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ABSTRACT Minimum energy consumption with maximum comfort driving experience defines the ideal
human mobility. Recent technological advances in most highly automated driving systems on electric
vehicles with regenerative braking system not only enhance the safety and comfort level but also present
a significant opportunity for automated eco-driving. This research focuses on the longitudinal eco-driving
considering the coordinated control for 4WD intelligent electric vehicles. The intelligent electric vehicle
framework with 4-wheel hub motors is established and the intention-aware longitudinal automated driving
strategy for overall traffic situation levels is proposed. Further, the coordinated control strategy arbitrates
the control mode basing on the traffic situation level and distributes braking forces between the electronic
hydraulic braking system and the cooperative regenerative auxiliary braking system. The proposed strategy
is verified in the co-simulation environment and field test respectively. Test results show optimal control
effects in overall traffic situation levels and an enhanced energy recycling efficiency.

INDEX TERMS Intelligent electric vehicle (IEV), coordinated control, NMPC, intention-aware, object
perception.

I. INTRODUCTION
Consumption of unrenewable fuels and critical pollution,
such as global warming, unexpected climate changes and
unprecedented amounts of air pollution, have caused both
energy and environmental issues [1]. They strengthen the
significance of the efforts toward the development of clean
energy vehicles to a sustainable level [2]. Meanwhile, with
respect to many previous studies on intelligent vehicles which
tend to oversimplify or even ignore the co-driving technol-
ogy with the vehicle-traffic interaction, the intention-aware
integrated driving strategy for overall traffic situation lev-
els has attracted much recent attention from all over the
world [3], [4]. To satisfy these demands, electrification and
intelligence technologies are key development tendencies
to future vehicles [5]. Intelligent Electric Vehicles (IEVs),
the automated driving vehicles with clean energy, should
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achieve a holistic control integration among driving safety,
comfort and sustainable energy.

As a highly integrated product consisting of electrification,
informatization and intelligence, IEVs offer unprecedented
opportunities for automated safe and energy-efficient driving,
which can be called eco-driving, and the dynamic interaction
and synergy among individual subsystems in IEVs need to
be analyzed and modeled [6], [7]. On the other hand, how
to integrate the energy optimization during the longitudinal
eco-driving process and vehicle safety under complex scenar-
ios with uncertainties is a formidable challenge. To overcome
this problem, the traffic situation should be estimated in real
time and an intention-aware longitudinal automated driving
strategy applicable to overall traffic situation levels needs to
be established [8]. Moreover, the coordinated control of the
control mode basing on the traffic situation level and braking
forces between the electronic hydraulic braking system and
the cooperative regenerative braking system needs to be tack-
led [9], [10]. In summary, our main contributions are listed as
follows:
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• An intensive intelligent electric vehicle framework bas-
ing on the optimal mechanism of information flow,
energy flow and substance flow is established.

• An intention-aware longitudinal automated driving
strategy applicable to overall traffic situation levels is
proposed for the eco-driving strategy.

• A coordinated control strategy is proposed to arbitrate
control modes and distribute braking forces for the
eco-driving strategy.

• The proposed eco-driving strategy is verified in the
co-simulation environment and field test respectively.

The remainder of this article is organized as follows.
In Section II, an overview of the intelligent electric vehi-
cles is discussed. Section III introduces the 4WD intelligent
electric vehicle framework. Section IV focuses the longi-
tudinal automated driving strategy and section V proposes
the coordinated control strategy. In section VI, co-simulation
environment and field test are conducted and performance
results are shown and discussed. Finally, key conclusions and
related future works are presented in section.

II. RELATED WORK
Related work about IEVs focuses on the vehicle framework
considering physical states and dynamic characteristics of
key assemble models, longitudinal auto-driving strategies in
various kinds of traffic situation levels and the coordinated
control strategy between the electronic hydraulic braking sys-
tem and the cooperative regenerative braking system. Tech-
nical details are introduced and analyzed as follows.

