. For example, A.R. Jiménez et al. implemented a
Kalman-based framework to estimate walking people posi-
tion and attitude [8]. In order to improve the properties
of Micro-Electro-Mechanical System (MEMS) in pedestrian
dead reckon, Hongyu Zhao et al. designed a two foot-
mounted MEME localization system [9], which relies on
symmetric drift and bias characteristics of IMU sensor to
delimit the range of heading angle. Nevertheless, IMU has
severe bias and drift on acceleration and gyroscope read-
ings, and according to INS velocity and position solution
rules, it only tracks short distance in acceptable accuracy
[10], [11]. Although the former mentioned INS solutions can
improve the tracking distance at some extend, these solutions
have not been tested and verified in long-term localization
experiment, especially in high motion state. Except for INS-
based localization system, radio frequency-based localization
systems have been exploited sufficiently in recent decades,
such as ZigBee [12], [13] WIFI [14], [15] Ultra-Wideband
(UWB) [16], [17] Bluetooth [18], [19] and so on. These radio
frequency-based localization system mainly adopt Received
Signal Strength Indication (RSSI) or ranging information to
estimation target position [20]. More specifically, target posi-
tion can be calculated according to RSSI distance formula or
gridmatching, its deployment and algorithm cost is extremely
low. The drawbacks of RSSI way are low positioning preci-
sion and laborious signal strength map creating, and the posi-
tioning result is susceptible to environment [21]. Conversely,
the ranging based positioning way can provide more accurate
and stable results through calculating the distance between
target and anchors while it costs much more than RSSI way.
This method suffers from electromagnetic signal multipath
effect and None-Line-of Sight (NLoS) [22]. Due to UWB
system adopts nanosecond or sub-nanosecond pulse signal
to ranging, UWB signal has strong anti-multipath ability and
provides more stable positioning result. It is widely used in
many kinds of localization scenarios, and the accuracy of
UWB location system can reach centimeter level [23].

As is stated above, INS can provide continuous but inaccu-
rate positioning result in long time scale. Conversely, UWB
system can provide stable and discontinuous localization
result. Therefore, many INS and UWB fusion localization
algorithms have been proposed to further improve positioning
accuracy. Yuan Xu et al. proposed a modified finite impulse
response (UFIR) filter-based INS and UWB fusion system
to improve indoor localization accuracy [24], and the Maha-
lanobis distance has been used to estimate the averaging
horizon for the UFIR filter in real time. Jianan Zhu’s team
presented a hybrid filter, the Schmidt Kalman filter followed
by a novel constrained sigma point based filter, for UWB-
aided pedestrian location estimation under None Light of
Sight (NLoS) and long-distance Light of Sight (LoS) sit-
uations [25]. After that, this team also proposed an adap-
tive localization based on the first-order Generalized Pseudo
Bayesian (GPB) method to improve the localization accuracy

under LoS and NLoS, which has achieved good localization
accuracy [26]. Qigao Fan et al. designed a Double-State
Adaptive Kalman Filter (DSAKF) algorithm based on Sage-
Husa adaptive Kalman filter and fading adaptive Kalman
filter to fuse INS and UWB localization results [27]. In
order to extract useful information fromUWB ranging results
under NLoS environment, Beibei Li et al. used the maximum
likelihood estimation algorithm to eliminate the influence
of NLoS on the transmitted signal for better UWB system
localization, and adopted the extended Kalman filter to fuse
INS and UWB position result [5]. It could be seen that
current indoor position researches are mostly concentrating
on information fusion between INS and UWB localization
system with multiple anchors. Although it can achieve a
good localization result, the UWB system is a high cost set
which limits its deployment area and universal application.
In order to solve this problem, Qinglin Tian et al. proposed a
Particle Filter (PF) based INS and UWB pedestrian localiza-
tion fusion system with only one UWB anchor ranging mea-
surements being used in this system [28]. This system fully
uses the ranging measurements provided by UWB anchors
to correct pedestrian positioning, and achieves good tracking
results. However, this system has strict condition on phone
placing attitude (keeping cellphone being in front of body
and pointing to the direction of walking), and this system
has not been tested under NLoS condition. And then, Qinglin
Tian et al. designed a particle resetting approach to solve
the lose tracking problem in PF based fusion system [3].
This approach has solved the lose tracking problem well
in testing experiment. Same as former statement, this solu-
tion also adopts heading information provided by gyroscope
embedded in cellphone, and only accelerometer data are used
to detect step. Under the fact that mobile phone cannot be held
parallel to ground strictly, it will incur great error in walking
direction when it directly uses the yaw provided by IMU
embedded in cellphone. Although the PDR assisted by one
UWB anchor has achieved great progress in the localization
accuracy, its potentiality has not been exploited sufficiently.
In PDR, the step length and heading angle have severe impact
on trajectory. The trajectory will gradually drift from real
states when the step length or heading angle severely deviates
from its true value.

