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ABSTRACT This paper mainly discusses about the full-order state observation technology for the permanent
magnet synchronous motor (PMSM) drive system. First, the concept of the Kalman filter (KF) is synthesized
to design a novel fixed gain filter (FGF) with an optimal fixed feedback gain matrix, which ensures a fast and
accurate observation for position, speed, acceleration, and load torque. To alleviate the heavy computational
load of the KF, second, the feedback gain is configured as a single tunable parameter only, which can
be calculated offline. The regulation parameter is refined within a certain small range by fulfilling the
system stability criterion. Furthermore, the system dynamic performance indexes, such as noise smoothing
capability and bandwidth, are both analyzed to deduce the expected exact value of the regulation parameter.
The proposed FGF can provide an accurate observation equivalent to the conventional KF, while the proposed
FGF provides a faster tracking performance, an easier parameter tuning mechanism, and a lower program
complexity. The performance of the FGF is verified by simulations and experiments in all cases.

INDEX TERMS Permanent magnet synchronous motor (PMSM), fixed gain filter (FGF), motor drive, state
estimation, load torque observation.

I. INTRODUCTION
The permanent magnet synchronous motor (PMSM) is
widely applied in high-performance control fields such
as computerized numerical control machine tools, medical
instruments, and aerospace, etc., owing to its high power fac-
tor and good speed control performance. For the PMSM servo
closed-loop control system, the rotor position is the necessary
feedback signal for accurate vector control. In actual opera-
tion, however, external factors such as load fluctuations and
parameter changes often adversely affect the position control
precision [1], [2]. Therefore, the knowledge of state quantities
information such as motor position, speed, load torque, etc.,
are essential to achieve a high dynamic performance of a
PMSM.
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In traditional position measurements, the position signal
is usually obtained by an optical encoder. On this basis,
the speed signal is often calculated by the differential cal-
culation from M method, T method and M/T method [3].
In order to suppress the influence of external interference
on the system, the scheme of load torque observation is
usually studied based on the measured position and speed
signals [4]. However, on one hand, the factors that imperfect
manufacturing, quantization noise of the optical encoder will
cause measurement errors of the rotor position; on the other
hand, the traditional speed measurement method often causes
time delay and speed error, termed as speed noise [5]. For the
existence ofmeasurement noise and speed noise, the accuracy
of the load torque observation is hard to be guaranteed.
As a result, the dynamic performance and stability of the
PMSM servo system can often be affected [6]. Although low-
pass filters are usually adopted to suppress different kind of
noise, they cannot reduce time delay simultaneously [7]–[9].
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The high-precision encoders succeed in the improvement of
measurement accuracy, however, the cost is high, and their
size, weight, wiring complexity will reduce the mechan-
ical strength and reliability of the entire PMSM control
system.

To overcome the problems from traditional sensor and
encoder measurement methods, in recent years, numerous
state observation technologies have been perused for motor
drive systems [10]–[12]. The most widely used observation
methods include: Luenberger observer (LO) [13], [14] and
Kalman filter (KF) [15], [16].

For the sensorless linear induction motor drive system, a
neuron-based full-order Luenberger adaptive speed observer
is proposed in [17], and the speed is estimated. An improved
sliding mode Luenberger state observer is proposed in [18],
which is employed to estimate the rotor speed and distur-
bance torque. By limiting the sliding surface of the esti-
mated interference and stator current error, the interference
suppression mechanism is designed that can reduce the influ-
ence of the external load on the tracking performance of the
observer. In [19], an adaptive non-singular terminal sliding
mode control based on Luenberger disturbance observer is
carried out, which can quickly track load torque and external
disturbances. In [20], a minimum-order observer is intro-
duced to estimate the load disturbance, which is further
implemented for PMSMpredictive control.With this scheme,
rapid tracking, stability, and disturbance suppression perfor-
mances are achievable.

