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ABSTRACT Polar code is one of the channel codes and is used in the 5th generation of mobile communica-
tion system (5G). This encoding scheme is based on the operation of channel polarization, and it is possible
to achieve the capacity of arbitrary binary-input symmetric discrete memoryless channels. Compared with
Turbo codes and LDPC (Low-Density Parity-Check) codes, the implementation of the encoder and decoder is
easier. BP (Belief Propagation) decoding, one of the decoding methods of the polar codes, can be performed
at high speed because it can decode in parallel. However, the disadvantages of the BP decoding are the
hardware and computational complexities. The technique of quantization can be used to reduce complexities
of hardware and calculation. One of the quantization methods is the information bottleneck method, which
allows an observation variable to compressed one while trying to preserve the mutual information shared
with a relevant variable. As a novel approach, the information bottleneck method is used in the design of
quantizers for the BP decoding of LDPC codes. In this paper, we propose a discrete BP polar decoder that
can use only unsigned integers in the decoding process by using the information bottleneck method. Thus,
we can replace complex calculations of BP decoding with simple lookup tables. We also investigate the
minimum bit width for quantization with negligible degradation and the suboptimal Eb/N0 for designing
lookup tables, where Eb and N0 denote energy per bit and noise power density, respectively. The simulation
results show that the proposed method can achieve almost the same error correcting capability compared
with the BP decoding without compression in the range of low Eb/N0. Besides, we show that the proposed
decoder can compress both channel outputs and BP messages with small loss compared with the uniform
quantization decoder.

INDEX TERMS Channel coding, polar codes, BP decoding, information bottleneck method.

I. INTRODUCTION
Polar codes are attracting much attention as codes that
achieve symmetric channel capacity in binary input discrete
memoryless channels [1]. The 5th generation of mobile com-
munication system (5G) adopts the polar codes as the code
of the control channel. As a feature, the implementation
of polar codes is easier [2] than that of Turbo codes [3]
and Low-Density Parity-Check (LDPC) codes [4]. Moreover,
in some situation, polar codes achieve better error correcting
capability compared to the LDPC codes and Turbo codes [5].
The major decoding methods for polar codes are SC decod-
ing [1] and BP decoding [6]. The SC decoder successively
estimates the transmitted bits. As a modified version of the
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SC decoder, SCL decoder stores a fixed number of likelihood
decoding paths [7]. The error correcting capability of the
SCL decoder is better than that of the other decoders. How-
ever, SC and SCL decoders have low throughout because of
sequential decoding. In addition, if an error occurs in the early
stage of the decoding process, errors propagate to the later
decoding process. On the other hand, BP decoder propagates
messages which indicate the likelihood of the transmitted bit
in parallel. Due to its structure, BP decoder can decode at
high speed. The drawbacks of the BP decoding algorithm are
the error correcting capability and the difficulty in hardware
implementation and the complexity in calculation. In this
paper, we focus on reducing the hardware and calculation
complexities.

Some papers tackle these problems. In [8], Simplified
Belief Propagation (SBP) is proposed, which reduces the
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calculation of message updates by replacing the so-called
frozen nodes with prior probabilities. The method proposed
in [9] can reduce the number of calculation in real numbers
and memories by ignoring some messages passed on the
factor graph of BP decoding. From a point of view other
than calculation and hardware complexities, [10] and [11] can
simplify the BP decoding. However, in [10] and [11], all mes-
sages are calculated in real numbers. A long bit representation
is necessary for good decoding performance, however it is
one of the factors leading to hardware complexity. Min-sum
decoding for polar codes [12] is a hardware-friendly method,
however, its decoding performance is not good. The purpose
of this paper is to reduce the hardware and computational
complexities without degrading the decoding performance as
much as possible.

Quantization can be used to reduce these complexities.
As one of the effective methods to reduce the quantization
loss, we use the information bottleneck method [13]. It is a
generic clustering framework in the field ofmachine learning.
This method compresses an observation variable to a quan-
tized one while attempting to preserve themutual information
shared with a relevant random variable. This method is used
in the fields of image processing [14], [15] and machine
learning [16]. This method is also used for several researches
in the wireless communications [17]–[21].

In the conventional approaches, the information bottle-
neck method is applied to the SC/SCL decoder of polar
codes [19]–[21]. However, there is no research applying this
method to the polar BP decoding.

As a novel approach, [22] proposes the quantizer using this
method and applies it to the decoding of the LDPC codes.
In general, implementation of quantization for the reduction
of the hardware complexity leads to the degradation of the
decoding performance [23]. From a different perspective,
a hardware-friendly decoding method so called min-sum
decoding of LDPC codes exists [24]. However, the min-sum
decoder of LDPC codes also results in a degradation of the
decoding performance. On the other hand, in [22], the discrete
LDPC decoder is shown to outperform the min-sum decoder.
In this paper, we consider applying this approach to the BP
decoding of polar codes. The BP decoding of polar codes has
four types of messages, which leads to increase of the number
of the joint distribution needed to design the decoder using the
information bottleneck method. In this paper, we tackle this
problem and design the decoder for polar codes. Quantization
by the quantizer using the information bottleneck method
makes the decoding process discretized, then we refer to the
decoder as the discrete polar decoder.

