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ABSTRACT Electromyogram (EMG) acquisition and analysis is growing in importance with human
attempts to interact with and control equipment such as robots, prostheses or virtual environments.
In some cases, only approved users should be permitted these capabilities. For these applications, securing
EMG-based control is a major open question - to the best of the authors’ knowledge, no prior art exists
which can identify individuals from a wide range of wrist-hand gestures EMG readings within the wearable
device. This paper addresses this problem. Techniques are presented which allow EMG to be used as a
biometric, allowing users to verify themselves. An EMG-sensing armband attached to the lower forearm
is used to anonymously authenticate users as a member of an approved group, or to identify themselves
uniquely. For the development of extensive biometric system, three EMG datasets with similar EMG sensing
in different sessions were exploited. For verification, accuracy of up to 93% is achieved, with 92% achieved
for identification. The system is also shown to operate in real-time on an ARM Cortex A-53 embedded
processor suitable for housing in an EMG wearable device, incurring latencies of 1.06 ms and 1.61 ms for
verification and identification respectively. These metrics are comfortably sufficient for use in real-time,
battery-powered EMG authentication devices.

INDEX TERMS Electromyogram (EMG), wrist-hand gestures, wearable device, biometric verification

system, biometric identification system.

I. INTRODUCTION

Wearable technology has taken great strides in the past two
decades due to significant advances in bio-physical signal
processing and devices. In recent times, bio-electrical signals
such as Electrocardiogram (ECG), Electromyogram (EMG)
and Electroencephalogram (EEG) have increasingly been
adopted for Human-Computer Interfacing (HCI) [1]. In par-
ticular, EMG devices can measure electrical currents gen-
erated in muscles during movement [2] and interpret these
to control computers. This capability is crucial to enabling
interaction with virtual reality video games via devices
such as Optitrack gloves [3], physical exercise equipment
like Datalite [4] or controlling robotic devices or ‘bionic’
prosthetic limbs such as Bebionic hand [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato

12256 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

The EMG signal is generally acquired at the skin’s surface
and is a complex mix of electrical signals produced as a
result of neuro-muscular activity, as well as the recording
environment [2], [6]. Compared to other bio-electric signals,
EMG signals vary widely subject to age, gesture style, muscle
strength, motor unit paths and skin-fat layer [6]. Despite the
complexity of the signals significant strides have been made
in enabling their analysis; for instance, EMG acquired on
the lower forearm have been shown to allow highly effective
detection of specific wrist-hand gestures [7].

In many applications, though, detecting movements is not
enough. This is particularly the case in applications where
only skilled, trained or approved users should be allowed
control of a piece of equipment. Whilst there has been much
work on inferring limb movements based on EMG signals,
unlike ECG and EEG [8], EMG-based authentication of users
is a relatively poorly studied area. Despite the existence of
numerous devices on the market, such as those outlined,
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where EMG is the only bio-physical signal measured, to the
best of the authors’ knowledge, there has been no work
demonstrating the capacity to identify individuals based on
their wrist-hand gestures within wearable EMG devices.
Two levels of authentication are desirable: the user can
either be verified as one of an approved group of users,
with or without identifying them uniquely [9], [10]. Three
shortcomings are apparent in the current state-of-the-art:

o No current approach can, based only on wrist-hand
EMG activity, authenticate whether an individual who
remains anonymous is a member of an approved group
of users [7], [8], [11], [12].

o No current approach can uniquely identify approved
users from one-another via wrist-hand EMG activity
alone [7], [8], [11].

o The lack of either of these two technologies precludes
real-time EMG-based verification or identification for
portable, battery-powered devices, as would be required
for wearable HCI applications [13]-[16].

This paper makes the following contributions:

1) A novel authentication approach is described which uses
multi-channel EMG sensed on the lower forearm to
identify a user as a member of a pre-approved group,
without requiring their unique identity, with up to 93%
accuracy. One-time and continuous alternatives, which
balance accuracy with complexity for different kinds of
EMG equipment and HCI applications, are described.

2) An identification approach, based on the same EMG
acquisition arrangement, is presented which can identify
individual users via a wide range of wrist-hand gestures
with accuracy in excess of 92%.

3) The proposed approaches are realised in real-time
on a processor suitable for integration in portable,
battery-operated EMG acquisition equipment required
for EMG-based HCL. It is shown how either executes in
less than 2 ms on an ARM Cortex A-53 processor.

Section II of this paper details types of biometric systems,
before Section III and Section IV describe respectively the
verification and identification approaches. Section V detailed
their real-time implementations.

II. LITERATURE REVIEW

A. BIOMETRIC SYSTEMS

A biometric system is a pattern recognition system that distin-
guishes individuals or groups from one another by extracting
information from biophysical signals [17]. Biometric systems
have been demonstrated using fingerprint [13], face [14],
voice [15], iris recognition [16], ECG [18]-[20] and/or EMG
analysis [21]-[24]. Each offers a different balance of vulner-
ability, ease of use, obtrusiveness, and complexity.