In practice, LO is only suitable for linear systems with
constant parameters and low measurement noise [21]. For
systems that are interfered by measured noise and accom-
panied by variable parameters, however, KF possesses bet-
ter performance with the intrinsic characteristics of direct
reliance of measurement noise, which makes KF extensively
applied as an optimal state estimator [22], [23].

In [24], a large number of applications and implementation
issues of KF in trajectory estimation, state control or diag-
nosis, parameter estimation, data merging, signal process-
ing, etc., are summarized. Considering the noise of speed
measurement, a new scheme that combines speed and load
torque on-line observation is proposed in [25]. The distur-
bance is estimated by KF, and in turn, the observed load
torque is employed to compensate for the speed fluctuations
caused by the load disturbance. In [26], KF is adopted to
estimate the unknown disturbances of robot joint motors in
noisy environments. In [27], KF is applied as an observer for
rotor position, speed and load torque information. On this
basis, the observations are compensated for the predictive
functional controller, and the results prove the effectiveness
of the algorithm in speed detection and interference suppres-
sion [28]. An adaptive Kalman observer for position, speed
and load torque is proposed in [29] for PMSM servo system,
which can effectively alleviate the problem of large speed
error and time delay at low speed. In order to reduce the
lateral dynamic impact caused by the mechanical backlash of
the independently-driven dual-motor electric vehicle, KF is

employed to design a dynamic smoothness controller in [30].
The impact of process noise on the control performance is
discussed as well.

Obviously, KF is an effective way to solve the problems of
sensor quantization error and measurement noise. However,
on one hand, it is difficult to correctly set the initial values of
the covariance matrixes of KF, which usually requires certain
amount of trial and error; on the other hand, the complex
real-time computation process of KF greatly limits its vast
use in practical applications. Many improvements have been
performed to address this issue. Based on the KF principle,
the fixed gain filter (FGF) is studied in [31]–[34], which is
applied to observe system position, speed and acceleration
signals for tracking and scanning. Compared with KF, FGF
can greatly reduce the computation complexity and ensure the
accuracy of observation. In the study [35] and [36], the FGF
is applied for grid synchronization technology. In comparison
to the traditional phase-locked loop approach, it is easy to
adjust parameters and can provide faster and more accurate
grid angle and frequency information.

Motivated by the above observations, a new FGF-based
full-order state observer of the PMSM drive system is
proposed. The synthesis of FGF-based full-order state
observer is a first attempt on motor drive systems, and the
ultimate goal of the work is to observe position, speed,
acceleration, and load torque accurately and fast with an
easy parameter tuning mechanism and a low computational
burden.

The major contributions of this paper include the
following.

1) Based on the fixed gain theory of KF, an FGF full-
order state observer model for the motor drive system is
constructed, which can observe position, speed, and load
torque.

2) Two dynamic characteristics indexes, noise filtering and
bandwidth, are analyzed. By weighing the tradeoff between
the both indexes, the expected regulation parameter can be
determined for the expected observation performance.

The paper is organized as follows. Themathematicalmodel
of the motor drive system is presented in Section II. The
theory and design of the full-order observer based on the
PMSMdrive system are formulated in Section III. The perfor-
mance analysis and parameter regulation mechanism of the
observer are studied in Section IV. Experimental results are
given in Section V, followed by Section VI which concludes
this paper.

II. MODEL OF MOTOR DRIVE SYSTEMS
PMSM servo drive systems mainly apply the field-oriented
control to realize closed-loop control of current, speed and
position loop. Ignoring the elasticity of the transmission,
the motor drive system can be modeled as a one-mass rigid
system. The electromagnetic torque Te and the load torque
TL act together on the inertia-damping body with moment of
inertia J and damping b, to determine motor position θ , speed
ω and acceleration a. The equivalent motion system behavior
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FIGURE 1. Block diagram of the PMSM drive system.

can be represented as the following differential equation:
Ja = Te − bω − TL
a = θ̈
ω = θ̇

(1)

In general, the bandwidth of the current loop is much
greater than that of the speed loop, so the current loop is
usually simplified to 1. The simplified block diagram of the
PMSM drive system is shown in Fig. 1.