This paper proposes a discrete BP polar decoder using
only unsigned integers in the BP decoding process. The
discrete BP polar decoder was proposed in [25]. The differ-
ence between this paper and [25] is that we provide more
evaluation of the proposed method. Specifically, we add the
simulation for different block lengths and compare the pro-
posed method with other decoders to emphasize the effective-
ness of the quantizer designed by the information bottleneck

method. This paper compares the BER (Bit Error Rate) per-
formance of BP decoder, discrete BP polar decoder, and
min-sum decoder. The simulation results show that the pro-
posed decoder can achieve almost the same BER as the BP
decoding without quantization in the range of low SNR. The
main contributions of this paper are summarized as follows.

1) The information bottleneck method is used for the
BP decoding of polar codes. By using this method,
real numbers used in the BP decoding are quantized
into unsigned integers. We call this proposed decoder
the discrete BP polar decoder. The discrete BP polar
decoder uses only unsigned integers in decoding pro-
cess, which can reduce the complexities of hardware
and calculation.

2) To prove the effectivity of the information bottleneck
method for the quantization loss, we design another
discrete decoder which is a fusion of uniform quantiza-
tion and lookup table. In this discrete decoder, uniform
quantization is used to quantize the channel output and
propagation messages for BP decoding, and the lookup
table is used to replace the computational blocks. Simu-
lation results show that the proposed method can quan-
tize the real numbers into unsigned integers with less
loss than uniform quantization decoder.

3) We quantize the floating-point information in LLR
domain BP decoding with some quantization bits to
implement BP decoder of polar codes, and analyze the
quantization bits achieving the same BER performance
as that of the floating-point decoder. This analysis
proves that the proposed decoder can reduce the hard-
ware complexities.

The reminder of this paper is organized as follows.
In Section II, we introduce the polar codes, the BP decod-
ing and the information bottleneck method. In Section III
we present the novel research about discrete LDPC decoder
including the sequential information bottleneck method.
In Section IV, we describe the proposed decoder in detail.
Section V shows the simulation results of several decoders
and emphasizes the advantages of the proposed decoder by
comparing those with other decoders. Finally, Section VI
concludes the paper.

II. PRELIMINARIES
We introduce the polar codes, the BP decoding and the infor-
mation bottleneck method in this section.

A. CODING
[1] proposes the polar codes, which are based on channel
polarization. Let the block length be N and the number of
information bits be K , then the channel polarization trans-
forms N independent copies of a channel into polarized
channels. The most reliable K channels are used to send the
information bits and the rest of the N − K channels are set
to the fixed bits (typically 0). This fixed bit is called a frozen
bit. In polar codes, the generator matrix G can be written as
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follows

G = F⊗n. (1)

F =
[
1 0
1 1

]
, n = log2 N , F⊗n = F ⊗ F⊗(n−1), and ⊗

expresses the operation of XOR. The relation between the
code sequence xN1 and the information sequence uN1 can be
expressed as:

xN1 = uN1 G. (2)

The set of the bit indices used to send the frozen bits is
called a frozen set. For example, when information bits are
[0, 1, 1, 1] and the frozen set is F = {0, 2, 3, 4}, the infor-
mation sequence is uN1 = [0, 1, 0, 0, 0, 1, 1, 1]. As a result,
we can obtain the code sequence xN1 = [0, 1, 0, 1, 1, 0, 0, 1].
To choose the most reliable K out of N channels, we have

to estimate the channel capacities or error rate, however,
it is not easy to estimate them easily and accurately. Sev-
eral papers propose the methods estimating channel capac-
ities or error rate. [1] uses the Bhattacharyya parameters
to calculate the upper bounds of error rate. [1] proposes
a simulation-based method to evaluate the channel qual-
ity in terms of the error rate. [26] proposes the method
using the transition probability matrices (TPMs) of chan-
nels to estimate the error rate. The method, called Gaussian
Approximation (GA), is the method estimating the log like-
lihood ratio (LLR) at intermediate stage as Gaussian vari-
ables [27]. The method using the information bottleneck
method exits [28]. In this paper, we use GA due to its
simplicity.

FIGURE 1. The computational block of polar codes. n = log2 N and the
node stores the left and right messages. i and j denote the column and
row number of the node, respectively.

B. BP DECODING ALGORITHM
BP algorithm of the polar codes is performed on the factor
graph containing computational blocks like Figs. 1, 2. The BP
decoder propagates the messages indicating the likelihood on
this factor graph and estimates the transmitted bits. In Fig. 2,
(i, j) is the number of nodes holding the messages. This factor
graph of the polar codes has N/2 × log2 N computational
blocks. In each computational block, these calculations are
carried out.