Biometric systems can operate in two modes:

o Verification: a user is identified as belonging to a
pre-determined approved group. Information extracted
from input signals are compared with training data and
when a match is identified, the user is permitted to
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control the equipment, otherwise they are denied [17].
Use-cases include specialised medical or other equip-
ment which should only be controlled by trained, skilled
users.

o Identification: the system recognises the user uniquely.

It compares their biometric against a set of approved
users. The user’s identity is verified, or access is
denied [17]. Use-cases include personalised devices,
which should be under the control of only the user.

For verification, a variety of approaches have been
used. Fingerprint [25], face [26] and iris recognition have
all required user scanning with complex video process-
ing [16]. These, however are not really bio-signals as such.
Hammad et al. [19], [20] present an authentication approach
using ECG which employs a Convolutional Neural Network
(CNN) to provide authentication accuracy exceeding 99%.
The fusion of multiple signal sources has also been used
to increase biometric verification performance. For instance,
[27] proposes two-factor verification using a person’s finger-
print and [28] a system which fuses EEG and ECG to identify
subjects with 97.90% accuracy. Some studies have tried using
EMG analysis as part of such a fused approach. In [21],
an individual is verified via EMG analysis of the heart-
beat. In [29] the concept of biometric verification using
multi-channel EMG signals corresponding to hand gestures
was proposed, but not reported but no results have been
presented. In [30] is presented an approach which verifies a
person using keystroke dynamics while typing a password in
addition to associated EMG signalling.

For identification, face, fingerprint, hand gestures and
voice are commonly used [17]. Within bio-signals, ECG
analysis has been commonly used [31], [32], with few studies
on EMG analysis for person identification [22]-[24]. The
work in Chan et al. [31] uses percent residual differ-
ence, correlation coefficient and wavelet distance to char-
acterise single-lead ECG signals. Israel et al. [32] presents
a multi-modal fusion of ECG and facial or palm recogni-
tion for user identification. Krishnamohan et al. [23] intro-
duced the use of EMG signals from upwards motion of
wrist for person identification using vector quantisation (VQ)
and Gaussian mixture model (GMM) with 73.33% accuracy.
Further, Kim et al. [22] presented a person identification tech-
nique based on EMG activity from various elbow-hand-finger
movement using time domain features with Principal Com-
ponent Analysis (PCA) and Linear Discriminant Analysis
(LDA) followed by Euclidean Distance (ED), Support Vector
Machine (SVM), and K-Nearest Neighbour (KNN) result-
ing 86.66% accuracy. More recently, Chantaf et al. [24]
used modeling techniques and classification based on
wavelets networks and neural networks (RBF) for identifying
individuals from EMG recordings with 95% accuracy.

There are, additionally, two general ways verification or
identification can be managed:

« one-time: the user is verified/identified once and remains

so indefinitely. Specific conditions can be specified
to ensure accurate access with high reliability, before
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access to the system is granted. However, since access
is never re-verified, there is risk of unauthorised use by
someone other than the approved user.

e on-going: verification/identification is periodically
repeated. This removes the potential for unauthorised
use, but potentially reduces verification accuracy as
a result of requiring frequently repeating verification
exercises.

The works discussed above show that one-time biomet-
ric verification and identification is possible via a range
of approaches with ECG and EMG signals. But authors
are unaware of any biometric verification or identification
schemes which provide either on-going re-verification or ver-
ification reliant solely on EMG signals of wrist-hand gestures
in HCI applications [3]-[5], [8].

B. MOTIVATION

The need for other biometrics to be available critically
restricts the capabilities of EMG wearables in secure appli-
cations. In these extra hardware for sensing and process-
ing is required to acquire and analyse another bio-physical
signal. Within EMG wearables, EMG is acquired from the
skin’s surface from sensors which are either placed over spe-
cific arm muscles (followed by time-frequency EMG analy-
sis), or randomly-placed sensors combined with time-domain
analysis [33]. The latter approach brings the considerable
advantage that sensors can be placed at any location on the
skin, making fitting and use considerably easier. This device
is battery-powered and features on-board processing capa-
bility, potentially allowing verification or identification on-
device, without have to transmit personal EMG recordings
to a remote processing resource. In this context, this paper
makes the following contributions:

o One-time and on-going biometric verification schemes
are presented which consider EMG signals measured
at random locations on the skin’s surface and provide
authentication accuracy exceeding 93%.

¢ One-time and on-going identification schemes, based
on the same EMG acquisition regime, which provide in
excess of 92% accurate identification of users.

« Real-time biometric verification and identification using
an embedded processor suitable for integration in a
portable, battery-powered wearable device.