A. INTELLIGENT ELECTRIC VEHICLES
The dynamic motion process of IEVs reflects the dynamic
interaction and cooperation among substance flow, energy
flow and information flow [11]. The power for IEVs’ motion
is embodied as the energy flow, the dynamic process of
energy conversion, consumption and recovery [12]. Flow
and transfer characteristics of energy flow is established as
the physical models of motor and battery [13]. The change
of vehicle states represented by kinematics and compliance
has typical characteristics of substance flow and controlled
by the vehicle dynamic control system [14]. The substance
flow based evolution process of IEVs’ movement focuses on
the path-following and aims at a subtle control effect [15].
IEVs’ perception and decision-making capability basing on
Multi-source sensing fusion conducts as the information flow
and constitutes the automated system [16]. Automated con-
trollers receive multi-modal sensing information to perceive
static and dynamic traffic participants [17]. The collaborative
optimization of energy flow, substance flow and information
flow is the fundamental solution to achieve driving safety,
comfort and sustainable energy for IEVs and should be given
more attention [18]. An integration framework for IEVs bas-
ing on the optimal mechanism of information flow, energy
flow and substance flow is absent and needs to be established

as the dynamic vehicle system foundation for the coordinated
control framework and control strategy.

B. LONGITUDINAL AUTOMATED DRIVING STRATEGY
As the main function of IEVs, longitudinal automated driv-
ing framework consists of the adaptive cruise control in
normal scenarios and obstacle avoidance in emergency sce-
narios [19]. Typical cruise control models for normal scenar-
ios have been built considering car-following features and
driving styles with comprehensive parameters [14]. In suc-
cession with the physical models, data-driven based adaptive
cruise control models by integrating communication tech-
nologies have been proposed to achieve cooperative cruise
functions [20]. In emergency scenarios, automatic emer-
gency braking systems with accuracy braking performs are
developed to guarantee driving safety [21]. However, traffic
uncertainties involving vehicle motion intentions are always
ignored and traffic situation levels should be evaluated to
switch among control modes as well [22]. An accuratemotion
intention estimation has a significant effect on improving
the decision-making capability for IEVs [23], [24]. The
data-driven intention identification method has achieved a
high accuracy but should the acceptable potential in the traffic
situation assessment should be improved for longitudinal
automated driving [25], [26]. Therefore, an intention-aware
longitudinal automated driving strategy applicable to overall
traffic situation levels should be established to overcome
scenario uncertainties and improve driving safety.

C. COORDINATED CONTROL STRATEGY FOT IEVS
Coordinated control strategy for IEVs mainly consists of
switching mechanism among a variety of driver assistance
systems, such as forward collision warning, adaptive cruise
control and automatic emergency braking, and the brak-
ing force distribution mechanism between the electronic
hydraulic braking system and the cooperative regenerative
braking system [27], [28]. A reasonable and smooth switch-
ing mechanism among driver assistance systems plays a
positive role in improving driving safety and comfort [29].
The driving risk assessment based switching mechanism
achieves the pass rates above 90% in some typical scenar-
ios [30]. Meanwhile, the braking force distribution mech-
anism can realize the regenerative and hydraulic braking
simultaneously [31]. The dynamic response characteristics of
in-wheel motors and hydraulic response characteristics need
to be compensated in different braking stage and regener-
ative braking energy should be recycled to the maximum
extent [32], [33]. The braking torque of the lower-level dis-
tribution controller is used to compensate for the insufficient
braking torque to realize a smooth transition between the
braking modes [34]. Key parameters in the braking force
distribution strategy, such as the optimal distribution coef-
ficients, need to be achieved by the genetic algorithm and
weight coefficients can be used to achieve a dynamic dis-
tribution [35]. What’s more, intervention mechanisms of the
upper-level controller, such as the driver assistance controller

VOLUME 9, 2021 10687



L. Hao et al.: Eco-Driving Considering Coordinated Control Strategy for the IEVs

or the active safety controller, need to be developed [36],
[37]. Taken the above mentioned into consideration, A coor-
dinated control strategy should be developed to arbitrate con-
trol modes and distribute braking forces for the eco-driving
strategy.

III. 4WD INTELLIGENT ELECTRIC VEHICLE FRAMEWORK
A. THE INTEGRATED IEV FRAMEWORK
A distributed hub-motor 4WD IEV configuration basing on
the optimal mechanism of Information Flow (IF), Energy
Flow (EF) and Substance Flow (SF) is proposed as shown
in Figure 1 and its corresponding architecture of eco-driving
is shown in Figure 2. Multi-modal sensing data from intelli-
gent sensors, such as lidar, radar and camera, and vehicle state
sensors, such as the Wheel Speed Sensor (WSS) the Inertial
Navigator Unit (INU) and Tire Pressure Sensor (TPS), are
used to perceive the human-vehicle-scenario situation, and
perception results are fed into the decision-making module.
Multi-modal sensing data, the perception process, decision-
making logic and their flow characteristics constitute the IF.
I-booster controlled by the Hydraulic Control Unit (HCU),
hub motors for Motors and Generators (M/G) controlled by
the Motor Control Unit (MCU), battery packs controlled by
the Battery Management System (BMS) and their Energy
Management System (EMS) are embodied as EF. Automated
strategies controlled by the Vehicle Control Unit (VCU) and
Intelligent Control Unit (ICU) represent the change in vehicle
states and can be described as SF. The IEV achieves driving
tasks basing on the collaborative optimization of IF, EF and
SF and its multi-scale and multi-level optimization model

FIGURE 1. The IEV’s configuration.