L(k+1)i,j = f (L(k)i+1,j,L
(k)
i+1,j+2n−i + R

(k)
i,j+2n−i )

L(k+1)i,j+2n−i = L(k)i+1,j+2n−i + f (L
(k)
i+1,j,R

(k)
i,j )

R(k+1)i+1,j = f (R(k)i,j ,L
(k)
i+1,j+2n−i + R

(k)
i+1,j+2n−i )

R(k+1)i+1,j+2n−i = R(k)i,j+2n−i + f (R
(k)
i,j ,L

(k)
i+1,j)

(3)

FIGURE 2. The factor graph of N = 8 polar codes. The red circles and blue
circles denote transmitted and received nodes, respectively.

where k is an iteration number, and

f (x, y) , log
cosh (x + y)/2
cosh (x − y)/2

(4)

≈ sgn(x)sgn(y) min(|x|, |y|). (5)

L is the message propagated from right to left and it is called
the left message. Similarly, R is the message propagated from
left to right and it is called the right message. In the decoding
process, at first, the right most nodes receive channel outputs
and calculate LLRs in each node.

Ln+1,j = ln
P(y|x = 0)
P(y|x = 1)

(6)

Next, the left messages are generated by eq. (3). These left
messages are passed from right to left in the factor graph, then
the right messages are calculated after the (1, j) left messages
are generated. The initialization of the right message in the
left most node is

R1,j = ln
P(u = 0)
P(u = 1)

= ∞ (if frozen bit). (7)

To avoid bias, the values of the other right messages are set
to 0 at the beginning of the decoding process. BP decod-
ing repeats message propagation several times while using
the information of frozen bits and channel outputs, thereby
marginal probabilities of each bit can be obtained. As men-
tioned above, the factor graph has N/2 × log2 N computa-
tional blocks. The calculation in real numbers is carried out
in this computational block. This and eq. (4) lead to high com-
putational and hardware complexities. Although the min-sum
decoding [12] denoted by eq. (5) is hardware-friendly,
the drawback is the low error correcting performance [29].

C. INFORMATION BOTTLENECK METHOD
The information bottleneck method [13] is an unsuper-
vised clustering framework in the machine learning field.
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FIGURE 3. The relationship between different variables in the
information bottleneck method [13].

This method uses three random variables, an observed vari-
able Y , a relevant one X , and a compression one T .
Fig. 3 shows the relationship of three variables, where
I (X;Y ) =

∑
x∈X

∑
y∈Y p(x, y) log

p(x,y)
p(x)p(y) . We use the

Lagrange method to find a suitable conditional distribution
p(t|y) that maximizes I (T ;X ) or minimizes I (Y ;T ). Using
the trade-off parameter β, we use the following equation [13]:

L{p(t|y)} = I (Y ;T )− βI (T ;X ). (8)

In both the decoder in [22] and the proposed decoder, we con-
sider β → ∞, which means maximizing I (T ;X ) and
preserving the relevant information. In the information bottle-
neck algorithm, inputs are p(x, y), |T | and β, then, outputs are
p(t|y), p(x|t) and p(t) as shown in [13]. Moreover, the infor-
mation bottleneck algorithm also gives p(x, t) due to p(x, t) =
p(x|t)p(t). The mapping function p(t|y) is important because
the quantization loss depends on how we determine it. There
are several applications and extensions of the information
bottleneck algorithm as summarized in [30].We will focus on
the iterative information bottleneck algorithm [13], [16] and
show it in the next section.

III. NOVEL APPROACH FOR BP DECODING OF LDPC
CODES
A. SEQUENTIAL INFORMATION BOTTLENECK METHOD
The sequential information bottleneck method is proposed
in [16], and is used for unsupervised document classifica-
tion. [22] and this paper use it for the quantizer design.
We assume the following event spaces of the observed and
compression variables

Y = {0, 1, . . . , |Y| − 1}, (9)

T = {0, 1, . . . , |T | − 1}. (10)

The process of the sequential information bottleneck method
is shown in Fig. 4. This is the example for |Y| = 20 and
|T | = 4. At first, the sequential information bottleneck
algorithm classifies |Y| elements into |T | clusters randomly.
In Fig. 4, 20 elements y ∈ Y are categorized into Yt (t ∈ T )
clusters. This relationship of y and t is represented by the
mapping function p(t|y).

FIGURE 4. The procedure of the sequential information bottleneck
method.

Next, the algorithm extracts one element y from Yt
(In Fig. 4, t = 0, y = 0) and makes a singleton cluster
Y|T | (Y4) which has only one element. This manipulation
changes the mapping function p(y|t). This algorithm merges
the singleton cluster into the original cluster according to the
cost function C(Y|T |,Yt ). This cost is calculated for each
cluster Yt and is given in [16], [30] as follows

C(Y|T |,Yt ) = (p(y)+ p(t)) · JS(p(x|y), p(x|t)), (11)

where JS(p, q) denote the Jensen-Shannon divergence
defined as

JS(p, q) = π1DKL(p|p̄)+ π2DKL(q|p̄), (12)

where, DKL{p(x)|q(x)} =
∑

x∈X p(x) log p(x)
q(x) . We adapt the

notation in [16],

{p, q} ≡ {p(x|y), p(x|t)} (13)

{π1, π2} ≡

{
p(y)

p(y)+ p(t)
,

p(t)
p(y)+ p(t)

}
(14)

p̄ = π1p(x|y)+ π2p(x|t). (15)

The algorithm iterates the extraction and merges an element
for all y ∈ Y until the clusters are unchanged, which gives the
final mapping function p(t|y).