Section III describes details of developed biometric verifi-
cation system to enable person authentication based on user
EMG signal, with its experimental results after Section IV
describes the biometric identification system to recognise
person based on their wrist-hand movements EMG sig-
nalling, and its performance. Section V details time met-
rics realisation of developed biometric verification and
identification.

Ill. EMG-BASED BIOMETRIC VERIFICATION

A system employing machine learning is proposed, com-
posed of four main steps viz. EMG acquisition and segmen-
tation, feature extraction, projection and classification.

12258

A. EMG ACQUISITION

The EMG acquisition unit houses 8 EMG sensors fitted
randomly in circular fashion to a subject’s forearm, as shown
in Figure 1. Each surface EMG sensor has a sampling fre-
quency of 200 Hz [34], [35]. The armband has a circumfer-
ence of 19 cm, expandable to 34 cm depending on subject’s
forearm size. It hosts 8 active surface EMG sensors which
can be 0.5-1.8 cm apart. The armband is fitted on the upper
forearm so as to cover the maximum hand surface wherein
the muscles (also shown in Figure 1) are well sorted [36].

ioradiali Extensor digiti
Brachioradialis - mimmi

‘ Flexor digitorum 888  Extensor
) ]
$§}Vf - superficialis B digitorum
¢

. ‘/ Extensor carpi Extensor carpi
¥ A !
b radialis longus ulnaris
L5ih

FIGURE 1. Myo Armband placement with cross-section view of upper
forearm muscles.

The EMG recording strategy used was similar to the
state-of-the-art acquisition and wrist-hand pose classification
approach in [7]. The armband was used to record EMG from
five subjects (four male and one female) aged between 26 to
34 years. Each was seated on a chair with the shoulder,
elbow and forearm are resting on a horizontal surface. The
subject then raises their hand perpendicular to the surface and
performs one of each of eight movements:

(1) hand open

(ii) wrist flexion
(iii) wrist pronation
(iv) wrist ulnar flexion

(v) wrist supination
(vi) hand close
(vii) wrist extension
(viii) wrist radial flexion

These poses alongside a sample 8-channel EMG recording,
are shown in Figure 2. Each pose is held for approximately
10 seconds (a data session), repeated twenty times. The data
recording for each of five subject was repeated in each of four
consecutive weeks to form an effective multi-session dataset.

(a) Considered wrist-hand movements.

1911

@) (ii) (iii) (iv) ) (vi) (vii) (viii)

(b) Sample EMG signal per session from Raurale et al. dataset.

0 5 10 15 20 25 30 35 40

FIGURE 2. Sample EMG signal based on performed wrist-hand
movements.
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Two other datasets were also considered. The dataset by
Raurale et al. [37] which includes EMG recordings from
ten subjects of 27 £ 4 years is considered. Twenty sessions
were recorded from each subject. Each data session consists
of continuous EMG recordings of nine movements - hand
open, wrist flexion, wrist pronation, wrist ulnar flexion, relax-
ation, wrist supination, hand close, wrist extension and wrist
radial flexion in fixed order. Each movement has approxi-
mately five seconds of data recording. The publicly available
Angeles et al. dataset [38] is also considered, including EMG
recordings of fifty healthy subjects (twenty-nine male and
twenty-one female) aged between 20 to 59 years performing
ten different movements using the same armband. Each per-
formed a movement five times every three seconds in a total
of sixteen seconds EMG recording. All performed the same
movements - wrist in neutral, pronation, supination, wrist
extension, wrist flexion, ulnar deviation, radial deviation, fine
pinch, power grip, and hand open - in the same order. These
two datasets provide additional sixty users’ EMG recording
from different sites for building a robust biometric system.

Current wrist-hand EMG analysis techniques employ pro-
cessing on 256 sample windows of data per sensor, with
successive windows offset from one another by 128 ms [7].
We use the same, imposing the requirement that if real-time
authentication is to be realised, it must execute in less than
128 ms on the on-board ARM processor [7].

An authentication approach is proposed based on a user
by performing at least one of the approved movements.
The approach uses features extracted from the EMG sig-
nals acquired from the armband followed by dimensionality
reduction and classification.

B. FEATURE EXTRACTION

The external appearances of two peoples’ gestures might
look identical, but the characteristic EMG signals are dif-
ferent due to involved muscle strength. Placed-sensor EMG
acquisition approaches, which measure EMG signals from
the skin’s surface directly over specific arm muscles, allow
for effective frequency-domain EMG analysis due to the
unique frequency composition of each muscle’s EMG [39].
Since the acquisition approach used here is, however, based
on randomly-located sensors, frequency-domain speciali-
sation is ineffective. Hence time-domain analysis is used
[2], [33], [35]. We propose to use two such features to dif-
ferentiate users from one another:

« Band Power (BP) estimates the average power applied
by the user in an EMG signals. It varies according to
muscle strength within various movements [40], measur-
ing the average absolute square value of the EMG signal
amplitude in a segment [41]:

1 N
=52 WP (M
n=1

where x [1] represents n sample in an EMG signal and
N denotes length of the segmented EMG window.