FIGURE 2. The integrated IEV framework basing on energy flow,
substance flow and information flow.

should be established. Therefore, key subsystem models of
IEVs are proposed and verified in the next section.

B. KEY SUBSYSTEM MODELING OF IEVS
The 26-freedom vehicle dynamic model in Carsim2016r

is proposed to describe kinematic and dynamic characteris-
tics for the IEV’s SF. The hub motor in EF is proposed as
the Permanent Magnet Synchronous Motor (PMSM) and its
equivalent circuit model is shown in Figure 3.

FIGURE 3. The PMSM model for hub motors considering iron loss.

The voltage equation considering iron loss for the hub
motor when it’s served as the motor in the steady condition is
expressed as follows.[
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where ud and uq are stator’s voltages in d and q axis, id and
iq are stator currents in d and q axis, Ld and Lq are equivalent
inductances in d and q axis, ψa is the chain amplitude of the
permanent magnet, Ra is the stator equivalent resistance, ω
and ωm are the electrical and mechanical anglular speeds and
p is the number of pole pairs.

The external characteristics when the hub motor is served
as the generator is shown in Figure 4.

FIGURE 4. The generator’s external characteristic.

As the key subsystem in IF, lidar is modeled considering
its generic detection function and signal attenuation feature.
The geometric model describes the detection function of
object positions and orientations and can be implemented by
utilizing geometic methods in [38]. The signal attenuation
model reveals the phenomenon that the effective detection
range of a lidar varies with the laser transmission media and
can be expressed as followed.

R2d max = ALρs exp (−2γRd max) (4)

AL =
PTπD2ηs

16PRmin
, γ =

ln
(
R21ρ2
R22ρ1

)
2 (R2 − R1)

(5)

where Rdmax is the maximum detection range, AL is the
system constant, ρs is the surface reflectivity of laser beam, γ
is the atmosphere attenuation coefficient impacted by atmo-
spheric molecules and aerosol in different weather condi-
tions, PT is laser’s transmission power, D is the aperture
diameter, ηs is the system efficiency, PRmin is laser’s mini-
mum return power, (R1, R2) is two typical objects of Rdmax
and (ρ1, ρ2) is the corresponding reflectivity.
The lidar model is compared with the measured curve and

its accuracy is shown in Figure 5 where a high fitting degree
with the lidar specification is obtained.

IV. LONGITUDINAL AUTOMATED DRIVING STRATEGY
The hierarchical strategy for longitudinal automated driving
is as shown in Figure 6. Human-vehicle-scenario status and
motion intentions of surrounding vehicles are obtained in
the traffic situation assessment. Traffic situation is predicted
and the controller corresponding to the desired driving mode
is chosen. Taken the economy, comfort, safety and follow-
ing performances into consideration, the optimum effect for
eco-driving is conducted.

FIGURE 5. Relationship between maximum detection range and
reflectivity.

FIGURE 6. Framework of the longitudinal automated driving strategy.

A. THE INTENTION-AWARE BASED TRAFFIC
SITUATION ASSESSMENT
Traffic situation assessment provides the IEV with the status
detection and motion intentions of traffic participants. As the
perception foundation, ground segmentation and grid maps
are built. Point clouds from the lidar contain both the ground
object information and need to be classified and cut out. The
Region of Interest (ROI) is defined as a rectangle region
with ±20m lateral width and ±40m longitudinal length and
random sample consensus algorithm is utilized to fit plane
geometric model. Therefore, ground point clouds are labeled
as inliers and object point clouds on the road are labeled as
outliers in Figure 7.

Grid maps are used to represent scenarios with obstacle
point clouds and consist of 400×200 grids basing on the grid
resolution of 0.2m. Elements in each grid are the normalized
height calculated by the height gap between the highest and
the lowest points and target detection are conducted basing
on image processing algorithm. Hough transform is used to
further detect sidewalks, and vehicle objects on the road are
collected. Given the L-shape and particular size of vehicles in
grid maps, domain connecting detection algorithm is utilized.
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FIGURE 7. Road segmentation results.

FIGURE 8. Road grid map calculated by height gap.