Therefore, considering the localization system actual
deployment cost and corresponding positioning accuracy,
we propose a Direction and Step Correction Localization
System (DSCLS) which is aided by one UWB anchor and
an INS, its heading angle and step length can be constrained
or estimated by UWB ranging data for better positioning
accuracy. The main contributions of this paper are listed as
follows:

1. Based on the traditional ZUPT, a step detection
and zero-velocity selection algorithm, Heuristic Step
Detection (HSD), is proposed in this paper. It can be
used to detect step and sieve proper zero-velocity seg-
ment data for filter measurement updating. The HSD
algorithm could improve the localization accuracy
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properly when heading angle and step length are esti-
mated at acceptable accuracy.

2. After that, heading angle dynamic restriction condition
is set up and used to delimit pedestrian walking direc-
tion by using modified zero-velocity selection algo-
rithm and transforming next step information into angle
estimation form. It will reduce the distortion of whole
trajectory.

3. And then, the step length estimation based on oneUWB
anchor ranging and heading information provided by
previous process is discussed in our research, which
improves the accuracy of pedestrian tracing distance
and system stability.

4. At last, the several practical experiments, total testing
distance over 2000 meters, are carried out to demon-
strate our designs. The experiment results are compared
and discussed under different conditions.

II. PROBLEM STATEMENT
The PDR is the most popular indoor pedestrian localization
way, it uses the direction provided by IMU and estimated
step length to iteratively compute the pedestrian location.
Therefore, the heading angle, step length and step detection
completely determine the localization result, the correspond-
ing 2-Dimensional (2D) location updating equation is[

xk
yk

]
=

[
xk−1
yk−1

]
+

[
cos θ
sin θ

]
∗ Ls, (1)

where the x and y present coordinate values of selected
navigation frame, k denotes the updating number or step
number, and θ , Ls represents pedestrian heading angle and
corresponding step length, respectively. As former statement,
the initial location, heading angle and step length determine
the localization accuracy.

In practical scenario, the initial location is prior knowledge,
which could start from a known location such as building
entrance and so on. The heading angle can be extracted from
sensor fixed on pedestrian body or limbs. In some researches,
the angle information is completely depending on the smart-
phone which being holding in hand and pointing to walking
direction [28], [29]. However, the yaw information provided
by cellphone is susceptible to hands shaking or cellphone
attitude which is critical in initial alignment stage. Moreover,
due to human non-rigid characteristic [9], hands holding
smartphone way will influences the step detection and cor-
responding zero-velocity selection, and it has low practica-
bility compared with IMU fixed on foot. The raw gyroscope
readings using hands holding way and foot mounted way are
shown in Fig. 1. As is depicted in Fig. 1(a), the hands holding
way is hard to determine zero-velocity stage and step because
of slight hands shaking and body swinging in walking state;
conversely, as for foot-mounted way shown in Fig. 1(b), the
IMU fixed on the foot has more stable characteristics in
stance/still stage, it is easy to discern various walking states
which benefit IMU measurement updating in filter and latter
step length and heading angle correction.

FIGURE 1. Comparison between hands holding IMU and foot fixing IMU
in pedestrian walking state. (a) gyroscopic readings under hands holding
way. (b) gyroscopic readings under foot-mounted way.

In PDR, the step length is commonly estimated by a model
[28], formulated as

Ls = ks∗h∗
√
fs. (2)

The coefficient, ks, is a constant scaling factor which is dif-
ferent between male and female, h and fs represent pedestrian
height and walking frequency, respectively. This model can
provide high accuracy of step length estimation. However,
the distance error will be accumulated due to the minor step
estimation error, and it may not exactly suitable for every-
one. Therefore, the step length estimated by (2) should be
corrected before being used to calculate location.