VOLUME 9, 2021

+ Root absolute Sum Square (RSS) estimates non-fatigue
in muscle contraction levels during movement [2], [40]:

N
RSSy= | Y lx[nl? @

n=1

Given an EMG signal segment Xy € RV*3 - where in
this case N = 256 - each feature is derived from each
window acquired from each sensor to result in a feature
vector f, € R®, with the composite of the two vectors
f, € R!® derived by concatenation. The resulting feature
vector f, is considered as a unique biometric feature type
to differentiate subject’s identity. The variation in the nor-
malised amplitude for these features, across each channel for
each wrist-hand movement is summarised in Figure 3.
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FIGURE 3. Feature amplitude variation based on different wrist-hand
movements.

C. FEATURE PROJECTION AND CLASSIFICATION

Feature projection reduces the dimensionality of the feature
vectors by projection onto a lower-dimensional space via
a mapping function [40]. Linear mapping is optimum for
two-class separation [42], which holds for our system since
each user is classified as either authenticated or not authen-
ticated. Thus, linear models are generally preferred due to
higher reliability in discriminating unseen cases in binary
class separation [43]. The projected features are subsequently
classified using a feature classification approach. Using area
under the operating characteristic curve (AUC) to measure
the degree of separability to which the model is capable of
distinguishing between classes, AUC metrics for different
classifiers with respect to different linear projection schemes
are given in Table 1.

The LDA projection based Multi-layer Perceptron (MLP)
and the Radial Basis Function (RBF) neural network clas-
sifier shows higher AUC values. The LDA projection with
MLP is chosen over RBF neural network based on lower
complexity within our proposed system. The number of hid-
den layers (n = 3) within MLP was selected based on the
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FIGURE 4. Proposed EMG biometric verification system.

TABLE 1. Biometric verification system performance based on different
projection and classification techniques.

Decision trees | MLP | Polynomial-SVM* | RBF-NN**
PCA 0.9079 09135 09117 09131
ICA 0.8948 0.9028 0.9042 0.9029
LDA 0.9087 09162 0.9138 09167

*For SVM, the polynomial kernel was linear. **For RBF-NN, the
parameters was selected based on k=5-fold cross-validation

empirical observation of the error rate as the number of layers
was varied. For a range of 10 to 30 neurons, the twenty-two
neurons configuration was selected based on optimum veri-
fication performance evaluated from k-fold cross-validation
(k = 5). The output layer has two neurons, one each to
indicate authenticated/not authenticated. The resulting sys-
tem configuration is illustrated in Figure 4.

D. SYSTEM CONFIGURATION

To train the system, a subset (approximately 50%) of each of
the three datasets are used

o Extracted: the first week’s recordings (20 sessions with
160 windows per movement) is used for training

o Raurale: 10 sessions (30 windows per movement)

o Angeles: 3 sessions (14 windows per movement)

Each window is 256 samples and from each is derived
f, € R™. These vectors are derived from each channel -
where a channel corresponds to the data emanating from a
single EMG sensor - separately. Thus, for subject enrollment,
20 sessions of recorded data produces a total of j, = 25600
feature vectors per subject; 10 sessions from the Raurale
dataset produces j, = 2400 feature vectors per subject and
3 sessions from the Angeles dataset produces j, = 336
feature vectors per subject. Similarly, j,-feature vectors are
evaluated in same proportion as false subject class. Hence
the training data set for each subject is derived as D, €
RUvHI*hy: 4 clags label vector ¢, € RUHY for each subject
is included for the purposes of training.

12260

Training the LDA derives the following parameters:

1) Mean feature-vectorlliV € R™ of Dy;

2) Matrix of eigenvectors E, € RPv*Mv where py = 8

of Dy;

3) Scatter feature projection matrix L, € RIV*Pv of Dy;

4) Vector of class labels ¢, € R¥¥ representing Dy ;

5) Vector e, € RPY of sorted eigenvalues of Dy;

The LDA-derived scatter matrix Ly is also used to train
the MLP. The MLP weights and bias are initially drawn
from a uniform distribution with a mean and variance of 0
and 1, respectively. The learning process terminates when the
absolute rate of change in the average squared error (6) per
iteration was sufficiently small (6 < 0.1) [44].

E. EVALUATION - ONE-TIME VERIFICATION

The trained model is tested from the remaining unseen data
from each of the three datasets. Algorithm 1 outline the
process of one-time verification of a user based on their EMG
Xy € RV*¢_ This is interpreted as a set of N = 256 sample
windows from each of the ¢ = 8 EMG channels. These are
combined with eigenvectors E, and mean feature vector f,
into an output vectoryy indicating verification or otherwise.