Targets are fitted as rectangles and their positions, sizes and
orientations are calculated.

Basing on the surrounding vehicle detection, same targets
are associated and their motion states are tracked with the
Kalman filter [39]. States of being evaluated are as follows.

xKF = [Polon, volon, aolon,Polat , volat , aolat , ϕ, ϕ̇] (6)

where Po = [Polon,Polat ], ve = [volon, volat ] and ac =
[aolon, aolat ] are the position, velocity and acceleration of the
target and ϕ is the heading angle. The state transform matrix
AKF can be defined as a constant acceleration model and be
expressed with the updating time step TKF as followed.

AKF =



1 TKF 0.5TKF 0 0 0 0 0
0 1 TKF 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 TKF 0.5TKF 0 0
0 0 0 0 1 TKF 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 TKF
0 0 0 0 0 0 0 0


(7)

The observation states are positions and orientation of the
critical traget and can be defined as the observation matrix.

HKF =

 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

 (8)

The process noise covariance QKF and the disturbance
transformation matrix 0 are expressed as follows.

QKF = 0TQN0 (9)

FIGURE 9. Target detection example.

0 =


T 3
KF

6
T 2
KF

2
TKF 0 0 0 0 0

0 0 0
T 3
KF

6
T 2
KF

2
TKF 0 0

0 0 0 0 0 0
T 2
KF

2
TKF


(10)

QN =

 σ 2
alon 0 0
0 σ 2

alat 0
0 0 σ 2

dp

,
RKF =

 σ 2
lon 0 0
0 σ 2

lat 0
0 0 σ 2

p

 (11)

where σalon, σalat and σdp are the standard deviations of
the longitudinal acceleration disturbance, lateral acceleration
disturbance and heading angle rate, σlon, σlat and σp are the
measurement error standard deviations of the longitudinal,
lateral and heading angle, and RKF is the measurement noise
covariance.

Given that eco-driving is of short duration and high iden-
tification accuracy, the motion intention index Im of IEV’s
adjacent vehicles is basing on the Reactive Motion Intention
Model (RMIM) and the non-adjacent ones is basing on the
Driving Motion Intention Model (DMIM). The status s0 and
relative states ds0 of surrounding vehicles are a series of
continuous observable sequences in the time domain and
affect the internal states of the adjacent moment, then the
first-order Multi-dimension Gaussian Hidden Markov Pro-
cess (MGHMP) is proposed for the identification of motion
intentions as shown in Figure 10.

Im = {IR, ID} = {fR (s0, ds0) , fD (s0)} (12)

IR = {IFA, IHT , INM , ICI }, ID = {ILE , IRI , IFO} (13)

where IR is the intention index of the RMIM and ID is that
of the DMIM, IFA, IHT , INM and ICI are intentions of staying
away, hesitating, maintaining and approaching respectively,
and ILE , IRI and IFO are intentions of turning left, turning right
and keeping forward respectively.

Hidden state set qt with N dimensions and κ possible
observations constitutes MGHMP and the initial states ς are
distributed as follows.

ς = {ςi, ςi = P [q1 = i] , 1 ≤ i ≤ N } (14)
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FIGURE 10. The identification framework for traffic situation assessment.

The process of qt transition is defined as the probability
matrix A.

A =
{
aij, aij = P [qt+1 = j|qt = i] , 1 ≤ i, j ≤ N

}
(15)

The observable sequence set O and the corresponding
observation probability density function B are as followed.

O = {Vi, i = 1, . . . , κ} (16)

B =

{
bj (O) , bj (O) =

M∑
k=1

cjkN
(
O|µjk , 6jk

)
,

1 ≤ j ≤ N

}
(17)

M∑
k=1

cjk = 1,
∫
bj (O) dO = 1, cjk ≥ 0, 1 ≤ j ≤ N ,

1 ≤ k ≤ M (18)

where V is the possible observation and κ is the number of Vi,
cjk is the k th mixed weighting coefficient in jth state andM is
the Gaussian mixture number. N(O|µjk , 6jk ) is the Gaussian
probability density function with mean µ and covariance 6.
The traffic situation is assessed basing on the combination

of RMIM and DMIM those are defined by a tuple λ with
N states. Motion intention probabilities are defined as the
logarithmic likelihood and the maximum one in each model
is the corresponding type of the motion intention.