III. DESIGN OF THE FULL-ORDER STATE OBSERVER
BASED ON THE FIXED GAIN FILTER THEORY
A. THIRD-ORDER FIXED GAIN FILTER
The third-order FGF derives the optimal gain matrix based on
the principle of the steady state KF. Its special form is derived
step by step from the mutual derivative relationship of the
state matrix elements [34]. As a result, the state matrix x =
[θ ω a]T is usually selected for system modeling. Therefore,
the state equation of third-order observer for the rotarymotion
system is established as:{

x (k + 1) = Fx (k)+ 0w (k)
y (k) = Hx (k)+ v (k)

F =

 1 T T 2
/
2

0 1 T
0 0 1

 , H =
[
1 0 0

]
, 0 =

 T 2
/
2

T
1


(2)

where x and y are the state variables and measurement out-
puts, respectively, F is the state-transition matrix, 0 is the
process noise transition matrix, and H is the observation
matrix that maps the state variable into the observed variable.
T is the sampling period.
The process noise w(k) and measurement noise v(k) are

zero-mean white noise sequences with the covariance matri-
ces defined as

E
{
w (k)w (k)T

}
= σ 2

w E
{
v (k) v (k)T

}
= σ 2

v (3)

The iterative algorithm of KF is shown in (4), where super-
script∼means the predicted value, and ^means the observed
value. The optimal Kalman gain K(k) can be derived by
minimizing the covariance P(k). It can be seen that KF solves
the gain matrix in real time, which leads to a large amount of

calculation.

x̃ (k) = Fx̂ (k − 1)
P̃ (k) = FP̂ (k − 1)FT + 0σ 2

w0
T

K (k) = P̃ (k)HT
[
HP̃ (k)HT

+ σ 2
v

]−1
x̂ (k) = (I−K (k)H) x̃ (k)+K (k) y (k)
P̂ (k) = (I−K (k)H) P̃ (k)

(4)

According to the operation mechanism of KF, the optimal
gain matrix is obtained as KF reaches a steady state. At this
time, the error covariance matrix P̃ (k) and P̂ (k) both have
converged to a stable state, so we have,

P̃ (k) = P̃ (k − 1) P̂ (k) = P̂ (k − 1) (5)

The optimal fixed gain matrix form of the third-order FGF
can be further derived as follows [29],

K (k) =
[
α
β

T
2γ
T 2

]T
(6)

where α, β, and γ are dimensionless constants, which can
actually be solved in an analytic form, and the solution can
be expressed in one parameter. The so-called noise filtering
index, which is the ratio of the motion to the observation
uncertainties, is defined as

λ =
T 2σw

σv
(7)

λ =
2γ
√
1− α

γ =
β2

4α
β = 4− 4

√
1− α − 2α

(8)

From (8), all the feedback gains of the FGF are in relation
to λ. Once this parameter is evaluated, the optimal steady-
state gain parameters α, β, and γ , as well as the resulting
performance, are specified in advance.

In summary, FGF corresponds to the optimal gain matrix
of the steady-state KF. The elements in K(k) are all constant
values and fixed gains, therefore, the real-time calculation
amount of KF can be greatly reduced.

B. FGF-BASED STATE OBSERVER MODEL OF
MOTOR DRIVE SYSTEMS
The FGFmodel can be established according to the operating
law of the rotating electrical machine system, as shown in (9).
The directly observed state variables include: motor position
θ̂ , speed ω̂, and acceleration â.

The motor driver obtains Te in real time by measuring the
current feedback through the current sensor. With this prop-
erty, the load torque T̂L can be obtained indirectly through the
observation of acceleration and speed, as shown in (10),

θ̃ (k) = θ̂ (k − 1)+ T ω̂ (k − 1)+
T 2

2
â (k − 1)

ω̃ (k) = ω̂ (k − 1)+ T â (k − 1)
ã (k) = â (k − 1)

(9)
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FIGURE 2. Block diagram of the FGF-based State Observation of motor
drive systems.