B. QUANTIZER DESIGN FOR DISCRETE DECODER
Since the information bottleneck method can set the com-
pression variable T arbitrarily, [22] (and our paper) use the
set of unsigned integers, which enables design of the discrete
LDPC decoders. We refer to the decoder using only unsigned
integers in decoding process as a discrete decoder. In [22],
Y and X are the set of received values and transmitted bits,
respectively.

[22] proposes the design of the quantizer that has the
sub-optimum quantization boundaries in terms of mutual
information comparable to the optimum ones [31]. We need
the channel output quantizer to design the lookup tables,
and it is mandatory for the discrete LDPC decoders and our
proposed decoder. This quantizer is constructed by using the
modified sequential information bottleneck algorithm shown

10648 VOLUME 9, 2021



A. Yamada, T. Ohtsuki: Discrete BP Polar Decoder Using Information Bottleneck Method

FIGURE 5. The quantization of channel outputs. In this example, channel
outputs are discretized into |Y| = 20 values and these are clustered into
|T | = 4 clusters.

in [22]: Algorithm 1. We call this algorithm the quantizer
design algorithm and briefly describe it. At first, channel
outputs are discretized as shown in Fig. 5. In this example,
channel outputs in the range [−M ,+M ] are discretized into
|Y| = 20 unsigned integers. Next, these unsigned inte-
gers are clustered randomly. In the middle figure of Fig. 5,
20 unsigned integers are clustered into 4 clusters. Here, when
y is a received value and x is a transmitted bit, the joint
probability density function (pdf) p(x, y) is denoted as follows
in the case of an AWGN channel:

p(x, y) =
1

2
√
2πσ

exp
(
−
|y− s(x)|2

2σ 2

)
. (16)

FIGURE 6. The procedure of the modified sequential information
bottleneck method.

σ 2 is a noise variance and if x = 1, s(x) = +1; other-
wise s(x) = −1. This p(x, y) is regarded as an input of
the quantizer. By using this p(x, y), the cost function C is
calculated in the boundaries of each cluster. The modified
sequential algorithm differs from the original one in that it
only considers adjacent clusters when calculating the cost
function as shown in Fig. 6. The quantizer draws and merges
the discretized channel outputs in accordance with this cost
function C , which changes the boundaries of the quantiza-
tion. By repeating this operation until the boundaries remain
unchanged, we can obtain the mapping function p(t|y) as in
the bottom of Fig. 5. This p(t|y) has quantization regions

FIGURE 7. Quantization boundaries of the channel output by the
quantizer using the information bottleneck method.

that maximize I (T ;X ) for the output cardinality T , because
it considers the Lagrangian letting β → ∞. Fig. 7 shows
the example of the quantization boundaries obtained by the
quantizer using the information bottleneck method. In this
example, we use M = 2, |T | = 16, |Y| = 2000 and adapt
BPSK (Binary Phase Shift Keying) and an AWGN channel.
As shown in this figure, the channel output in the leftmost
region is assigned to an integer 0 and the channel output in
the second leftmost region is assigned to an integer 1.

Furthermore, since the information bottleneck method pro-
vides a posteriori probability p(x|t) as a side effect, we can
calculate following

L = log
Pr(x = 0|t)
Pr(x = 1|t)

. (17)

This quantizer is important for the discrete LDPC decoder
and is used in the proposed decoder. More detailed informa-
tion about this quantizer is provided in [22]. [22] uses this
quantizer to replace the check and variable node operations
of LDPC codes with lookup tables. In this paper, we use
this quantizer to replace the computational block of polar BP
decoding with lookup tables.

IV. PROPOSED METHOD
The drawbacks of the polar BP decoding with eq. (4) are the
computational and hardware complexities. Therefore, in this
paper, we attempt to reduce these complexities by applying
the idea of the novel approach to the BP decoding of the polar
codes.

FIGURE 8. The relationship of each message in the computational block
of polar BP decoding.