λ = (ς,A, c, µ,6) (19)

Loglik (θ) = ln [P (O|λ)] (20)

B. SITUATION PREDICTION BASED SITUATION LEVEL
ESTIMATION
The IEV focuses on the collision avoidance in emergency
scenarios and the situation level estimation basing on the
situation prediction is proposed for all situation levels. The
traffic situation prediction aims at predicting threat as shown
in Figure 11 and two steps are conducted. The first step is
calculating the Time-To-Collision (TTC) and the second step
is to decide threat level based on TTC.

The prediction based method with TTC is adaptive to
various scenarios. Future trajectories of both the IEV and

FIGURE 11. Traffic situation prediction process.

the surrounding vehicles are predicted basing on the constant
acceleration model and collision detection conducts on all
predicted steps to confirm the collision moment.Poi,t+1vei,t+1

aci,t+1

=
 1 χ 0.5χ2

0 1 χ

0 0 1

Poi,tvei,t
aci,t

+
 0.5χ2

χ

1

ωa
(21)

where χ is the time step and ωa is the standard deviation of
the minor white noise.

Potential collisions at each χ are abstracted as rectangles
basing on the separating axis theorem [40]. TTC corresponds
to the collision moment and the threat level set 8 is decided
by an experimental method based on the reverse TTC.

8 =

{
1=safety, 2=warning, 3=emergency warning,
4= light interference, 5=emergency interference

}
(22)

Boundaries between adjacent threat levels varies with the
velocity vc km/h of the critical target vehicle as follows.
TTC−14↔5=max [(1.7609− 0.0128vc) , 1.20]
TTC−13↔4=max [(1.1184− 0.0131vc) , 0.75]
TTC−12↔3= [max [(1.1184− 0.0131vc) , 0.75]+ 1.00]−1

TTC−12↔3= [max [(0.4760− 0.0134vc) , 0.20]+ 1.22]−1

(23)

C. NMPC BASED ECO-DRIVING DRIVING STRATEGY
The IEV drives in the cruise mode in normal scenarios and a
Nonlinear Model Prediction Control (NMPC) is proposed for
the adaptive cruise control. A dynamic car-following internal
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model and the optimum braking force distribution strategy
in section V are developed. The response characteristics of
hub motors and the hydraulic braking system to the desired
acceleration is approximated as a discrete first-order system.

ah,lon(k + 1) = (1−
Ts
τ
)ah,lon(k)+

Ts · ξ
τ

au(k) (24)

where ξ is the system gain, τ is the time constant, au is the
desired acceleration and ah is the actual acceleration. Then
the car-following internal model is discretized as followed.{
x(k + 1) = α · x(k)+ β · au(k)+ G · ω(k)
x(k) = [xrlon(k), vrlon(k), vlon(k), ah,lon(k), jlon(k)]

(25)

α =



1 Ts 0 −
T 2
s

2
0

0 1 0 −Ts 0
0 0 1 Ts 0

0 0 0 1−
Ts
τ

0

0 0 0 −
1
τ

0


, β =



0
0
0

Ts · ξ
τ
k
τ


,

G =


T 2
s

2
Ts
0
0
0

 (26)

where xrlon and vrlon are the longitudinal relative distance and
relative velocity, vlon, ah,lon and jlon are IEV’s longitudinal
velocity, acceleration and jerk respectively.

Basing on the integrated IEV framework. optimization
performance indexes are established for the eco-driving in
normal scenarios. The economy indicator basing on the EF
quantifies the recovery energy Leco in the prediction interval
and the recovery energy Em in prediction time k is derived
as (18) and shown in Figure 12.

Em(ah,lon(k), vlon(k)) = min(Freg(ah,lon(k)),FBmax(vlon(k)))

· (vlon(k) · Ts +
1
2
ah,lon(k) · T 2

s )

(27)

where Freg is the total regenerative brake force and FBmax is
themaximum regenerative braking torque at the given vlon(k).
Therefore, Leco is expressed as follows.

Leco = Q1

p∑
k=1

Em(ah,lon(k), vlon(k)) (28)

The comfort, following and safety indicators are basing on
both IF and SF. The comfort indicators can be represented
by the ah,lon and jlon [41]. The higher fitting degree the eco-
driving strategy matches with the driving style, the more
comfort drivers will feel. Then the comfort indicator comf
in prediction time k and Comf in the prediction interval are
expressed as follows.

comf (k) = Q2 · (ah,lon(k)− aham(k))2

FIGURE 12. The relationship among regenerative energy, speed and
braking strength.

+Q3 · (jlon(k)− jham(k))2 + Q4 · a2u(k) (29)

Comf (k) =
p∑

k=1

comf (k) (30)

where aham(k) and jham(k) are the prediction result based on
the driving style model in [10], Q2, Q3 and Q4 are weight
coefficients.

