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ABSTRACT In order to improve the accuracy and robustness of existing automated crack detection methods,
a fully convolutional neural network for pixel-level detection based on densely connected and deeply
supervised network is proposed. First, the densely connected layers are applied for enhancing the propagation
and reuse of crack features. Then, the deeply supervised modules are designed to make network extract
more significant features through multi-scale levels. Finally, the feature maps from different scales are fused
to achieve complementarity at different levels. In addition, a class-balanced cross-entropy loss function is
designed to balance backgrounds and cracks by increasing the weight of crack pixel loss. The proposed
method is tested on three public datasets, and the experiments show that our method is superior to state-of-
the-art methods in accuracy, speed and robustness.

INDEX TERMS Crack detection, deep learning, densely connected network, deeply supervised network.

I. INTRODUCTION
In recent years, highway and airport constructions are boom-
ing all over the world, especially in the developing countries.
To keep good condition of infrastructure, prompt and efficient
maintenance of pavement surface has become an important
issue in the field of transportation industry. Cracks are the
very early forms of most diseases on pavement surfaces.
Prompt and accurate detection of cracks could minimize
maintenance costs and improve efficiency. However, nowa-
days manual inspection shows the disadvantages of poor
accuracy, high subjectivity and inefficiency, which cannot
satisfy the needs of rapid highway construction. Thus, effi-
cient and automated crack detection has become a research
hotspot.

Numerous efforts have been applied on traditional digital
image processing techniques to detect cracks, such as thresh-
old segmentation, feature extraction, edge detection, filter
and minimum path methods. Oliveira and Correia [1] extract
crack feature with the combination of connected compo-
nent and automatic threshold segmentation. Li et al. [2] use
improved OTSU threshold and adaptive iterative threshold to
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detect cracks on airport runway surface. Wei et al. [3] adopt
gray difference and Hough transform to realize automatic
detection of small cracks. Kapela et al. [4] utilize Hough
transform feature (HTF) and local binary pattern (LBP) to
extract the edge direction and texture features of cracks
respectively. Qu et al. [5]employ structural forest edge detec-
tor to extract crack edge, and seepage model to complete
denoising. Amhaz et al. [6] propose an automatic detec-
tion algorithm of two-dimensional pavement cracks based
on minimum path location. The crack detection algorithms
based on traditional digital image processing transform or
map the original image to a specific space, and obtain the final
detection result by learning the structure of shallow crack
features. However, due to the complexity of real pavement
conditions and the various uncertainties of environmental
impacts, such as texture diversity, strong noise interference,
irregular crack direction and so on, these algorithms are easy
to be interfered by environmental factors, and cannot meet
the needs of accuracy and speed at the same time. Therefore,
the efficient and robust crack detection algorithms still need
to be studied.

Since the cracks and edges have similar characteristics
in shape, structure and thickness, it is practicable to apply
edge detection method to detect cracks. Based on structural
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forest [7], Shi et al. [8] propose CrackForest algorithm
to detect pavement cracks by the combination of comple-
mentary features of cracks, and the result is more accu-
rate than Free-Form Antioxidant (FFA) [9] and Minimal
Path Selection (MPS) [6]. However, the algorithm is still
based on the human-selected features of crack, which have
weak adaptability and poor robustness in complex back-
ground. Richer Convolutional Feature (RCF) [10], as one of
the most advanced edge detection algorithms, can produce
high-quality edges efficiently by combining multiscale and
multilevel information of objects. But the backbone of RCF
is only composed of multiple convolution layers, and the
high-level convolution layer only uses the feature map which
is transmitted from the previous layer, and it leads to that the
high-level convolution neglects many crack features even if
the final fusion combines the results of all scales. Thus, RCF
is not fully applicable to crack detection.