The pure INS localization system has been investigated
sufficiently in the past decades; many solutions have been
exploited to improve the reliability of localization results.
Among them, the magnetometer and barometer embedded in
MEMS aremostly used to correct motion direction and height
[30], it has achieved better localization results compared with
pure INS way. However, the magnetometer is susceptible to
modern indoor harsh magnet environment, and the barometer
readings are hard to be distinguished between two position
with marginal height difference. Moreover, the commercial
low-price MEMS sensors have significant bias and drift [8].
Hence, most researchers concentrate on correcting pedestrian
location by fusing MEMS and UWB system localization
results directly [5], [26], [27], [31], which need high den-
sity UWB anchor deployment accompanied with high costs.
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It is the tradeoff between set costs and localization accuracy.
Moreover, the position accuracy does not linearly increase
with the number of UWB base stations when the base station
number has reached a certain number. Therefore, the number
of base stations should be reduced while keeping high local-
ization accuracy.

III. PROPOSED PDR AND UWB FUSION SYSTEM
A. OVERVIEW
The data flow processing procedures of the proposed posi-
tioning system is shown in Fig. 2. This system is started
with IMU raw data and sampling interval acquiring, and then
step is detected by ZUPT. Since step frequency is lower than
IMU sampling frequency and UWB updating frequency, the
later processing progress is based on step detection, and the
whole processing structure is triggered by new IMU data.
After the step has been detected, in the Zero-velocity Interval
selection block, the angular velocity and acceleration are
adopted to choose a proper zero-velocity interval for IMU
states updating. Due to ranging frequency of UWB system
differing with frequency of pedestrian step and the UWB
system may being in NLoS state, the UWB ranging measures
should be sieved before being used for position estimation.
In the UWB ranging Rk selection block, the time stamp of
the selected UWB measure should be close to that of current
detected step under LoS condition. The INS Update and
error compensation strategy is implemented with Kalman-
type Filter (KF). After that, by comparing current UWB rang-
ing measurement with former step UWB ranging result, the
Heading angle optimization or Step length optimization is
executed respectively. At last, the optimal position is updated
using former estimated results, and processing flow return to
next circle. In later statement, the whole processing technol-
ogy will be described in detail. It should be emphasized that
the location of UWB anchor can be calculated by INS data in
initial localization stage, which is proposed in [28]. However,
the IMU used in this paper is commercial level, it suffers
high drift and large bias and it will degrade its estimation
accuracy severely. Therefore, the location of UWB anchor
will be manually calibrated for better positioning result.

B. STEP DETECTION AND ZERO-VELOCITY INTERVAL
SELECTION
In this paper, the ZUPT is chosen to implement initial step
detection, it can judge the step characteristics by using angu-
lar velocity and acceleration provided by IMU. The detail of
ZUPT is given in [8], and we simply describe it as follow
three constraint conditions (C1, C2, C3):

C1 =

{
1 thamin < |ak | < thamax

0 otherwise,
(3)

C2 =

{
1 σa > thσa
0 otherwise,

(4)

FIGURE 2. Structure of the proposed system for localization. Rk denotes
the k-th UWB ranging measurement.

C3 =

{
1 |ωk | < thω
0 otherwise,

(5)

thamin and thamax represent the 2-norm of k-th sampling
acceleration |ak |, lower bound and upper bound, respectively.
σa is the root mean variance of acceleration under a selected
window, and thσa is corresponding threshold. |ωk | denotes
the 2-norm of k-th sampling angular velocity ωk , and thω is
the selected threshold.

As is stated above, there are five basic parameters (thamin,
thamax , thσa, thω, and the window size), which should be
determined before step-stance/still detection, and the values
of these parameters should be different according to different
people and motion type. Fig. 3 depicts different parameter
values of ZUPT used in step detection and zero-velocity point
selection, which is hard to select zero-velocity stage exactly
and detect step correctly. In traditional way, the zero-velocity
data are used to calibrate position and velocity. As is shown in
Fig. 3, in ZUPT selected zero-velocity points, the correspond-
ing angular velocity and acceleration is not absolute zero state
or stay in stable interval, there are some fluctuations around
ZUPT selected points. It may result in wrong step detection
and invalid zero-velocity updating in IMU state estimation.
Therefore, based on the ZUPT, we designed a zero-velocity
selection way called Heuristic Step Detection (HSD) algo-
rithm to acquire more reliable data for state calibration. The
corresponding zero-velocity selection equation is as follow:

T1=|dk−((dk−|dk+t−dk+2t |)+(dk−|dk+t−dk+3t |))/2|,

(6)

where dk is k-th sampling data (acceleration or angular veloc-
ity), t denotes data selection window. If T1 is lower than
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FIGURE 3. The zero-velocity interval midpoint selection using ZUPT and
HSD respectively.

a given threshold thT1, T1 < thT1, the corresponding k-th
sampling data can be used for state updating. In common
case, the smaller thT1 is, the more precise result will be given.
In order to acquire appropriate quality and quantity data, the
threshold thT1 should be set properly.

C. INS UPDATE AND ERROR COMPENSATION
In INS localization system, the navigation frame (n-frame)
is East-North-Up (ENU), the body frame (b-frame) is Right-
Forward-Up (xb-yb-zb), and the localization results are dis-
played in Cartesian coordinates as presented in Fig. 4. The
IMU sensor and UWB tag are mounted on the foot, and IMU
and UWB tag are tightly fixed which can be treated as a
device in their geometric center.

In commercial application, the low-cost IMU cannot mea-
sure some physical effects which may increase computational
complexity and reduce the accuracy of results, thus, it needs
to ignore some physical effects in actual INS state calculation,
such as the Earth’s curvature and rotation, the centrifugal
force, and the Coriolis force [9]. Therefore, the simplified
INS state equation is given as

Ċ
n
b = Cn

b�
b
ib

v̇n = Cn
b f

b
+ gn

ṗn = vn, (7)

where the letters n, b and i denote the n-frame, b-frame and
inertial coordinate frame for short, respectively; Cn

b is the
direction rotation matrix; �b

ib is the skew-symmetric matrix
of gyroscope angular rate; vn is the velocity in n-frame; the
specific force is f b, and the gravity is gn. The direction
rotation matrix can be converted form Euler angle ϕ, the state
vector of INS can be defined as xk = [ϕnk , v

n
k , p

n
k ]
T
∈ R9.

FIGURE 4. The sensor mounted on the foot.

After that, in order to provide more accuracy direction
angle and better positioning result, the INS state equation
should be corrected by two measures (zero-velocity update
and UWB distance measure) as follows:

δϕ̇ = −Cn
bδω

b
ib

δv̇n = (Cn
b f

b)× δϕ + Cn
bδ f

b

δṗn = δvn, (8)

where δϕ denotes the attitude error, δv is the velocity
error, δp denotes the error vector of position. δ f b and δωbib
are measurement errors of acceleration and angular veloc-
ity, respectively. The error vector is defined as δxk =
[δϕk , δv

n
k , δp

n
k ]
T
∈ R9, and the correspondingKF statemodel

is

δxk = Fk · δxk−1 + wk−1
yvp,k = h(δxk )+ ηvp,k , (9)

where

yvp,k = [vZUPT , (d Ik/k−1)
2
− (dUk/k−1)

2]T , (10)

h(δxk ) = [δvnk , (2(p
I
k/k−1 − p

A)− δpnk )(δp
n
k )
T ]1×4, (11)

vZUPT is actual velocity in selected zero-velocity interval,
d Ik/k−1 and d

U
k/k−1 are the distances between pedestrian foot

andUWBanchorwhich are derived by INS andUWB system,
respectively. wk−1 and ηvp,k are the independent Gaussian
white noises. pk/k−1 denotes the IMU sensor position that has
not been compensated by filter estimation in time instant k .
pA is the constant coordinate of UWB anchor.

Fk =

 I3×3 O3×3 O3×3
Sk ·1t I3×3 O3×3
O3×3 I3×3 ·1t I3×3

, (12)