Algorithm 1 EMG Verification Algorithm

Input: Xy, f,, E,
Output: y,
c<«1:8;
for each x, € RN do

as =Y x(n)l;

BP = as’/N;

RSS = /BP;

f. = [BP, RSS];
end for
Compute feature vector f, = [}, f», f5, - - - £.];
Compute deviation in feature vector f, = f, — f,;
Analyse project class vector €, = f, x ET
Evaluate ¥y from trained MLP parameters from e/,;

N 7 T N R SR

-
[
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Initially an EMG window is extracted from each of the
¢ = 8 channels x, € R (line 2) and the features are
evaluated. The sum of absolute value as (line 3) is derived
from x, to extract BP feature (line 4) and root mean square
RSS feature (line 5). The resulting feature vectors f, € R?
(line 6) from each of ¢ = 8 channels are concatenated into
f, € R'° (line 8). The deviation in feature vector f, (line 9) is
evaluated to derive projected class vector €}, € R is derived
from f, and E, (line 10). The resulty, € R? is evaluated from
the trained model parameters from e, (line 11).

Since verification occurs only once, a single wrist-hand
pose - that with the highest verification accuracy - can be
used; users hold that pose for a short period of time whilst
being identified. The major questions concern the selection
of pose and the duration for which it should be held.

Average verification accuracy across three different
datasets for each pose based on the feature set f, with LDA
projection and different feature classification techniques are
detailed in Table 2. The hyper parameters for classifiers
are selected from 5-fold cross-validation techniques in the
training dataset. The average classification accuracy for MLP
and RBF-NN classifiers shows higher performance com-
pared to decision tree and polynomial-SVM classifiers. The
MLP classifier before LDA projection is chosen within our
system pipeline based on lower complexity. When consid-
ered window-by-window, wrist pronation is the least reliable
movement, with an average accuracy of 84.40% across all
three dataset. Hand close and wrist extension poses show
most verification promise, with average accuracies of 95.71%
and 93.41% respectively. Considering all eight wrist-hand
poses provide an average accuracy of 91.66% is achieved.

TABLE 2. Verification accuracy with LDA and different classifier across
different movements.

Verification Accuracy (%)

Movements | Decision trees MLP SVM  RBF-NN
Hand Open 94.46 92.82  90.97 92.29
Hand Close 89.35 95.71  94.15 96.28
Wrist Flexion 91.48 90.79 9242 90.28
Wrist Extension 88.28 93.41 92.39 93.92
Wrist Pronation 87.69 8440 85.89 84.19
Wrist Supination 89.63 90.96  91.58 91.26
Wrist Ulnar Flexion 91.05 9323 92.11 93.36
Wrist Radial Flexion 90.26 91.98 91.53 92.05
Average 90.28 91.66 91.38 91.70

To reduce the number of errors, majority-voting, i.e. ver-
ification based on the results of multiple EMG windows,
is considered. Specifically, 5-majority configurations are con-
sidered, making decisions on the basis of five windows
respectively. The results, shown in Table 3 show improved
accuracy across all datasets, with accuracy of more than 99%
for the Raurale dataset. The limited number of training data
samples and larger number of subjects in the Angeles dataset,
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TABLE 3. One-time verification with majority voting.

Dataset | Accuracy | Precision ‘ Recall ‘ F1-score
Multi-session 97.34 96.57 98.18 97.37
Raurale et al. 99.08 98.84 99.31 99.09
Angeles et al. 81.19 79.78 85.56 81.63
Average (%) 92.54 9173 | 9435 | 9270

results in lower verification performance. Thus, the average
verification accuracy exceeds 92% for one-time authentica-
tion. Authentication in these cases is near-instant, requiring
only a single window. In the case where a short time period
(up to five windows, or approximately 2 s) can be considered,
hand-close and wrist extension can also be considered.

The genuine and imposter score vectors are used to produce
the Receiver Operating Characteristic (ROC) curve which
shows the rate of false acceptance against the false rejection.
The ROC curves for each dataset are shown in Figure 5.

o e
=N %o
T

<
~

1-False Rejection

0.2

Multi-session
Raurale et al.
Angeles et al.

0 0.2 0.4 0.6 0.8 1
False Acceptance

FIGURE 5. Per-dataset ROC for Biometric Verification System.

F. EVALUATION - ON-GOING VERIFICATION

On-going verification repeats periodically; we analyse the
performance of this approach based on re-verification
intervals of 1024 samples (approximately 5 seconds),
2048 samples (approximately 10 seconds) and 3072 samples
(approximately 15 seconds). Since it is not feasible to insist
that the user repeat the same wrist-hand pose with these
frequencies, on-going verification required a/l movements to
be considered. Under this condition and verification based on
a single window, the ongoing re-verification accuracy across
all sixty-five users performing eight wrist-hand movements
in majority voting configuration is illustrated in Figure 6.