Deep learning has been widely used in the field of com-
puter vision. Some studies have been committed to apply
deep learning to detection and recognition of pavement sur-
face cracks. Eisenbach et al. [11] propose a road disease
dataset for training deep learning networks, and evaluate the
current situation of pavement disease detection technology
for the first time. Zhang et al. [12] apply a convolution
neural network to the classification of fracture panel and
non-fracture panel, and prove the advantage of deep learning
in fracture detection. Li et al. [13] propose a classification
model based on convolutional neural network, Deep Bridge
Crack Classify (DBCC), and conduct optimized sliding win-
dow algorithm to detect bridge cracks. The above methods
regard crack detection as a task of image block classifica-
tion based on deep neural network. Besides, those methods
neglect the spatial relationship between crack pixels which
causes the lack of global crack features. Inspired by Fully
Convolutional Networks (FCN) [14], some studies have been
devoted to apply semantic segmentation for crack detection.
Schmugge et al. [15] propose a remote video crack detection
method based on semantic segmentation network. Wei [16]
applies semantic segmentation method to automatically learn
the linear, direction and edge features of cracks for pixel
classification. Li et al. [17] develop a lightweight seman-
tic segmentation model based on crack characteristics, and
obtained the average crack width using the axis skeleton algo-
rithm. However, since the features generated by deep-level
layers are abstract semantic features, the general CNN based
semantic segmentation methods may miss the detail feature
of cracks and lead to inaccuracy detection results. In addition,
with growing depth of neural network structures and increas-
ing number of layers, the extraction of crack feature could
be more difficult, and the gradients are going to vanishing.
In 2017, Gao, et al. [20] proposed a classification network,
DenseNet, to strengthen feature propagation and alleviate
the vanishing-gradient problem. In DenseNet, each layer has
direct access to the gradients from the loss function and the
original input signal, leading to an implicit deep supervision.
By densely connecting the feature maps, DenseNet provides

us an efficient way for feature extraction. However, although
the DenseNet based algorithms have achieved superior per-
formance for feature extraction, due to the semantic fea-
ture distribution of cracks, and the imbalance of foreground
and background ratio in crack detection, it is necessary to
supervise and fuse the features from different scales when
adopting DenseNet, which induces to our work in this paper.
Since deeply-supervised nets (DSN) method simultaneously
minimizes classification error while making the learning pro-
cess of hidden layers direct and transparent, it provides the
potential to supervise the feature extraction with DenseNet in
our crack detection applications.

To overcome the difficulties in crack detection due to its
very thin shape and semantic feature distribution, we propose
a fully convolutional neural networks for pixel-level detection
based on densely connected and deeply supervised network.
The main contributions are listed as follows.

1) The dense connection module is designed for extracting
the feature map from the image at various scales. Densely
connected convolution is used to extract the features of cracks
more sufficiently.

2) The deep supervision module is used to constraint mul-
tiple hidden layers and extract multiscale detail features of
crack.

3) The multiscale information of crack features generated
from all the deep supervision modules are fused by the fusion
module to obtain the final crack detection results.

4) To deal with the imbalance of crack and non-crack pix-
els, a class balanced cross entropy loss function is designed to
obtain more stable training results by dynamic adjusting the
weight of crack pixel loss.

The proposed method is tested on three public datasets:
AEL [16], Crack500 [18] and Cracktree200 [19]. The
experiment results validate our method.

II. OVERVIEW OF METHODS
The main structure of our proposed network is shown
in Fig. 1. The network is composed of convolution modules,
dense connection modules, conversion modules, deep super-
vision modules, deconvolution layers and fusion module. The
input of the network is a road surface image, while the output
is a crack prediction map with the same size as the input,
and the crack pixels have higher probability than non-crack
pixels.

Given an image into the network, firstly the multiscale
feature maps are extracted by the convolution modules and
dense connection modules, then the dense connection mod-
ules are connected by the conversion modules which mainly
compresses the dense features from the previous modules to
alleviate the feature redundancy. Following each convolution
module and dense connection module, a deep supervision
module is connected. Each convolution module and dense
connection module extracts a feature map for deep supervi-
sion module, and each deep supervision module generates a
prediction map with loss function. During training, the loss
function of the feature maps generated by deep supervision
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FIGURE 1. The overall module block diagram of proposed model.

modules or deconvolution layers are calculated. Since the
sizes of the feature maps extracted by deep supervision mod-
ules are different, deconvolution is used to restore the feature
map to the original image size after the deep supervision
module. Finally, the deconvoluted feature map feeds into the
fusion module to obtain the final crack prediction map.

FIGURE 2. The connection mechanism of dense block.

A. DENSE CONNECTION MODULE
Inspired by the idea of DenseNet structure, the dense con-
nection module is designed to extract the crack features and
ensure the effective propagation of the gradient. Fig. 2 shows
the dense connection mechanism of the module. In the dense
connection module, each layer uses the concatenation of
feature maps produced by all previous layers as the inputs,
that means the feature map produced by the layer is one of the
inputs for all following layers. Denote Dn−l and Dn as input
and output of the n-th dense connection module, respectively,
and the output of the layers in the module is defined as

Dn,l = Hl([Dn−l,Dn,l, . . .Dn,l−1]), (1)

whereDn,l denotes the output of the ith layer in the dense con-
nection module n, while [Dn−l,Dn,l, . . .Dn,l−1] refers to the
concatenation of featuremaps from all layers l, . . . , l−1. And
the nonlinear transformation Hi(�) is a composite function
of 3 ∗ 3 convolutions and the rectified linear unit (ReLU) is
the activation function. By establishing the dense connection
of features in different layers, the modules can extract the

crack features more sufficiently and alleviate the gradient
vanishing problem. Besides, it can reduce the number of
network parameters and the calculation cost.