T̂L (k) = Te (k)− bω̂ (k)− J â (k) (10)

The motor position θ measured by the encoder can correct
the observation values in real time, thereby continuously
improving the observation precision of the observer. The dif-
ference between the measured and predicted position 1θ (k)
is used as the input of the FGF. The full-order state obser-
vation structure of the PMSM drive system based on the
proposed FGF is shown in Fig. 2.

IV. OBSERVATION PERFORMANCE ANALYSIS AND
PARAMETER DESIGN OF THE FGF-BASED OBSERVER
It can be seen from (7) and (8) that, although all gain matrix
parameters can be represented by λ, λ is related to σv, which is
difficult to directly observe, so the adjustment process is not
easy. In order to simplify the tuning process, an adjustable
parameter κ uniquely related to λ is derived. The range of
the tunable parameter of the observer can be narrowed by
analyzing the stability of the FGF. Furthermore, through ana-
lyzing the dynamic characteristics of the FGF, the function of
two indicators of noise filtering and observation speed can
be established. According to the compromise between the
two indicators, the expected parameter can be determined
corresponding to the best observation performance. There-
fore, through the analysis of the observer performance in
this section, the problem of complex parameter adjustment
process and difficult parameter setting is transformed into a
subjective design of observer performance, thereby greatly
simplifying the adjustment process.

A. STABILITY ANALYSIS
In order to further simplify the calculation process, the reg-
ulation parameter κ =

√
1− α is introduced. At this time,

the unique explicit expression of κ corresponding to the
optimal gain matrix K(k) can be obtained, as shown in (11).
The range of κ is κ ε (0, 1). The performance of FGF can thus
be uniquely adjusted according to κ , as recommended in [35].

α = 1− κ2

β = 2 (κ − 1)2

γ = (1− κ)3
/
(κ + 1)

(11)

FIGURE 3. Root locus of discrete FGF (a) κ ε (0,1). (b) κ ε (3− 2
√

(2),1).

In order to facilitate the adjustment of FGF, the tunable
range of κ is primarily reduced according to the stability of
FGF. Since the stability of the observer is only related to the
poles of the system, the system is stable only when all the
poles are in or on the unit circle. Meanwhile, the zeros affect
the amplitude and phase of the system unit impulse response.
Therefore, the range of κ can be optimized according to the
configuration of pole position.

From (4), the relationship between the state matrix and the
system output is as follows,

x̂ (k) = [zI− (I−K (k)H)F]−1K (k) zy (k) (12)

The transfer function from the measured position to the
observed position can thus be derived as shown in (13), and
the characteristic equation D(z) is shown in equation (14).
It can be seen from (13) that when the system enters a steady
state (z equals to 1), there is Gθ = 1. Thus, no matter what
form the given position signal can be, its observation value
will track the command completely without error.

Gθ =
θ̂ (k)
θ (k)

=

(
κ3+κ2−κ−1

)
z3+
(
−3κ3−3κ2+7κ−1

)
z2+

(
4κ3−4κ2

)
z

D (z)
(13)

D (z) = (−κ − 1) z3 + (7κ − 1) z2 +
(
κ3 − 7κ2

)
z

+

(
κ3 + κ2

)
(14)

From (14), the root locus of the system can be depicted
as Figure 3(a), where l1, l2, and l3 represent the trajectories
of the three closed-loop poles respectively, when κ changes
from 0 to 1.

In order to make the discrete system possess a better
dynamic performance, it is expected that all the poles of
the closed-loop pulse transfer function have the following
distributions:

1) To make the system stable, the closed-loop poles should
be distributed in the unit circle;

2) To make the transient process of the system smooth (less
oscillations), the closed-loop poles should lie on the right half
plane of the unit circle.