The following indicator specifies following performances
of velocity and safety workshop distance and the following
indicator lt in time k and Lt in prediction interval are listed.

lt (k) = Q5 · δ
2(k)+ Q6 · v2rlon (31)

Lt (k) = =
p∑

k=1

lt (k) (32)

where δ is the distance following error, Q5 and Q6 are weight
coefficients.

The safety indicator constraints the xrlon to avoid collision
and can be expressed as follows.

dc ≤ xrlon(k) ≤ dmax (33)

where dc is the minimum safe distance.
Taken above performance indicators into consideration,

constraints in NMPC can be expressed as follows.

M ≤ L · x(k) ≤ N (34)

M =


dc
vmin
amin
jmin

, L =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

N =


dmax
vmax
amax
jmax

 (35)

Supposing ah,lon keeps the same in p steps and IEV’s states
from k th to (k + p)th step time can be predicted as follows.

X̂p(k + p|k) = ᾱ · x(k)+ β̄ · U (k + m)+ Ḡ ·W (k + p)

(36)

X̂p(k + p|k) =


x̂p(k + 1|k)
x̂p(k + 2|k)

...

x̂p(k + p|k)

,
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U (k + m) =


au(k)

au(k + 1)
...

au(k + m− 1)



W (k + p) =


al(k)

al(k + 1)
...

al(k + p− 1)

 =

al(k)
al(k)
...

al(k)

 (37)

ᾱ =


α

α2

...

αp

,

β̄ =


β 0 · · · 0

αβ β
. . .

...
...

...
. . . 0

αp−1β αp−2β · · · αp−mβ



Ḡ =


G 0 · · · 0

αG G
. . .

...
...

...
. . . 0

αp−1G αp−2G · · · G

 (38)

where al(k) is the ah,lon in the k th time step. Constraints in p
prediction steps are derived as follows.

M̄ ≤ L̄ · X̂p(k + p) ≤ N̄

U (k + m) ≤ Umax

−U (k + m) ≤ −Umin (39)

M̄ =


M
M
...

M

, N̄ =


N
N
...

N

,

L̄ =


L

L
. . .

L

, Umax=


au,max
au,max
...

au,max

,

Umin =


au,min
au,min
...

au,min

 (40)

The comprehensive indicator equation of the optimization
in NMPC is as follows.

J =
p∑
i=1

[Q1 · E2
m(k+i)+Q2 · (ah,lon(k+i)−aham(k + 1))2

+Q3 · (jlon(k + i)− jham(k + 1))2 + Q4 · a2u(k + i)

+Q5 · δ
2(k + i)+ Q6 · v2rlon(k + i)] (41)

min{J}
U (k+m)

(42)

FIGURE 13. Braking force distribution principles in ECE and the braking
force distribution strategy.

S.t. � · U (k + m) ≤ T (43)

� =


L̄B̄
−L̄B̄
I
−I

,

T =


N̄ − L̄Ā · x(k)− L̄Ḡ ·W (k + p)
−M̄ + L̄Ā · x(k)+ L̄Ḡ ·W (k + p)

Umax
−Umin

 (44)

V. COORDINATED CONTROL STRATEGY
A. OPTIMUM BRAKING FORCE DISTRIBUTION STRATEGY
Given that the participation of Regenerative Braking Sys-
tem (RBS) in EF, the braking force distribution strategy con-
sists of that between front and rear axles and that between the
generator and the hydraulic braking system. The RBS aims
at recovering the maximum braking energy under constraints
of laws and regulations about the braking performance, such
as principles in Economic Commission of Europe(ECE).
The requirements can be expressed as follows and shown
in Figure 13.

$ >
b+ z · hg

Lw
(0.15 ≤ z ≤ 0.3)

(z− 0.08)(b+ z · hg)
z · Lw

≤ $ ≤
(z+ 0.08)(b+ z · hg)

z · Lw
(0.15 ≤ z ≤ 0.3)

$ ≥ 1−
(z+ 0.08)(a− z · hg)

z · Lw
(0.15 ≤ z ≤ 0.3)

$ ≥ 1−
(z− 0.02)(a− z · hg)

0.74z · Lw
(0.3 ≤ z ≤ 0.61)

$ ≤
(z+ 0.07)(b+ z · hg)

0.85z · Lw
(0.2 ≤ z ≤ 0.80)

$ ≤ 1−
(z+ 0.07)(a− z · hg)

0.85z · Lw
(0.2 ≤ z ≤ 0.80)