Hvp = ∂
h(δxk )
δxk

, (13)

where I3×3 is a 3× 3 identity matrix, O3×3 denotes the 3× 3
zero matrix,1t is the sampling interval, Sk denotes the skew-
symmetric matrix of the specific force Cn

b f
b. And then, the

Kalman filtering process can be used to provide the rough
heading angle (extracting from Euler angle), and the heading
angle can be constrained at some extent using UWB ranging
in next stage.
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D. UWB RANGING SELECTION
The accuracy of UWB ranging has effects on subsequent
position estimation, it is affected by UWB NLoS signal
judgement and step stance/still time detection. There are
several ways to judge NLoS signal including neural network
[32], the power-based way [33] and so on. In this paper, the
power-based scheme is selected to find appropriate UWB
ranging measurements under NLoS routines. In this way, the
First Path Component (FPC) of UWB signal in receiver is the
key to determine the signal reaching time and style (NLoS
or LoS). More specifically, as is presented in (14), the power
difference, QD, between the power of FPC, QFPC , and the
total received power, QT , can be applied to judge whether
UWB signal transmission is in LoS or NLoS. The UWB
development kit used in our program is from DecaWave,
which can provide QD by reading its register values C , F1,
F2, and F3 and calculating according to (15). An empirical
judgement standard can be given that the UWB transmission
path is in NLoS when QD is greater than 10 dBm and in LoS
when QD is less than 6 dBm [33]. All the variables used this
subsection is in unit of dBm.

QD = QT − QFPC , (14)

Q = 10log
(
C∗217/F2

1 + F
2
2 + F

2
3

)
. (15)

In LoS condition (QD < 6dBm), the UWB ranging with
timestamp closest to that of detected step is chosen to estimate
pedestrian position. And in order to ensure the accuracy of
localization system, the UWB rangingwill be discardedwhen
it is hard to discern (6dBm <= QD < 10dBm)) or stays in
NLoS environment (QD >= 10dBm).

E. THE HEADING ANGLE AND STEP LENGTH
OPTIMIZATION
In common scene, walking direction and step length are
considered two separated variables. Meanwhile, pedestrian
activity is a regular and reciprocating motion in a limited
area, thus the distance between target and UWB anchor varies
with time. In this section, walking direction is associated with
step length for more stable position estimation. According to
pedestrian motion characteristics and UWB ranging results,
its motion state can be divided into three patterns by compar-
ing current distance dk between pedestrian and UWB anchor
with former dk-1: Pattern_1, approaching UWB base (dk <
dk-1); Pattern_2, leaving UWB base (dk > dk-1); Pattern_3,
keeping same distance with UWB base (dk = dk-1).

1) HEADING ANGLE OPTIMIZATION
The Pattern_1 of localization system is shown in two-
dimension (2D) plane as presented in Fig. 5, where R0 and
R1 are the distances from UWB anchor (XA, YA) to Step_0
(X0, Y0) and Step_1 (the intersections of the red arrow and the
circle shown in Fig. 5), respectively. It could be seen that the
step length L0 between Step_0 and Step_1 cannot be directly
determined with 2 intersections between the red arrow and
the circle. However, we can give the heading angle range for

FIGURE 5. Pedestrian approaching the UWB base station. P1 and P2 are
tangent of circle with radius R0.

improving direction accuracy according to R (R0-R5). The
radius R can be calculated by UWB anchor height (h) and
corresponding measuring distance (M ) at each step, i.e.,

R =
√
M2 − h2, (16)

thus, the radius R can be considered as a constant in all calcu-
lations. Moreover, the locations of Step_0 (X0, Y0) and UWB
base station (XA, YA) have been known. More specifically,
the location of Step_0 is initial position or former calculated
position, and the position of UWB base station is a prior
knowledge.

Therefore, as shown in Fig. 5, the range of pedestrian
heading angle θH (the direction of red arow in Fig. 5) is

θ − thθ <= θH <= θ + thθ , (17)

where thθ is half changing range of heading angle, and thθ is

thθ = arcsin(R1/
√
(X0 − XA)2 + (Y0 − YA)2), (18)

θH denotes heading angle, and θ (−π < θ ≤ π ) is the
angle between north direction and the line which links Step_0
position (X0, Y0) and anchor position (XA, YA):

θ=



arctan(
XA−X0
YA−Y0

), YA−Y0>0

sign(XA−X0) · π+arctan(
XA−X0
YA−Y0

), YA−Y0<0
π

2
,YA−Y0=0, XA−X0>0

−
π

2
,YA−Y0=0, XA−X0<0.