According to the above analysis, the root locus shown
in Fig. 3(a) for s ε (0, 1) evolves into the corresponding
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FIGURE 4. Zero-Pole position and system characteristics of the FGF-based
observer (κ = 0.84) (a) Pole-zero position. (b) Impulse response.

closed-loop pole position with κ ∈

(
3− 2

√
2, 1

)
,

as depicted in Fig. 3(b). Actually, for the pole location of
the FGF, the closer the pole approaches to the unit cir-
cle, the longer is the transient response time. Conversely,
the greater distance to the unit circle means a faster transient
response yet more severe noise.

Fig. 4(a) shows the positions of the zeros (z1, z2, and z3)
and the poles (p1, p2, and p3) of the transfer function (13)
at κ = 0.84. It can be observed that the system contains
three poles that lie in the unit circle, so this system is stable.
Likewise, the system contains three zeros. Because there is
a zero located at z = 0, it only affects the phase-frequency
characteristics but does not affect the amplitude response.
Fig. 4(b) shows the unit impulse response of the systemwith a
sampling rate of 1/50. Obviously, the impulse response curve
converges as the number of samples increases, indicating that
FGF is a causally stable system. In fact, as long as the value
of κ is selected within the stable range, the causal stability of
the system can be proved, that is, the system is physically
achievable. Moreover, different values of κ will affect the
response performance of the system, that is, the smaller κ
is, the faster the response but the larger the overshoot of the
corresponding systemwill be.While the larger κ is, the longer
the stable time but smoother of the corresponding system
becomes.

Based on the stability or the impulse response of the
proposed FGF analyzed above, the range of κ is initially
determined. As a tradeoff between the noise sensitivity and
tracking capability, the value of κ can be achieved by the
desired system performance design within the stability range.

In order to further clarify the exact value of κ , the func-
tional relationship between the dynamic performance indexes
and κ should be established. The adjustment mechanism of κ
can further be obtained on account of the expected system
performance.

B. DYNAMIC CHARACTERISTICS ANALYSIS
In order to determine the exact κ in the stable region, the
quantitative relationships between κ , the noise index, and the
bandwidth index are studied respectively.

1) NOISE FILTERING INDEX λ
The observer should have the ability to suppress noise. In the
controlled system, there are usually two forms of noise, one is

process noise w(k) and the other is measurement noise v(k).
w(k) is often related to the rounding error of the computation,
the degree of model linearization, and the discretization error.
v(k) is often related to the position sensor precision, which is
settled as the system hardware is fixed. Therefore, λ shown in
(7) can be used to describe the noise filtering parameter. The
larger λ is, the greater the noise but the worse the filtering
ability will be. While the lower λ is, the weaker the noise and
the stronger the filtering ability can be declared.

Although it can be seen from (7) that λ is usually a fixed
parameter, it is still expected that the observer can be designed
according to the needs of the observer user, for example, the
expected noise filtering parameter index λ∗. Indeed, it can be
deduced that κ can be expressed in terms of λ only. Therefore,
the relationship is established in (15), where the correspond-
ing expected parameter κ∗1 can be calculated according to λ∗,
so as to achieve an ideal observation performance.

κ∗1 =
σ

6
−
λ∗

6
+
λ∗ (λ∗ − 18)

6σ
+ 1

σ =
3

√
27λ∗2 − 108λ− λ∗3 + 3λ

√
1296− 3λ∗2 (15)

From (15), a monotone decreasing interdependence rela-
tionship can be deduced between κ∗1 and λ

∗ within the domain
of definition. Since λ∗ is greater than and close to 0, when the
measurement error is fixed, the smaller λ∗ is, the better the
noise filtering effect becomes.