Fig. 8 shows the computational block of polar codes to
assign the variables to messages needed for the calculation.
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In the BP decoding of polar codes, the calculation of one
message uses three messages. In Fig. 8, y denotes the left
or right message propagated on the factor graph and t is the
target message that we want to calculate. The p(x, t) about the
upper left message required as input to the quantizer design
algorithm is calculated as follows.

p(b, ỹ4) =
∑

(b1,b2,b3):
b=b1⊕b2,b2=b3

p(b1, y1)p(b2, y2)p(b3, y3). (18)

ỹ4 = [y1, y2, y3] and bk = 0 or 1 (k = 1, 2, 3, 4). The quan-
tizer design algorithm supplies the quantization boundaries of
upper left messages, which make it possible to construct the
lookup table to generate t . Similarly, p(x, t) of the lower left,
lower right, and upper right message need the following cal-
culation respectively to construct the lookup tables for each
target message, where ỹ3 = [y1, y2, y4], ỹ2 = [y1, y3, y4], and
ỹ1 = [y2, y3, y4].

p(b, ỹ3) =
∑

(b1,b2,b4):
b=b1⊕b4,b=b2

p(b1, y1)p(b2, y2)p(b4, y4), (19)

p(b, ỹ2) =
∑

(b1,b3,b4):
b=b1⊕b4,b=b3

p(b1, y1)p(b3, y3)p(b4, y4), (20)

p(b, ỹ1) =
∑

(b2,b3,b4):
b=b3⊕b4,b2=b3

p(b2, y2)p(b3, y3)p(b4, y4). (21)

FIGURE 9. The design of lookup table. In this example, |T | = 4.

For example, we show the process of the design of a
lookup table for updating the upper left message. The aim
is to generate the message t from the other messages ỹ4.
At first, the joint input distribution is calculated from eq. (18).
In eq. (18), p(b1, y1) and p(b2, y2) are given from the channel
output quantizer if this computational block is located at the
rightmost point of Fig. 1. Otherwise, p(b1, y1) and p(b2, y2)
are obtained from the other designs of the lookup tables as
well as p(b3, y3). The LLRs are calculated from the joint
input distribution, and ỹ4 is ordered by the LLRs and grouped
by the same LLRs like Fig. 9. Next, unsigned integers are

assigned to each group and by applying the quantizer design
algorithm [22], |T | new unsigned integers are allocated to
each group like Fig. 9. These are the outputs of the lookup
table for each combination ỹ4 instead of the computational
block.

TABLE 1. An Example of the lookup table for the upper left message.

As a result, the lookup table is configured like Table 1 for
example. As this lookup table, the upper left message t is
generated using 3 unsigned messages y1, y2, y3. Moreover,
as mentioned before, the information bottleneck algorithm
also gives p(x|t) and p(t), which enables the calculation of
the joint input distribution for the next lookup table.

The design of the lookup tables for the other messages are
configured in the same way. All the computational blocks are
replaced by the lookup tables in the same order as in the BP
decoding.

At last, the initialization also changes from that of conven-
tional BP decoding. The conventional BP decoding initializes
the right messages according to eqs. (6), (7) in section II,
however the decoding processes are done with all unsigned
integers in the proposed decoder by using the information
bottleneck method. Therefore, the initialization of the right
messages in the proposed method becomes

R1,j = 0, (if frozen bit). (22)

The other messages are initialized randomly to |T |/2 − 1,
|T |/2 in order not to be biased.

As a result, the discrete BP polar decoder can treat only
unsigned integer in the decoding process.

A. DESIGN SNR/PARAMETER SELECTION
It is preferable to create the lookup table offline rather than
online because the lookup table design is computationally
extensive. Channel outputs change for each Eb/N0, so it
is optimum to design the lookup tables for each value of
Eb/N0 (in fact, it is not optimum for each value of Eb/N0.
See Section V.), where Eb and N0 denote energy per bit
and noise power density, respectively. However, this is also
computationally expensive, then we use only one particular
Eb/N0 for the sake of simplicity. The proposed decoder uses
mismatched (we refer to this Eb/N0 as a design Eb/N0)
Eb/N0 to the actual condition in most cases. Therefore, it is
important howwe decide the designEb/N0 that achieves good
error correcting performance with mismatched Eb/N0.

10650 VOLUME 9, 2021



A. Yamada, T. Ohtsuki: Discrete BP Polar Decoder Using Information Bottleneck Method

FIGURE 10. Pursuing the mutual information I(T ; X ) with |T | = 16 over
decoding iterations. Eb/N0 is from 1.0 dB to 6.0 dB.

In the quantizer design algorithm using the information
bottleneck method, we use the joint pdf p(x, t). By using
p(x, t), we can calculate mutual information I (T ;X ). This
mutual information represents the reliability of each bit, sowe
pursue the mutual information growth to obtain a suitable
design Eb/N0. Fig. 10 shows the mutual information for
iteration number in various Eb/N0. We use p(x, t) at the
decision level and evaluate the average ofmutual information.
Fig. 10 shows that I (T ;X ) gets close to 1 in each iteration and
when the design Eb/N0 is greater than 2.5 dB, I (T ;X ) gets
close to 1 in early iteration. Actually, the design Eb/N0 =