As this describes, the average accuracy varies between
79% to 98% for a 1024 sample interval across different
dataset. With a 3072-sample interval, the average accuracy
of over 93% is observed from all three dataset.

The Equal Error Rate (EER) is used to measure accuracy
by gauging the point where False Acceptance Rate (FAR) and
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FIGURE 6. On-going verification accuracy across all users in different
dataset based on different time-frame interval. The dots represent
average values, thick lines represents the inter-quartile range, and thin
lines represent the accuracy over all subjects.

False Rejection Rate (FRR) equal one-another. This is shown,
for all users for both one-time and on-going verification
in Figure 7.

(a) One-time verification.
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FIGURE 7. Biometric verification performance in different system modes.

Further, the average verification performance across each
of three dataset is analysed for both modes as quoted
in Table 4. The performance parameters are compared with
the existing state-of-the-art in EMG and ECG biometric ver-
ification system in order to justify the proposed system’s
capability.

The average EER value from all three datasets for one-time
and on-going verification system evaluated as 16.34% and
15.98%. The proposed verification system in both modes
provides higher accuracy than the Belgacem et al. [21] EMG
verification approach. The state-of-the-art ECG based verifi-
cation approaches [19], [20] show superior performance to
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TABLE 4. Biometric verification performance comparison.

Systems Subjects | Accuracy (%) | EER (%)
Proposed | One-time 65 92.54 16.34
System On-going 93.26 15.98

Hammad et al. [19] 455 98.94 3.65
Hammad et al. [20] 390 99.06 1.04
Belgacem et al. [21] 60 90.00 -

the proposed EMG-based system. This is to be expected -
an ECG signal usually has a more consistent and stable
behaviour than the highly dynamic EMG which varies in
form significantly between users, the wide range of move-
ments permissible by this approach. However, this approach
is focused on systems where EMG is the sole signal via which
users can be authenticated and it is the first to demonstrate
effective performance in this regard.

IV. EMG BIOMETRIC IDENTIFICATION SYSTEM
Authentication does not individually identifying users, but in
many cases this may be required. This section analyses the
use of EMG signals in this identification process.

A. AMPLITUDE NORMALISATION AND FEATURE
EXTRACTION

Every person has their own unique muscle strength, man-
ifest as varying EMG amplitudes for different wrist-hand
movements [2], [33]. Different muscles show different ampli-
tude levels during different movements [33], [34]. Amplitude
normalisation forms an average amplitude for each person
based on their varying EMG amplitude signalling range.
The average amplitude expresses the power involved at that
instant [40]. Mean normalisation is used to normalise the
average of segmented EMG signal [45] and is expressed as,

sy=—am )

B
= 2 [x[nl|
N n=1

Further, the feature is extracted from the normalised signal
in order to derive a unique value for each person. Root sum
square (RSS) is used to represent the muscle contraction level
during movement [2], [46], giving a different scaling for every
person. It is expressed as [46],

N
sess = | Y Is[nl 2 &
n=1

where s[n] represents the normalised signal. The sggs coeffi-
cient evaluated from each channel are concatenated to form
a feature vector vector f; € R®. The value for each feature
coefficient is evaluated from EMG signals for each person
as the mean feature value from eight wrist-hand movements.
The feature vectors combine via projection and classification

to help distinguish different subjects more precisely.

VOLUME 9, 2021



S. A. Raurale et al.: EMG Biometric Systems Based on Different Wrist-Hand Movements

IEEE Access

Feature Extraction Feature Projection Feature Classification
RSS - KFD RBF Network o| Decision Identified
Feature " Projection 7| Classifier N Making Person
i Ci yi
) A Feature N Projected 4 Classified
Normalised vector data output Evaluation
signal ;
EMG Sn m®, Ei, Ki Scatter Parameters Learning
EMG Signal segment Parameters Matrix
1 7 XN
e — Amplitude KFD Li .| RBF Network
i Normalisation Learning Learning

FIGURE 8. Proposed EMG Biometric Identification system.

B. FEATURE PROJECTION AND CLASSIFICATION

Linear mapping leads to poorer between-class separation
in multi-class analysis [47] and non-linear model structures
consisting of arbitrarily shaped clusters manifolds leads to
better multi-class analysis, and is preferred to avoid class
overlapping [48]. The non-linear polynomial Kernel Principal
Component Analysis (KPCA) [49] and Kernel Fisher Dis-
crimination (KFD) analysis [50] have been successively used
for projecting multi-class features. Both non-linear projection
schemes are considered and are combined with different
feature classifiers. The average AUC metrics of projection
techniques with respect of different feature classification
approaches as shown in Table 5.