B. CONVERSION MODULE
As the dense features extracted from the dense connection
module should be compressed, and the redundant features
should be reduced, the conversion modules are used to con-
nect to dense connection modules adjacently. A conversion
module consists of a 1× 1 convolution layer and a 2× 2 max
pooling layer in which 1× 1 convolution can fuse features of
different levels from the dense connection module and persist
more favorable information, and max pooling layers facilitate
calculation.

C. DEEP SUPERVISION MODULE
The structure of dense connection module can strengthen
the extraction of crack features, but it is still a single-stream
supervision network structure overall. As the network struc-
ture is deepened, the gradient of the backpropagation will
gradually shrink and the learning speed of the model during
training will decrease. In addition, with the increasing num-
ber of feature layers, the supervision for the output layer of the
network cannot achieve effective training for the extraction of
low and mid-level features, which leads to poor performance.

Inspired by the idea ofDeeply-SupervisedNets (DSN) [21],
deep supervision module is designed to speed up the model
convergence and improve the feature extraction capability of
both the low-level layers and the high-level layers. It is con-
nected to each dense connection module. Besides, the deep
supervision modules extract feature maps from different
levels, which solves the problem of losing crack details when
using high-level semantic features for crack segmentation
alone.

The deep supervision modules of the proposed network are
designed as follows: the dense connection module is consid-
ered as a unit, and the feature maps from each convolutional
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layer are concatenated in channel dimension. Then a convo-
lution layer with kernel size 1 × 1 and channel depth 64 is
connected to the concatenate operation, followed by a 1×1−1
convolution layer. As the output feature maps from deep
supervision modules are smaller than the original image in
size, a deconvolution layer is used to up-sample for changing
the size of the featuremap, where the deconvolution layers are
excluded while learning, and their parameters are initialized
with bilinear interpolation algorithm.

D. CLASS BALANCE CROSS ENTROPY LOSS FUNCTION
In real scenes, the number of non-crack pixels is far more than
crack pixels in typical images with cracks, and the imbalance
makes the network difficult to converge correctly. Therefore,
a class balanced cross entropy loss function is designed to
balance the contribution to the loss from crack pixels and
non-crack pixels for stabilizing training. The loss function of
a single pixel is defined as

l(Xi,U ) =

{
log(1− σ (Xi,U )) yi = 0
α log(1− σ (Xi,U )) yi = 1

(2)

where α = |X+|
|X−|

. X+ and X− denote the crack and non-crack
pixels in the label respectively.U represents all the parameters
that need to be learned in the proposed network, and Xi
denotes the value at the pixel i, yi is the corresponding label
in ground truth image, and σ (Xi,U ) is the standard sigmoid
activation function.

Therefore, the loss of deep supervision module j is defined
as

L j(U ) =
∑N

i=1
l(X ji ,U ). (3)

and the loss function of fusion module is

L fuse(U ) =
∑N

i=1
l(X fusei ,U ). (4)

Therefore, the overall loss function can be formulated as

E(U ) =
∑M

j=1

∑N

i=1
l(X ji ,U )+

∑N

i=1
l(X fusei ,U ). (5)

where N is the number of pixels in the input image and M
is the number of deep supervision module. Specifically, five
deep supervision modules are used in the proposed network.

E. OVERALL STRUCTURE
The proposed network architecture is shown in Fig. 3. The
network is composed of a convolution module, four dense
connection modules, five deep supervision modules, three
conversion modules and one fusion module. The detailed
architecture of proposed network can be described as follows:
• The main parts of the network are convolution module,
dense connection modules and conversion modules to
extract the features from the input image.

• The convolutionmodule is composed of two convolution
layers with kernel size 3× 3 and channel depth 64.

• The first dense connection module consists of two con-
volution layers, and the other three dense connection

FIGURE 3. The detailed architecture of proposed network.

modules are composed of three convolution layers. In a
dense connection module, the output is as the input for
each layer, which is concatenated by the feature-maps
produced by all preceding layers and the feature map
served into dense connection modules. Dense connec-
tion modules are connected by convolution modules,
which do convolution and pooling.