(19)

According to the relation (17), it can be used to constrain the
heading angle and provide better localization result. A con-
strained sigma-point based filter [25], [26] is selected as the
optimal estimation process, it is divided into three stages:

Stage_1, given the 2n+ 1 sigma points χ̂ as

χ̂ i =


xs, i = 0,
xs + [

√
(n+ k)Ps]i, i = 1 : n,

xs − [
√
(n+ k)Ps]i−n, i = n+ 1 : 2n,

(20)
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FIGURE 6. The pattern_2 of localization system. L2 and L1 are step
length, and ∅1 and ∅2 denotes pedestrian walking direction.

where k ∈ R is used for turning the size of sigma point
distribution. xs denotes the former mentioned state vector of
INS xs = [ϕns , v

n
s , p

n
s ]
T
∈ R9, Ps is selected as the covariance

matrix of former Kalman filtering stage in Section C . n
denotes the dimension of estimation state, and [

√
(n+ k)Ps]i

presents the i-th column of the matrix
√
(n+ k)Ps.

Stage_2, all the sigma points are calculated through fol-
lowing correction update:

χ̂
+

i = argmin(x− χ̂ i)
TW (x− χ̂ i),

subject to θ − thθ <= θH <= θ + thθ , (21)

where W is the weight matrix which is set as covariance
matrix Ps, θH is the yaw component of state x which could
be gotten from (7).

Stage_3, calculating the corrected estimation and its corre-
sponding covariance:

x̂+2 =
∑2n

i=0
ωiχ̂
+

i , (22)

P+2 =
∑2n

i=0
ωi(χ

+

i − x̂
+

2 )(χ
+

i − x̂
+

2 )
T, (23)

where ωi =

{
k/(n+ k), i = 0
1/(2(n+ k)), i = 1, 2, ...n.

The estimation result, (x̂+2 ,P
+

2 ), is the output of the block
Heading angle optimization in Fig. 2. The result x̂+2 contains
optimized heading angle.P+2 can be used as covariancematrix
in next Kalman filtering stage.

2) STEP LENGTH OPTIMIZATION
The Pattern_2 of the proposed system is pedestrian departing
from UWB anchor as shown in Fig. 6. In this pattern, the
heading angle cannot be constrained by the condition pro-
vided by Pattern_1, it completely depends on former fusion
estimation (INS Update and error compensation block in
Fig. 2), and the fusion estimation can adopt traditional fusion
way, i.e., magnetometer [34] multi-INS fusion [35] and so
on, to correct the pedestrian direction. In Pattern_2, taking
the walking direction into consideration, the step length can
be calculated through the UWB ranging and heading angle.
It can assume that the coordination of Step_2 (X2, Y2) has
been obtained in former estimation process or initial prior

FIGURE 7. The diagram of Pattern_3.

knowledge (starting from a known point), the coordination
of Step_3 (X3, Y3) shown in Fig. 6 can be gotten by following
solving equations:{

cot(θ1)(X − X2) = (Y − Y2)
X2
+ Y 2

= R23.
(24)

It is obvious that (24) has two solutions, and step lines (red
dash line) shown in Fig. 6 has two intersections with a ranging
circle. However, the step line is a vector (a line with walking
direction) which can provide the only intersection (X3, Y3)
with ranging circle. After that, the step length L1 can be given
as

L1 =
√
(X3 − X2)2 + (Y3 − Y2)2. (25)

The Pattern_3 shown in Fig. 7 is the special case of Pat-
tern_1 and Pattern_2, which can calculate the step length by
using (24) in Pattern_2. Moreover, it can also can provide
the walking direction by giving the step length estimated in
former stage. Specifically, heading angle and step length can
be simultaneously estimated in Pattern_3.

3) UPDATING POSITION
After the whole optimal procedure being done, the pedestrian
location is updated with former optimal estimation result
including heading direction and step length.

IV. EXPERIMENTAL SETUP AND VERIFICATION
The IMU sensor are synchronized with the UWB system
in host computer, and the timestamp of PDR is set as cor-
responding IMU sensor timestamp when a valid step is
detected. Since the UWB localization system is MDEK1001
Development Kit fromDecaWave, and its updating frequency
is up to 10Hz. In normal indoor scenario, the frequency of
pedestrian step is lower than that of UWB system. Therefore,
the valid UWBmeasurement (under LoS scenario) with clos-
est timestamp to PDR measurement should be selected for
location calculation when a step is detected. The IMU sensor
relative parameter is listed in Table 1.