TABLE 5. Biometric identification system performance based on different
projection and classification techniques.

‘ Decision trees ‘ MLP! ‘ Gaussian-SVM 1 ‘ RBF-NN

KPCA \
KFD \

0.9126
0.9161

| 0.9205 |
| 09197 |

0.9116
0.9183

| 0.9228
| 0.9246

TFor MLP, same configuration is used as of Section III-C. 1 For SVM, the
gaussian kernel was RBF and hyper parameters were selected based on
k=5-fold cross-validation.

The RBF neural network with KFD projection analysis
shows highest AUC and thus are selected for the system
pipeline. The RBF neural network is configured with two
hidden layers of ten and eight RBF nodes, selected based on
the lowest learning error analysed as the number of layers and
nodes combination was varied within k-fold cross-validation
(where k = 5) approach. Weights and bias were initialised
before training from a uniform distribution with a mean
and variance of 0 and 1, respectively. The learning pro-
cess was stopped when the absolute rate of change in the
average squared error per iteration was sufficiently small
(0 < 0.1) [44]. The output layer has sixty-five nodes cor-
responding to each validated person. While in system evalua-
tion phase, the maximum output of the RBF node in the output
layer was selected as the identified person for the provided
KFD feature subspace. Thus, the overall proposed EMG
biometric identification system architecture is summarised
in Figure 8.
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C. SYSTEM EVALUATION

During training, each 256-sample window is amplitude nor-
malised and an RSS feature vector fj € R® (¢ = 8 as
per (4)) derived from the amplitude normalised signal sy .
For training, three data sources are again used - the first
week’s 20 recorded sessions (1280 windows per session from
eight movements) is combined with 10 sessions (240 win-
dows per session) in the Raurale datset and 3 sessions
(112 windows per session) in the Angeles datset. Thus, a total
of 25600 feature vectors per subject are retrieved from the
multi-session dataset, 2400 per subject from Raurale dataset
and 336 feature vectors per subject from Angeles dataset.
This results in a training data frame D; € R/i*C where,
Jji = 168800, followed by the corresponding column class
label frame defining each feature data class in D;. This is used
to train the KFD model for derivation of:

1) Mean feature-vector mfb € R of Dj;

2) Matrix of eigenvectors Ej € RPi*¢ (p; = 8) of Dj;

3) Matrix of kernel feature coefficients K; € RPi*¢ of Dy;
4) Matrix of scatter feature projection L; € R’*Pi of Dj;
5) Vector of class labels ¢, € Rii representing D;;

6) Vector e; € RPi of sorted eigenvalues of Dj;

While training the RBF neural network, the derived scatter
matrix L; from KFD analysis is used with that of weights and
bias RBF analysis in the graph.

During evaluation, accuracy is tested on trained RBF net-
work parameters with the remaining session data by eval-
uating a feature vector and its projected class vector from
KFD analysis parameters. Algorithm 2 shows the steps in
translating the segmented input signal Xy € RV*¢ (N = 256
window for each of the ¢ = 8 EMG channels), Ej and f;
into an output vector y; € R’ indicating i = 65 person’s
identity.

The EMG segment is extracted from each of the ¢ = 8§
channels x. € R? (line 2) with the mean u derived from x,
(line 3). The normalised vector sy € RN from p and x.. for
the N iteration is derived in line 5. The absolute sum value
ss is derived from the normalised matrix sy in line 7, and the
RSS-feature vector fi € R¢ from ss in line 8. The deviation
of feature vector f; € R€ is calculated from f; and mi<I> (line
10), followed by projection class vector €/ € R (line 11).
Finally, the output y; is evaluated from e{ (line 12).
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Algorithm 2 EMG Identification Algorithm
Input: Xy, m?, E;, K;
Output: y;

1c<«1:8;

2 for each x, € RN do

3 u:ZnNzlx(n)/N;

4 forn=1toN do
5 Sp = x(n)/u;
6 end for

7 ss = ZHNZ] [s(n)[;
8 fi(c) = /ss2/N;
9 end for

10 Compute deviation in feature Vectorf; =f; — mi‘b;

11 Analyse project class vector €] = f{ x [E] x Kil;
12 Evaluate y; from trained RBF parameters from e{;

The remaining 60 sessions from the multi-session dataset,
10 sessions from Raurale dataset and 3 sessions from
Angeles dataset are tested. Identification performance for
single-window with 5-majority voting on the feature set
f; with selected KFD-RBF classification parameters from
5-fold cross-validation techniques are itemised in Table 6.

TABLE 6. One-time identification performance for different system
configurations.