3.0 dB shows a larger I (T ;X ), however, it becomes constant
in a small iteration (iteration number = 10). This feature
degrades the error correcting performance of the proposed
decoder due to the gap between the designed and actual
mutual information used in the simulations. We want to make
the mutual information converge at 50 iterations because we
use the iteration number 50 in the simulations. This is because
we want to terminate the iteration in high reliability and an
extra iteration is unfavorable in terms of computational cost.
Though I (T ;X ) in a smaller design Eb/N0 may become con-
stant at 50 iterations, it can not reach near 1. In this situation,
the decoder underestimates the ability of the iterative decod-
ing, which degrades the error correcting performance of the
proposed decoder. On the other hand, the mutual information
reaches 1 in too early stage in high design Eb/N0. In this
situation, the decoder overestimates the ability of the iterative
decoding. The actual value of the mutual information in the
simulation varies with the Eb/N0 like Fig. 10. Based on these
facts, we use Eb/N0 = 2.5 dB to design the lookup tables and
the quantization of channel outputs in the proposed decoder.
In fact, the mutual information at Eb/N0 = 2.5 dB and
Eb/N0 = 3.0 dB are not much different. We decided to use
Eb/N0 = 2.5 dB for design Eb/N0 based on the simulation
results.

V. SIMULATION RESULTS
In this section, we show the performance of the channel
output quantizer and discrete BP polar decoders, and we com-
pare the complexity of the proposed decoder with that of the
min-sum decoder [12]. Besides, we design another discrete
decoder which is a fusion of the uniform quantization and the
lookup table design to prove that the proposed decoder can
quantize the information with less loss by using the quantizer
designed by the information bottleneck method. In this dis-
crete decoder, uniform quantization is used to quantize the
channel output and propagation messages for BP decoding,
and the lookup table is used to replace the computational
blocks. We also analyze the conventional BP decoding and
find the minimum quantization bits which achieves the same
BER performance as the floating-point.

TABLE 2. Simulation parameters.

A. BER PERFORMANCE OF THE PROPOSED DECODER
The simulation parameters are listed in Table 2. To investi-
gate the performance of the quantizer, we compare the BER
performance of the min-sum decoder without quantization
and the min-sum decoder with q = log2 |T | bit quantization
of only channel outputs. In this decoder, we use eq. (17)
for the calculation of the LLR and feed it to the min-sum
decoder. Fig. 11 shows the error correcting performance of
the min-sum decoder without quantization and that of the
min-sum decoder with quantization level |T | = 4, 8, 16.
The larger the |T | becomes, the better BER performance the
decoder achieves. When |T | = 16, the BER of min-sum
decoder with quantization is almost the same as that of the
min-sum decoder without quantization. Therefore, we use a
channel quantizer with quantization level |T | = 16 in the
discrete polar decoders.

Figs. 12 and 13 show the BER of proposed discrete BP
polar decoder. Fig. 12 shows the BER when the block length
is 128, and Fig. 13 shows the BER when the block length
is 256. In both the figures, the proposed discrete BP polar
decoder achieves almost the same BER performance as the
BP decoding in the range of low Eb/N0. In the range of
high Eb/N0, the influence of the quantization in both channel
outputs and updating messages degrades the BER of the
proposed decoder, because the discrete BP polar decoder uses
only |T | unsigned integers.

The proposed decoder is investigated in more detail in
terms of the design Eb/N0 and the number of iterations.
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FIGURE 11. The BER performance of the decoders whose channel outputs
are quantized using the quantizer designed by the information bottleneck
method with different quantization bits. The iteration number of all
decoders is 50. The block length is 256.

FIGURE 12. The BER performance of the proposed decoder and the BP
decoder with and without quantization of the channel outputs. The
iteration number of all decoders is 50. The block length is 128 and the
code rate is 1/2.

Fig. 14 shows the BER of the proposed decoder with varying
the design Eb/N0. In the range of low Eb/N0 (1, 2, 3 dB),
the decoder designed for each design Eb/N0 achieves the
best BER performance. However, in the range of high Eb/N0
(4, 5, 6 dB), the decoder designed for each design Eb/N0 does
not achieve the best BER performance. This may be because
the error correcting performance of polar codes depends
largely on the code construction.

Fig. 15 shows the BER of the proposed decoder with vary-
ing the number of iterations. The number of iterations varies

FIGURE 13. The BER performance of the proposed decoder and the BP
decoder with and without the quantization of the channel outputs. The
iteration number of all decoders is 50. The block length is 256.

FIGURE 14. The BER of the proposed decoder for design Eb/N0
from 1 to 6 dB.

from 10 to 50. In the range of middle Eb/N0, as the number
of iterations is reduced, the BER is slightly degraded. On the
other hand, in the range of high Eb/N0, the BER is almost
the same except when the number of iterations is 10. As can
be seen from the values of the mutual information in Fig. 10,
10 iterations are not enough to correct the error, which leads to
significant deterioration of the BER. From 20 to 50 iterations
are enough or may be excessive in the high Eb/N0 region.
The iterative decoding can reduce this extra iterations using
some techniques [11]. Although not covered in this paper,
these techniques can be applied in the proposed decoder and
reduce the complexity further. In the BP decoding of the polar
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FIGURE 15. The BER of the proposed decoder for iteration number
from 10 to 50.

codes, it is also the problem that the decoding performance
is not as good as that of the SCL and the CRC-Aided-SCL
decoders. There are some techniques [32], [33] for improving
the decoding performances in the BP decoding and these
also can be applied to our proposed decoder, i.e., the discrete
BP polar decoder. Although the proposed decoder represents
both the channel outputs and the BP messages as unsigned
integers instead of real numbers, the decoding process itself
does not change. Due to this fact, the proposed decoder can
use some improving techniques and the proposed decoder
will be able to improve the decoding performance and the
decoding complexity further.