The layout of the experiment area is shown in Fig. 8, it is
a 29.74m × 9.39m office and laboratory hybrid area with
a corridor. The 2-Dimensional (2D) Cartesian coordinate is
established with unit of meter, and the point S4 is defined as
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FIGURE 8. The routine and area layout of experiment.

TABLE 1. The parameter of IMU.

FIGURE 9. The relationship between number of steps and HSD threshold
thT1.

origin of the coordinate. The black triangle markers are refer-
ence points used for performance evaluation. Three walking
experiments are conducted in room (Routine_2), corridor
(Routine_1), hybrid scene (Routine_1), respectively. Due to
the sensor being fixed on the shoe, the height of sensor can
be considered as zero when a valid step is detected, thus only
2D coordinates are calculated in later position estimation.
It should be emphasized that the UWB anchor positions do
not been marked in Fig. 8, and the anchor positions are listed
in Table 2.

In order to achieve better localization result, the KF related
parameters should be set properly. In our proposed system,
the covariancematrix process noise,Qk, is initialized asQ1 =

diag([1× 1041×3, 1× 10−41×3, 01×3]), the initial measurement
noise covariance matrix, Rk, is set as R1 = diag([01×3, 1 ×
10−21×1]), and the state estimation covariance matrix, Pk|k−1,
are initialized as P0 = diag([01×3, 1 × 10−21×3, 1 × 10−21×3]),
where the function diag(·) is a diagonal matrix.

The threshold thT1 of T1 in HSD can affect tracking per-
formance directly, if thT1 is too large or small, it will result
in wrong number of steps and invalid zero-velocity intervals.
In order to depict the relationship between HSD threshold
thT1 and the detected step number (number of zero-velocity

TABLE 2. The anchor position in experiment.

FIGURE 10. Test_1 results.

intervals). Three tests are carried out by three different pedes-
trians, and all of pedestrians are told to walk eight steps
randomly. After that, we change the threshold thT1 of HSD
(with an accuracy of 0.1) to detect the number of steps and
give the corresponding graph in Fig. 9. As is shown in Fig.
9, the step number are correctly detected in all tests when the
threshold thT1 is between 0.4 and 7.7. Thus, the threshold
thT1 is set as 1 in this work.
As shown in Fig. 8, three test experiments (Test_1,

Test_2, Test_3) are carried out along three different
routines (Routine_1, Routine_2, Routine_3), respectively.
Routine_1 walking sequence is S1-S2-S3-S2-S1 (52.86m).
Routine_2 walking sequence is defined as S6-S7-S8-S9-S6
(26.42m). Routine_3 walking sequence is S1-S2-S4-S5-S4-
S2-S1 (68.86m). In the Test_1, a subject repeats Routine_1
for 10 times with 683 steps, the total distance is 528.60m and
the duration of Test_1 is 452.4s. In Test_2, the Routine_2 has
been repeated 25 times with 660.5m distance, the number
of step and the duration of Test_2 are 1042 and 539.3s,
respectively. The duration of Test_3 is 687.6s after repeating
Routine_3 12 times, it produces 1186 steps and 826.32m
distance. The anchor positions in different tests are listed in
Table 2.

V. RESULTS AND DISCUSSIONS
The traces of three tracking experiments (Test_1, Test_2,
Test_3) estimated by PDR and our proposed DSCLS are
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TABLE 3. Experiment result statistics between PDR and DSCLS.

TABLE 4. Experiment result statistics between different people.

FIGURE 11. Test_2 results.

illustrated in Fig. 10, Fig. 11 and Fig. 12, respectively.
It shows that sub-figure (a) is the tracking result estimated by
PDR, whereas sub-figure (b) denotes the tracking result esti-
mated by the proposed DSCLS. In sub-figure (b), the marker
five-pointed stars are the position of UWB anchors. In each
figure, the dash line is the reference route, and the estimated
trace starts and ends at a dot and a triangle, respectively.