2) OBSERVER BANDWIDTH INDEX ωb
In practical applications, the target trajectory is usually time-
variant. Therefore, the observer should also maintain a fast
and accurate observation performance. This indicator can be
characterized by the observer bandwidth ωb. The larger the
bandwidth is, the faster the tracking target and the smaller
the tracking error becomes. Since bandwidth is a frequency
domain characteristic, the s-domain transfer function that
corresponds to (13), can be calculated by the bilinear dis-
cretization method. Then the function of the expected κ∗1 and
the expected ω∗b can be calculated by

20 lg

∣∣∣∣∣Gθ (z) |z = 1+
jω∗bT
2

1−
jω∗bT
2

∣∣∣∣∣ = −3. (16)

Solving (16), we can get that κ∗1 is a sixth-order equation
about ω∗b , and the explicit solution is complicated.
It is worth noting that, κ∗1 is a monotonic decreasing func-

tion of ω∗b . When κ∗1 ∈
(
3− 2

√
2, 1

)
, the bandwidth range

is ω∗b ε (0,∞). Nevertheless, the limitation of the sampling
period T accounts for the fact that ω∗b cannot reach ∞.
For further taking both the controller bandwidth ωc and the
Shannon’s Theorem into consideration, the range of ω∗b can
be refined to (ωc, π/T ), and the design ofωc varies associated
with different observed states.

It can be seen from the above analysis that, consider-
ing the limitation of the controller bandwidth and sampling
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FIGURE 5. Comparison result of FGF observation under sine given
position at κ = 0.85 and κ = 0.98. (a) position, (b) speed, (c) acceleration,
(d) load torque. The red lines stand for the real state, the green lines
stand for the observation results under κ = 0.98, and the blue lines stand
for the observation results under κ = 0.85.

FIGURE 6. Comparison results of FGF observation at κ = 0.85 and
κ = 0.98 under given step position. (a) position, (b) speed, (c)
acceleration, (d) load torque. The red lines stand for the real state, the
green lines stand for the observation results under κ = 0.98, and the blue
lines stand for the observation results under κ = 0.85.

frequency in practical control systems, the range of κ is
further reduced.

C. SIMULATION VERIFICATION
The parameters of the simulations are set as: T = 10−4 s,
and the electromagnetic torque limit is twice of the rated
torque. The proportional-integral (PI) controller parameters
of the speed loop are kp = 10, ki = 0.01, with the band-
width configured as about 550 Hz. The parameter of the
position loop proportional (P) controller is kpp = 300, and
the bandwidth is around 52 Hz. Fig. 5 and Fig. 6 show the
comparison results of the observation results with different

TABLE 1. Observation state tracking time during motor startup.

κ under different position references, respectively. In the
figures, the red line stands for real state, the green line stands
for the observation results under κ = 0.98, and the blue line
stands for the observation results under κ = 0.85.

A test case involving a position sinusoidal with the
amplitude 1 rad and the frequency 1 Hz is considered. The
1 N·m load torque step occurs at 1 s. The comparison results
of observations at κ = 0.98 and κ = 0.85 are shown in Fig. 5.
From Fig. 5, the proposed FGF has a high observation accu-
racy of position, speed, acceleration and load torque. As the
load torque observation model involves speed and accelera-
tion, the error is increased. It can be seen from the enlarged
figure from 0 to 0.05 s that, as κ increases, the observation
noise becomes smaller, however, the tracking speed becomes
slower, which is consistent with the theoretical analysis.

The observation results with a ramp given position (the
slope and amplitude are both 2π) under κ = 0.98 and
κ = 0.85 are shown in Fig. 6. Half rated load is suddenly
added as the load torque at 4 s. The proximities between
the observation and real values are evident, which confirms
the superior performance of the FGF. At 4 s, the torque
output is insufficient due to the load, resulting in a slight drop
of 0.001 rad. Additionally, the waveforms from 4 s to 4.05 s
are expanded, to observe the observation performance when
the sudden load is added. It can be seen that when κ increases,
the observation noise decreases, however, the bandwidth also
decreases that results in a slow observation speed, which is
consistent with the above theoretical analysis.