• To extract the multi-scale feature information of cracks
more sufficiently and make the learning process of
hidden layers transparent, deep supervision module is
designed. Each deep supervision module is connected
to the convolution module or dense connection modules
for generating multi-level feature maps.

• A deconvolution layer follows to resize feature map to
the original size, and the class balance cross entropy loss
will be computed with it.

• Finally, all the resized feature maps are fed into the
fusion module for fusing the detailed features and
semantic features from different levels.

Besides, the parameters of each module are shown in Table 1,
where padding denotes the filling size of feature map before
input, and stripe denotes the moving step size of convolution
layer filter or pooling layer window.
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TABLE 1. The parameters of model backbone network.

III. EXPERIMENTS AND RESULTS
The proposed method is implemented and trained with
PyTorch framework. Our method is tested on a computer
with 64GB RAM, 11GB GeForce GTX 1080 Ti, and i7-8700
CPU @ 3.2GHz.

A. DATASET
We have evaluated the proposed method on three public
datasets: AEL, crack500 and cracktree200. The details of
those datasets are shown in Table 2.

AEL is composed of three data named Aigle-RN, ESAR
and LCMS including 58 crack images. Crack500 is a pave-
ment crack dataset including 3368 images captured by a cell
phone on main road of Temple University, which has size
of 1440 × 2560 or 2560 × 1440. Cracktree200 is a visible
light dataset containing various kinds of cracks in Complex
interference environments like shadow, occlusion, low con-
trast, noise and other interferences, and it contains 206 crack
images of size 800× 600.
Crack pixels have been manually labeled in the three

datasets. And we use the training data from Crack500 to
train the proposed method, and the test data contains the test
data of Crack500, AEL and Cracktree200. Since images from
the datasets of AEL and Cracktree200 have several different
sizes around 800 ∗ 800 pixels, to guarantee the same image
size for training and validation with as little information
loss as possible, we first crop the images in Crack500 into
800 ∗ 800 pixels, and then resize the images from AEL and
Cracktree200 into the same size.

B. NETWORK TRAINING PARAMETERS SETTING
Training data of crack500 only contains 1896 crack images,
and the lack of quantity may lead to poor training results.
Therefore, image enhancement methods (rotation and clip-
ping) are used to enhance the training data. The final training
data contains 13272 crack images.

Stochastic gradient descent (SGD) with momentum is
adopted for network parameters optimization. Themini-batch
is set to 10, the momentum is set to 0.9, and the weight decay
coefficient is set to 0.0002. While training, Gaussian kernel
with zero-mean and standard deviation 0.01 is used to initial-
ize each layer. The learning rate is set to 1e-6. The learning
rate is divided by 10 for each iteration of 10000 times. The
method is trained for a total of 50000 iterations.

C. COUNTERPARTS
The four existing methods which we compare our algo-
rithm to are CrackForest [8], FCN [14], RCF [18] and
FC-DenseNet [22]. CrackForest is a road crack detection
framework based on random structured forests, by learn-
ing the inherent structured information of cracks. FCN is a
general semantic segmentation neural network. RCF is an
accurate edge detector using richer convolutional features.
FC-DenseNet investigates the use of Densely Connected
Convolutional Networks for semantic segmentation.

D. EVALUATION CRITERIA
Given a crack map, a crake prediction map is produced by
our method, and the threshold is needed for yielding the final
detection results. The proposed method uses two thresholds
respectively, which are optimal dataset scale (ODS) and opti-
mal image scale (OIS) because of the similarity between
crack detection and edge detection. ODS employs a fixed
threshold for the whole dataset, while OIS employs the best
threshold for each image. Then, the best F-measure of both
ODS and OIS are defined as follows

FODS = max{
1
N

∑N

i
2
Pit × R

i
t

Pit + R
i
t
: t = 0.01, 0.02, . . . , 0.99}

(6)

FOIS =
1
N

∑N

i
max{2

Pit × R
i
t

Pit + R
i
t
: t = 0.01, 0.02, . . . , 0.99}

(7)

where t denotes the threshold,N is the total number of images
in the dataset, Pit is the precision of the ith image at the
threshold t,Rit is the recall of the i

th image at the threshold t .
As the ground truth annotation of edge detection task and
crack detection task are binary boundary images and binary
segmentation images respectively, the detection result and the
ground truth are processed by non-maximum suppression,
and the foreground is refined to single pixel width before
calculation.