In this work, the reference routes start and end at same
location, thus the marks in the first and the last estimated
position can indicate the accuracy of the localization system.
The errors in step detection, step length and direction estima-
tion will result in distance estimation error and the trace shift.
The tracking results provided by PDR shown in sub-figure
(a) indicate that there exist severe errors in step detection,
step length and orientation estimation. More specifically, the
drift and bias in gyroscope of IMU sensor tilt the estimated
trace, and step length and step detection errors will incur
distance error in PDR. It is observed in sub-figure (b) that,
compared with PDR in sub-figure (a), the general traces
estimated by DSCLS has higher accuracy. Due to direction
correcting function of DSCLS detailed in the heading angle
and step length optimization section, the closer distance
between pedestrian andUWB anchor is, the higher estimation
accuracy will get. Therefore, it can be seen from the sub-
figure (b) that the trace around anchor matches reference
track more closely. Moreover, the last positions shown in
sub-figure (b) are closer to the actual points. It should be

FIGURE 12. Test_3 results.

emphasized that, in Fig. 12 (b), only one anchor with better
communication condition is selected to estimation pedestrian
position during space changing between corridor and room.

The corresponding tracking performance statistics are
listed in Table 3. As presented in the table, compared with
PDR, the total distances estimated byDSCLS aremuch closer
to true values. The average position errors are calculated
by using reference points on the given routes. In test_1,
the average position and last position error of DSCLS is
0.56m and 1.17m, respectively. Compared with PDR average
position error 3.27m and last position error 5.98m, the UWB
assisted DSCLS reduces corresponding errors by 82.87% and
80.43%, respectively. In Test_2, using the proposed DSCLS,
compared with PDR, the average position error is reduced by
83.99%, and the corresponding last position error decrement
ratio is 90.92%. In Test_3, the average position error and last
position error in DSCLS are reduced by 89.39% and 94.68%,
respectively. There are two group of ranging measures for
selecting in Test_3, hence, the accuracy improvement in
Test_3 is larger compared with Test_1 and Test_2. In step
detection part shown in Table 3, the percentage after slash
is the ratio between estimated number and actual one. Com-
pared with traditional step judging way, DSCLS has stricter
step detection mechanism, thus, there may exit missed steps,
and DSCLS has higher accuracy in step detection.

The Cumulative Distribution Function (CDF) of position
error shown in Fig. 13 illustrates the error distribution in our
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FIGURE 13. The Cumulative Distribution Function of position error.

TABLE 5. Performance comparison.

proposed system. It shows that 85% position errors in pro-
posed DSCLS are below 1m which verifies the effectiveness
of the system.

In order to verify the stability of the proposed system, four
more targets (target 2-5) have repeated Test_2, the corre-
sponding experiment results are listed in Table 4. It shows
that the percentage of average error reduction provided by
the proposed system stabilizes at around 84% under different
target tests, which proves the stability of system. It also can
be seen that the largest fluctuation of average position error
between different targets is reduced from 1.62m to 0.27m,
which verifies the validity of proposed DSCLS.

The performance of proposed DSCLS is compared with
existing fusion localization works in recent years, as listed in
Table 5. One UWB anchor assisted PDR localization system
is designed in [28], though this work improves the position
accuracy greatly, its tracking device must be keeping in front
of pedestrian and staying stable, this may limit its application
range compared with our proposed foot mounted sensor;
The algorithms proposed in [24] and [36] achieve higher
localization accuracy, while these solutions are designed with
multiple UWB anchors and verified with short distance tests.
In this paper, the total testing distance is more than 2000m,
and the step length correcting and direction constrained sys-
tem are embedded in positioning frame which can provide
more stable results.

VI. CONCLUSION
A Direction and Step Correction Localization Sys-
tem (DSCLS) is proposed in this paper. It consists of commer-
cial INS sensor and one anchor UWB system which highly
reduces the deployment time and cost. In order to achieve

high-accuracy step detection and proper zero-velocity inter-
val selection in INS, a modified step detection and zero-
velocity selection approach called Heuristic Step Detection
(HSD) is designed and used in DSCLS by evaluating readings
of gyroscope and acceleration in IMU sensor. Afterwards,
a pre-correction process is used to calibrate heading direction
using UWB ranging measures and HSD through Kalman-
type filer followed by a constrained sigma point based filter.
And then, according to UWB ranging results, the step length
and pedestrian direction are recorrected, it relates the heading
direction to the step length and provides more stable location
estimation results. The corresponding tracking experiments
are conducted in three scenarios, and it verifies that the pro-
posed system has long-term stable positioning performance
with high step detection accuracy and strong error correction
capability.

Our future works will focus on reducing the complexity of
this algorithm. Moreover, the high-density UWB label with
one UWB anchor fusion strategy should be also considered
in practical application environment.
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