D. QUANTITATIVE ANALYSIS OF SIMULATION RESULTS
In order to evaluate the performance of the observer, Table 1
summarizes the time required for accurate observation of
each state to track the actual value during the startup phase
(begins at 0 s for sine given and 2 s for slope given) in Fig. 6.
It can be seen that the observation speed of each state at
κ = 0.98 is slower than that at κ = 0.85.
In order to analyze the sensitivity of FGF, the root mean

square error (RMSE) generated from the state observation
difference, is calculated as the performance metric and it is
defined as (17).

RMSE =

√√√√√ n∑
k=1

(
x̂k − xk

)2
n

(17)
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TABLE 2. RMSE calculated after loading to approaching steady state.

FIGURE 7. The experimental setup. (a) Motor drive mechanical setup,
(b) Control platform.

From the simulation results in Fig. 6, as the servo system
is in steady state after loading (begins at 1 s for sine given
and at 4 s for slope given), we can calculate the RMSE as
shown in Table 2. It is evident that the observation error
of each state at κ = 0.98 is less than that at κ = 0.85.
The accuracy of position tracking is the highest, but the
accuracy of acceleration is the lowest for the two differential
calculation.

V. EXPERIMENTAL VERIFICATION RESULTS
A. EXPERIMENTAL SETUP
In order to verify the effectiveness of the proposed FGF, an
experimental setup has been implemented, which is presented
in Fig. 7. It is composed of two Panasonic
MINAS A6
series PMSM motors, one of which is MDMF 102L1G6M
as the driver and the other is MHMF 102L1G6M as the
load machine. An 1kW Panasonic
MDDLT45SF driver is
used to control the motors. The two motors are coupled
by a NBK
rigid coupling. The direct current (DC) buses
of the driver motor and the load motor are in parallel con-
nection and the load motor is used as a generator to sup-
ply the load torque. The position of the driving motor are
measured by an incremental encoder, and the speed and
acceleration are calculated by differentiation process through
the measured position. The main parameters are presented
in Table 3.

TABLE 3. Main parameters of PMSM drive system.

Experimental validation of the proposed FGF scheme is
constructed on MATLAB/Simulink environment and com-
piled and executed on dSPACE DS1104 real-time controller
board. The sampling time is set to 1 ms.

B. EXPERIMENTAL RESULTS
Through the command position, the position, speed, acceler-
ation, and load toque act as the observed states implementing
with the proposed FGF. Among them, because the load torque
observation model involves system damping, the damping
should be treated as a prior parameter. It is approximately
0.007 N·m·s/rad, which is calculated by the relationship
between the electromagnetic torque and speed under speed
loop without load. The effectiveness of the proposed FGF is
assessed in Fig. 8, Fig. 9, and Fig. 10, respectively.

Fig. 8 presents the observation results commanded by a
ramp position with both amplitude and slope of 2π , and half
the rated load added after 3 s. A drop of 0.024 rad after
loading could be observed in the Fig. 8 (a) and Fig. 8 (e). From
Fig. 8 (b) and Fig. 8 (f), since the differential processing of
the position feedback, when the position slope has a turning
point, the speed and acceleration feedback have spikes and
noise. On the other hand, position feedback is used as an FGF
input that has a direct impact on the observation results, which
is manifested as a sharp peak on the observation results when
the position slope appears a turning point. However, it does
not affect the noise smoothing ability of the observer, which
is only related to parameter κ . By comparing the actual value
with the observation result, it can be concluded that the larger
κ , the stronger the noise suppression and the slower tracking
capability.

A test case involving a sinusoidal position with the
amplitude of 1 rad and frequency of 1 Hz is consid-
ered. The observed results are shown in Fig. 9, and
Fig. 9 (a)-(d) and (e)-(h) depict the cases κ = 0.98 and κ =
0.85 respectively. A sudden change of 30% rated load is
added at 2 s.