(45)
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where $ is the distribution coefficient of the braking force,
z is the braking strength, a and b are distances from the mass
center to the front and rear axles respectively, hg is the height
of the mass center and Lw is the wheelbase.
The blue line in Figure 10 shows the optimum distribution

strategy of braking forces. Distribution strategies in OA and
AB segments can be expressed as follows.
OA : Fgf =Fb, Fgr=0, FMf =FMr=0,Fb ≤ Fmf
AB : Fgf =Fmf , Fgr=Fb − Fmf , FMf =FMr=0,Fmf

< Fb ≤ Fmf + FmB
(46)

where FBf is the braking force of the front axle and FBr is
that of the rear axle, Fb is the desired braking force, Fgf and
Fgr are regenerative braking forces of the front and rear axles,
FMf andFMr are hydraulic braking forces of the front and rear
axles, Fmf and Fmr are the maximum regenerative braking
forces of the front and rear axles, FmB is the braking force of
rear axle in point B.

Generators in front axle recovery maximum regenerative
forces as the curve in BC segment and the insufficient part is
compensated by those in rear axle and the hydraulic braking
system along the BD segment. The distribution threshold is
as followed.(

Fmf + FmB
)
≤ Fb ≤ (FmC + Fmr ) (47)

where FmC is the braking force of front axle in point C.
Both front and rear generators recovery maximum braking

forces as the curve in CD segment and the insufficient part is
compensated by those in the hydraulic braking system along
the BD segment. The distribution threshold is as followed
where FD is the braking force in point D.

(FmC + Fmr ) ≤ Fb ≤ FD (48)

B. MULTI-MODES SWITCHING STRATEGY
The responding characteristics with shock and delay in M/G
causes a frequent mode switching around the braking and
driving mode. A finite state machine based mode switching
method as shown in Figure 14 and Figure 15. In the first
driving exit state, RBS keeps close to avoid the fluctuation of
M/G. The regenerative braking force is regained to a certain
extent in the second driving state. When it is far away from
the driving state in the third stage, the regenerative braking
force returns to normal.

The regenerative braking torque of in the M/G decreases
to zero gradually from the first stage to the driving mode and
can be expressed as follows.

TG = T̂G − k1t,FBri = −
TG
2rω

(49)

where k1 is the reduction rate of M/C torque TG, rω is the
effective rotation radius of the wheel and Fri is the braking
force related to the single wheel. In state NO.2 and NO.3, TG

FIGURE 14. Mode switching mechanism between driving and braking
control.

FIGURE 15. Finite state machine of the M/G responding control strategy.

and Fr are equal to zero and TG is 80% of the desired torque
in state No.4 and can be expressed as followed.

TG =

{
k2t (k2t < 0.8 · T̂G)
0.8 · T̂G (k2t ≥ 0.8 · T̂G)

FBri = FBHri +
(T̂G − TG) · i0

2rω

(50)

where k2 is the incremental rate of TG, FBHri is the hydraulic
braking force related to the single wheel. In state NO.5, TG is
100% of the desired torque and can be expressed as followed.

TG = 0.8 · T̂G + k2

FBri = FBHri +
(T̂G − TG) · i0

2rω

(51)

VI. EXPERIMENT VERIFICATION AND PERFORMANCE
ANALYSIS
A. EXPERIMENTAL PLATFORM
The co-simulation environment and field test are established
for the performance verification of the eco-driving strategy as
shown in Figure 16 and Figure 17. Carsim2016r achieves a
high accuracy vehicle dynamic model for SF and PanoSim-
Trunkr integrated with the lidar model provides specified
scenarios consisting of target vehicles, road and procedures
and point clouds of the lidar for IF. Hub motors and battery
packs for EF are modeled in Mathworks Simulinkr as well
as the eco-driving strategy for SF. IEV states changes with
the procedures and control commands and have an influence
on the scenario data with other target vehicles.

Field test platform consists of the multi-modal sensors, the
controller and the electric actuators. The eco-driving strategy
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FIGURE 16. The co-simulation environment consisting of
PanoSim-Trunkr, Carsim2016r and Mathworks Simulinkr.

FIGURE 17. The IEV field test platform.

runs on the dSPACE MicroAutoBox. The Velodyne lidar and
RT3002 inertial navigator collect data of the point clouds and
vehicle states, such as the velocity, acceleration and position.
Hub motors, iBooster and the steering power motor system
constitute IEV’s actuators. Logic camera, ESR radar and the
vector are used to collects raw sensor data for data backup.