B. THE EFFECTS OF THE INFORMATION BOTTLENECK
METHOD
As mentioned in section III, the quantizer designed by the
information bottleneck method can quantize the observed
variables into quantized variables while preserving the rel-
evant information. To prove this, we design another discrete
BP polar decoder that uses uniform quantization in both the
channel outputs and BPmessages. Since this decoder updates
BP messages by lookup tables, it is a combination of the uni-
form quantization and the lookup table design. To construct
the same conditions as the proposed decoder (|T | = 16),
the channel outputs and the BP messages are quantized into
16 unsigned integers uniformly. In Fig. 16, the BER of the
proposed decoder using the information bottleneck method
and the uniformly quantized decoder are compared. The
green lines denote uniformly quantized decoder in terms of
channel outputs only or both channel outputs and the BP
messages. The BER of the uniformly quantized decoder is
significantly degraded compared to the proposed decoder.
On the other hand, the decoder that quantizes uniformly only
channel outputs achieves the same BER as the decoder that

FIGURE 16. The BER comparison of the discrete decoder using
quantization with the information bottleneck method and using uniform
quantization. Both methods use |T | = 16 i.e., 4 bits quantization.

quantizes channel outputs using the quantizer designed by
the information bottleneck method. In general, the quanti-
zation loss of the uniform quantization is larger than that
of the non-uniform quantization. Although the small loss is
caused by uniform quantization in only channel outputs quan-
tization, the iterative decoding can correct error. However,
the BP messages of the polar codes are used iteratively in the
decoding process. The decoder that quantizes both channel
outputs and BP messages increases the quantization loss,
which leads to great degradation of the BER. As a result,
iterative decoding cannot correct the error and the BER of
the uniformly quantized decoder is significantly degraded.
In contrast, the proposed decoder can suppress the quanti-
zation loss in both channel outputs and BP messages. It is
the benefit of the non-uniform quantizer designed by the
information bottleneck method. In other words, the quantizer
designed by the information bottleneck method can compress
both channel outputs and BP messages while preserving the
information of transmitted bits.

C. ANALYSIS OF THE QUANTIZATION BITS
While the previous subsection used a combination of uniform
quantization and lookup tables as a comparison, in this sub-
section we use uniform quantization in conventional sense.
In [34], they analyze quantization technology for the initial
LLR and the path metric of the CRC-Aided-SCL decoder.
In this paper, we analyze the quantization bits needed for the
implementation of the BP decoding of polar codes without
degradation. In other words, we perform uniform quantiza-
tion in the LLR domain for polar BP decoding. Based on
eqs. (16), (17), we can obtain the initial LLR.

LLR = ln

1
√
2πσ

exp
(
−
(y−1)2

2σ 2

)
1

√
2πσ

exp
(
−
(y+1)2

2σ 2

) = 2y
σ 2 (23)
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FIGURE 17. The quantization survey of the polar BP decoding.

In Section III, we assume that if x = 1, s(x) = +1; otherwise
s(x) = −1. However, to make the description the same
as [34], we use the opposite representation in this section
i.e., if x = 1, s(x) = −1; otherwise s(x) = +1. We can
calculate the cumulative probability distribution function by
eq. (23).

Pr (LLR ≤ r)

=
1
2
+

1
4

(
erf

(
σ 2r − 2

2
√
2σ

)
+ erf

(
σ 2r + 2

2
√
2σ

))
(24)

Details of the calculations are given in [34], and as a result,
we obtain the pdf of the initial LLR.

f (r) =
1

2
√
2πz

(
exp

(
−

(
r − z2/2

)2
2z2

)

+ exp

(
−

(
r + z2/2

)2
2z2

))
(25)

where z = 2/σ and r denotes SNR. Consequently, the dis-
tribution of the initial LLR becomes Gaussian distribution
N (±2/σ 2, 4/σ 2). Because of the 3σ principle of the Gaus-
sian distribution, we should quantize uniformly the initial
LLR in [−2/σ 2

− 3 × 2/σ, 2/σ 2
+ 3 × 2/σ ]. According

to this range, we quantize the initial LLR and the BP mes-
sages (right and left messages). The quantization bits for
BP messages should be more than that of the initial LLR,
because BP messages are propagated iteratively and have
great effects on the decoding performance. In the simulation,
we use 2 bits more for the BP messages than that for the
initial LLR. Fig. 17 shows the BER performance of the
quantized BP decoder. ‘‘a-b’’ means that a bits are used for
the quantization of the initial LLR and b bits are used for the
quantization of the BP messages. ‘‘6-8’’ and ‘‘7-9’’ shows
almost the same decoding performance as the floating-point

TABLE 3. The computational complexity of the min-sum decoding [12]
when the block length is N .