E. EXPERIMENTAL RESULT
According to the above experimental settings, we have com-
pleted the compared experiments on the three datasets of
Crack500, AEL and Cracktree200, and the test results are
showed in table 3–5 according to the evaluation criteria.

And the results tested on Crack500, Cracktree200 andAEL
with standard deviation are listed in Table 6. The visualization
results of eachmodel on the three datasets are shown in Fig. 4,
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TABLE 2. Datasets for our experiments.

TABLE 3. Crack detection results on Crack500 test dataset.

TABLE 4. Crack detection results on Cracktree200 test dataset.

TABLE 5. Crack detection results on AEL test dataset.

in which the optimal values of the results are highlighted in
bold. Besides, as the detection results of both CrackForest
and FCN are binary segmentation images, the FODS and FOIS
values are basically same respectively.

As shown in table 3–5, the proposed method achieves best
performances on all the datasets. CrackForest detects road
cracks by the combination of multi-levels complementary
features of cracks. However, as CrackForest still relies on
human selected features for crack detection, it may lead to the
poor robustness and false detection in complex background.
FCN cannot segment the relatively small cracks very well due
to the significant imbalance between foreground and back-
ground. RCF can produce high-quality detection results very
efficiently by fusing the multi-scale and multi-level informa-
tion of crack. However, as the backbone of it is only com-
posed by multiple convolutional layers and each layer only
uses the information from its preceding layer, RCF may lose

TABLE 6. Crack detection results on AEL, Cracktree200, and Crack500.

some crack features. Although FC-DenseNet improves the
OIS on Crack500 dataset, it achieves unsatisfactory results on
AEL and Cracktree200. The main reason is that it is difficult
to learn features by single loss with lacking of fusion module.

The proposed method also has a good performance in com-
plex interference environments such as low contrast, shadow,
occlusion, noise and other interferences. The crack detection
results of each method are shown in Fig. 5 in the complex
background. We can see that when the background is too
complex to detect the crack area even if it is identified by
the manual inspecting, the proposed method and RCF can
detect the crack area. Compared with RCF, the detection
results of the proposed method have lower false positive
rate. Experiment results show the superior performance in
accuracy and robustness of the proposed method.

Besides, the average detection speed of the compared
methods is showed in table 3∼table 5. Especially, RCF, FCN
and the proposed method only count the calculation time on
GPU, and the time consumption of loading images on CPU
and saving results is neglected. We note that the proposed
method does not increase computation time, even though the
number of network layers and the input feature maps for each
layer is increased. The speed of the proposed method is as
fast as RCF with a better performance in speed than FCN and
CrackForest.

F. ABLATION STUDY
We have evaluated different functions of our method to con-
clude the impacts from those functions. We have fulfilled
two group of compared experiments for the ablation study.
One experiment is to compare the performance when using
different loss function (class-balanced cross-entropy loss and
traditional cross-entropy loss). The other experiment is to
validate the effects of dense connection module and fusion
module by removing these modules or not.

The experimental results are shown in table 7, where we
can find that, the dense connectionmodule and fusionmodule
can improve the ability of extracting crack features, and the
class balanced cross entropy loss can improve the accuracy of
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FIGURE 4. The visualization of detection results of compared methods on three datasets.

FIGURE 5. Comparison of crack detection results under complex environment.

TABLE 7. Ablation experimental results.

crack detection, which benefits from more contribution from
crack pixels.

IV. CONCLUSION
In this work, we propose a pavement crack detection algo-
rithm based on densely connected and deeply supervised
network, which improves the detection accuracy and effi-
ciency of pavement cracks. Firstly, the dense connection
module is designed for enhancing the features of cracks
continuous propagation, reusing features, and ensuring the

effective propagation of gradient; Then, the feature informa-
tion in multi-scale space is extracted and the convergence
speed of the model is accelerated by the deep supervision
of multiple hidden layers; Finally, the feature maps of crack
outputted from multi-level layers is fused to obtain more
accurate detection results. Besides, using a class balanced
cross entropy loss function helps increase the weight of
crack pixel loss. The method is tested on several public
crack datasets, showing the accuracy performance with much
less false positive detection, stronger robustness and faster
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detection speed of the proposed method compared with RCF,
FCN, FC-DenseNet and CrackForest. The method can pro-
vide a certain technical support for the rapid and accurate
detection of pavement cracks in the practical engineering.
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