Energy recycling efficiency ηreg is designed to evaluate the
economy performance as follows.

ηreg =

pt∑
m=1

tm_2∫
tm_1

TG·nG
9.55 dt

pt∑
m=1

1
2msv

2
m_0 −

1
2msv

2
m_t

(52)

where pt is the braking time interval, vm_0 and vm_t are the
initial and final velocities in themth braking, tm_1 and tm_2 are
the initial and final moments in the mth braking, ms is IEV’s
mass and nG is the velocity of the hub motor.

B. ECO-DRIVING RESULTS IN NORMAL SCENARIOS
The IEV activates Adaptive Cruise Control (ACC) in the nor-
mal scenario, aiming at achieving the car-followingmaneuver

FIGURE 18. The normal scenario specification.

FIGURE 19. Simulation result of the distance following error.

FIGURE 20. Simulation result of the speeds.

FIGURE 21. Simulation result of the target’s motion intention.

according to the velocity sequences of the leading vehicle,
which are pre-set as forms of sine, JP1015, ECE, UDDS
and EUDC respectively corresponding to five typical normal
scenarios. The Sine-type scenario specification is shown as
an example in Figure 18 and simulation results in the normal
scenario are shown in Figure.19∼Figure.24. The strategy
without optimizes comfort indicator is called ACC for EF,
and that without optimizes economy and comfort indicators
is called ACC for SF.

Simulation results in the sine-type scenarios shows that the
tendencies of the distance following error are consistent but
a little larger in Eco-ACC mode than the others. IEV velocity
follows the leading vehicle well and ah,lon in Eco-ACC has
the minimal difference with that of the human driver but
has larger difference with those of the others. The good
following and safety performances are obtained in ACC for
SF, but with a lower SOC value and fitting goodness of
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FIGURE 22. Simulation result of the hub motor torques.

FIGURE 23. Simulation result of the SOC.

FIGURE 24. Simulation result of the accelerations.

TABLE 1. reg in typical normal scenarios.

ah,lon comparing with that of the human driver. The Eco-ACC
strategy has an optimum performance. Consistent optimum
results are obtained in other typical scenarios. Corresponding
ηreg in TABLE 1 shows that the Eco-ACC have stable and
better economy performance. Therefore, the Eco-ACC in
IEVs improve car-following, safety, economy and comfort
performance.

C. ECO-DRIVING RESULTS IN EMERGENCY SCENARIOS
Field test in emergency scenarios with C2C AEB CCRb and
LSS test protocols by EuroNCAP are conducted as shown
in Figure 25 and Figure 26 respectively. The control authority
in IEV is delivered to the active safety controller or the colli-
sion avoidance controller, when the situation level is no less
than 4. The throttle is taken over and the IEV will brake with
the expectation deceleration of −0.3g in level 4 and −0.8g

FIGURE 25. The emergency scenario specification CCRb.

FIGURE 26. The emergency scenario specification LSS.

FIGURE 27. Field test results with the EuroNCAP CCRb scenario.

in level 5. Test results with the collision avoidance controller
in eco-driving are shown as the examples in Figure 27 and
Figure 28 respectively.

As shown in Figure 27 and Figure 28, the collision avoid-
ance controller can detect and track targets with high accuracy
and economy. The situation prediction method can conduct
correct intervention to avoid collision. The ηreg are 6.2%
and 5.8% respectively during the collision avoidance process.
In the emergency scenarios, the collision avoidance controller
can guarantee the safety and improve the economy perfor-
mance for IEV’s eco-driving.
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FIGURE 28. Field test results with the EuroNCAP LSS test protocol.

VII. CONCLUSION AND FUTURE WORK
Given system requirements of IEVs, a coordinated control
based longitudinal eco-driving for 4WD intelligent electric
vehicles is proposed in this paper. Basing on the theoretical
analysis and experiment verification, an intensive intelligent
electric vehicle framework basing on the optimal mecha-
nism of energy flow, substance flow and information flow
is established. On this basis, an intention-aware longitudinal
eco-driving strategy applicable to overall traffic situation lev-
els is developed for the eco-driving strategy. With the coordi-
nated control strategy aiming at arbitrating control modes and
distributing braking forces, optimal control effects in overall
traffic situation levels and an enhanced energy recycling effi-
ciency have been achieved in the co-simulation environment
and field test. The minimum entropy based orderliness struc-
ture issue of the SF, EF and IF in time and space will be the
future research priority. What’s more, the multi-modal sensor
fusion basing on lidar and camera will be in-depth study to
optimize the effect of scenario situation estimation.
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