As evident in Fig. 9 (a) and Fig. 9 (e), the position ref-
erence, position feedback and position observation almost
coincide, indicating the high accuracy of both the control
and observation performance. In Fig. 9 (b), a small deviation
between the speed observation and speed feedback can be
detected with the lag of approximate 30 ms. By comparing
Fig. 9 (c) and Fig. 9 (g), it can be seen that the acceleration
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FIGURE 8. Comparison experimental results under given slope position. (a)-(d) for κ = 0.98, and (e)-(h) for κ = 0.85. Blue line stands for actual value, red
line stands for observed value, and green line stands for reference value.

FIGURE 9. Comparison experimental results under given sine position (1Hz). (a)-(d) for κ = 0.98, and (e)-(h) for κ = 0.85. Blue line stands for actual
value, red line stands for observed value, and green line stands for reference value.

feedback is seriously affected by the noise produced by
the second differential of the position. Moreover, when κ =
0.98, the acceleration observation result has a serious lag,
about 165 ms. Nevertheless, the noise smoothing ability is
better in comparison to the case of κ = 0.85. The observation
results of the load torque are shown in Fig. 9 (d) and Fig. 9 (h),
fromwhich the observation value fluctuates stably around the
given value. The observed load torque is close to but slightly
lower than the electromagnetic torque, the reason for which is
the small inertia and damping in the load torque observation

model. In addition, a spike can be detected in the load torque
observation at the loading point.

In order to further verify the observation performance,
experiments are carried out under the conditions of a sinu-
soidal frequency of 5 Hz with a sudden load of 1 Nm.
As shown in Fig. 10 and Fig. 11, the observation results and
the observation error (the difference between the observed
value and the true value or the given value) under κ =
0.9 and κ = 0.7, are also given. Comparing with Fig. 9,
it can be seen that as the frequency of the given position
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FIGURE 10. Experimental results under given slope position (5Hz) for κ = 0.9. (a)-(d) the observed states (e)-(h) the observed error. The blue lines stand
for actual value, the red lines stand for observed value, and the green lines stand for reference value.

FIGURE 11. Experimental results under given slope position (5Hz) for κ = 0.7. (a)-(d) the observed states (e)-(h) the observed error. The blue lines stand
for actual value, the red lines stand for observed value, and the green lines stand for reference value.

increases, Te increases significantly. But obviously, when
κ = 0.9, the observed states can no longer keep up with
the given or feedback state, and a large observation error
occurs. However, as the value of κ decreases as shown in
Fig. 11, the tracking speed increases, which greatly reduces
the observation error, but the noise increases at the same time.
It is worth noting that the observation error is determined by
both the observation speed and noise. However, for this case,
the observation error is more caused by the low observation
speed. The experimental results further illustrate that the
value of κ is a trade-off between the tracking speed and

the filtering ability, which is consistent with the previous
theoretical analysis.

The above experimental results meet rather well with the
theoretical analysis and simulation results, which demon-
strates the effectiveness of the proposed FGF scheme applied
in the PMSM drive system.

VI. CONCLUSION
In this paper, on the basis of the fixed gain KF theory,
a new full-order state observer of the motor drive system is
proposed. Through the analysis of stability characteristics,
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the range of the regulation parameter κ for optimal gain can
be narrowed. By analyzing the two dynamic indexes of noise
filtering λ and bandwidth ωb, the adjustment mechanism of
κ can be further clarified. We have demonstrated that as κ
increases, the observation speed becomes faster, while the
noise smoothing ability decreases. As a consequence, it is
necessary to make a compromise between both the indexes
to decide the expected regulation parameter corresponding
to the expected observation performance. Compared with
traditional KF, the proposed FGF processes salient features
of accurate and fast observation, and reduced complexity
performance, whichmakes it suitable for further study of state
feedback control strategies for motor drive systems.

In further work, the influence of the elastic transmission
mechanism such as reducer and coupling on the motor drive
system can be considered. The FGF for the two-mass system
model can also be studied, so as to realize the effective
observation of the internal states such as the transmission
torque.
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