BP decoder. It can be said that ‘‘6-8’’ quantization is the best
in decoding performance and hardware complexities in the
configuration of this polar code. Moreover, ‘‘4-4’’ represents
the 4 bits quantization of the initial LLR and the BPmessages
respectively, which is the same configuration as the proposed
decoder i.e., the discrete BP polar decoder. Fig. 18 shows
the comparison of the proposed method and the uniformly
quantized BP decoder. Although the proposed decoder and
‘‘4-4’’ quantization are using the same number of total bits
for quantization, the proposed decoder achieves better BER
than ‘‘4-4’’ quantization. Our proposed method can achieve
almost the same BER performance as the ‘‘5-7’’ quantization
decoder. This is because the quantizer constructed by the
information bottleneck method can quantize real numbers
including channel outputs and BP messages into unsigned
integers with small loss.

FIGURE 18. The comparison of the proposed method and the uniformly
quantized LLR domain BP decoding.

D. COMPLEXITY
We briefly show the computational complexity of the
min-sum decoding [12] based on eqs. (3) and (5). Eq. (5) has
two operations of ‘∗‘ and no ‘+‘, and eq. (3) has two ‘∗‘ and
one ‘+‘ for each line. As a result, each computational block
on the factor graph of polar BP decoding has 8 ‘∗‘ and 4 ‘+‘.
Furthermore, the factor graph of the polar BP decoding has
totally N/2× logN computational blocks. Finally, we show
the computational complexity of the min-sum decoding of
the polar codes in the following table. Specifically, when the
block length N = 128, the numbers of ‘∗‘ and ‘+‘ become
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3584 and 1792, respectively and when N = 256, the number
of ‘∗‘ and ‘+‘ become 8192 and 4096, respectively. Our pro-
posed method can replace these calculations with only refer-
ring to the lookup table. From one perspective, it can be said
to be a reduction in complexities of calculations. However,
using the lookup table also increases the space complexities.
Since the space complexity of lookup tables is closely related
to the decoder design, a comparison of the space complexity
between the use of lookup tables and the calculations of
the conventional BP decoder is beyond the scope of this
paper. In [35], variable node operations of LDPC decoder
are replaced with the lookup tables. Moreover, [35] evaluates
several complexities of the LDPC decoder andmentioned that
the hardware complexities increased by the lookup tables are
smaller than that decreased by the bit length reduction by the
quantization. Decoding speed is also reduced by using the
lookup table. Since the hardware complexity and decoding
speed largely depend on the decoder architecture, it is beyond
the scope of this paper. In fact, the min-sum decoding is
hardware-friendly [36] and outperforms our proposal in error
correcting capabilities as shown in Figs. 12, 13. Since the
error correcting performance of polar codes is closely related
to the code structure, we believe that it can be improved by
optimizing the code structure for each design Eb/N0 in future
work.

E. ISSUES
In the proposed decoder, the lookup tables need much mem-
ory compared with the discrete LDPC decoder [22]. As
mentioned in Section II, the factor graph has N/2 × log2 N
computational blocks. In the proposed decoder, these compu-
tational blocks are replaced by the lookup tables and different
lookup tables are needed for each message. The number of
lookup tables becomes N/2 × log2 N × 4 in each iteration.
Furthermore, the number of entries of each lookup table is
|T | × |T | × |T |. Namely, each lookup table has 4096 entries
in the proposed decoder. For these reasons, the proposed
decoder requires more memory than the discrete LDPC
decoder. Note that, however, there is a tradeoff between the
memory and the complexities in terms of hardware and com-
putation.

VI. CONCLUSION
This paper proposes the discrete BP polar decoder which uses
the quantizer designed by the information bottleneck method.
The information bottleneck method is a generic clustering
method in the machine learning fields and can compress
a certain value into quantized values with small loss. The
quantizer using this method preserves the information about
the transmitted bits. The idea is that the updating of the
messages is replaced by the lookup tables. The decoder uses
only unsigned integers in decoding process, which makes it
possible to call the decoder a discrete decoder. This paper also
shows the effectivity of the information bottleneckmethod for
the quantization loss by comparing with the uniform quan-
tization decoder. In addition, we quantize the floating-point

information in BP decoding with some quantization bits to
implement BP decoder of polar codes, and analyze the quan-
tization bits which achieve the same BER performance as
that of the floating-point decoder. Simulation results show
that the proposed discrete BP polar decoder shows almost the
same BER (Bit Error Rate) performance as that of the BP
(Belief Propagation) decoding without the quantization in the
range of low Eb/N0. Moreover, simulation results show that
the proposed discrete BP polar decoder can reduce the hard-
ware complexities compared with the uniform quantization
decoder because it can be implemented with fewer bits in the
same error correcting capability.
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