Configuration ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-score

| 6326 | 9035 | 7442
| 6518 | 9125 | 7605

Single-window ‘ 90.58

Majority voting | 91.28

With 5-majority voting, identification accuracy improved
by 0.7% compared to single-window. False identification was
observed in around 8% of cases. With the set majority voting
configuration, the identification performance per movement
is evaluated as illustrated in Figure 9. Identification via wrist
extension and hand close movements shows more than 95%
accuracy, with wrist pronation the poorest at 87.77%. For
optimum one-time biometric person identification, the hand
close and wrist extension could be preferred choice.

D. EVALUATION - ON-GOING IDENTIFICATION
On-going identification performance is analysed for
re-identification intervals of 1024 samples, 2048 samples
and 3072 samples. Based on this configuration, the ongoing
re-identification accuracy across all ten users performing nine
wrist-hand movements are described in Table 7.

The re-identification accuracy varies between 90% for
a 1024 sample interval and with 2048, 3072-sample inter-
val gap, the re-identification accuracy is above 91%. The
maximum re-identification accuracy of 92.08% is achieved
with 3072-sample interval in 5-majority voting configuration,
thus, considered optimal as regards identification accuracy.
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Wrist pronation

Wrist flexion -

Wrist supination |-

Hand open

Wrist radial Flexion |-
Wrist ulnar flexion
Hand close —  ———

Wrist extension |- o -

82 84 86 88 90 92 94 96 98
Accuracy (%)
FIGURE 9. Identification accuracy across different movements. The dots

represent average values, thick lines represents the inter-quartile range,
and thin lines represent the accuracy over all subjects.

TABLE 7. On-going identification accuracy for different system
configurations.

System
Configuration 1024 2048 3072

Time-frame gap (K)

Single-window ‘ 90.92 91.54 91.67
Majority voting ‘ 9139 9192 92.08

The EER for the different system modes are compared with
the state-of-the-art EMG identification systems, as itemised
in Table 8. It is observed that the proposed system in both
modes provides the identification accuracy of over 91% with
EER value of around 17%. This is not only highly desirable
for biometric identification in practice but also the one of
highest when compared with leading EMG-based biometric
identification approaches according to number of subjects
considered [22]-[24].

TABLE 8. Biometric identification performance comparison values.

Systems Subjects | Accuracy (%) | EER (%)
Proposed | One-time 65 91.28 17.28
system On-going 92.08 16.42

Kim et al. [22] 28 86.66 -
Suresh et al. [23] 49 73.33 -
Chantaf et al. [24] 10 95.00 -

V. SYSTEM IMPLEMENTATION
This section considers whether the proposed biometric ver-
ification and identification approaches can be realised in
real-time within the computation power of EMG wearables
such as that used for acquisition in this paper.

For real-time behaviour, processing time should be less
than the window increment, which is 128 ms in our case.
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To influence real-time computation on a battery-operated
embedded processor, the biometric systems are deployed on a
1.4 GHz ARM Cortex-A53 Raspberry Pi 3 B+ platform. The
biometric authentication systems C++ code is deployed in
the Raspberry Pi 3 B+ platform build with Broadcom 64-bit
ARM Cortex-AS53 Processor. The processing times of each
operation are quoted in Table 9.

TABLE 9. ARM Cortex A-53 processing time metrics for Biometric systems.

(a) Biometric verification system (b) Biometric identification system

Operations | time (ms) Operations | time (ms)
BP | 0.24 Normalisation | 0.41
RSS, | 0.16 RSS; | 0.23
LDA | 0.21 KFD | 0.36
MLP | 0.38 RBF | 0.52
Others | 0.07 Others | 0.09
Total | 1.06 Total | 1.61

As illustrated in Table 9, the proposed biometric verifi-
cation approach executes in 1.06 ms and 1.61 ms for iden-
tification on the ARM Cortex-A53 which is again 120 and
79 times lower enough to process each 128 ms EMG win-
dow interval in real-time. Further, when combined with
the wrist-hand pose identification system from [37]. The
wrist-hand pose identification system [37] with similar
system configuration, shows executing an EMG segment
in 9.75 ms on the ARM Cortex-A53. Thus, the combined ver-
ification/identification and pose identification system would
execute in 10.81/11.36 ms - well inside the 128 ms EMG
window for real-time computation.

VI. CONCLUSION

This paper proposes a first-in-kind biometric system which
uses forearm EMG acquired as a result of wrist-hand move-
ment to enable accurate verification and identification using
time-domain pattern recognition. It acquires EMG from
randomly-placed sensors. It employs time-domain features
followed by a combination of LDA-based projection of the
resulting feature vector and MLP classification of the result-
ing data into true or false categories. The one-time verifi-
cation system show over 92% accuracy with 27.79% EER
evaluated across all considered wrist-hand movements with
S-majority voting. Further, the progressive on-going verifi-
cation system performance shows up to 93% re-verification
accuracy for 15.36 s time-frame interval, removing the
prospect for unauthorised use.

When used for identification, 256-sample EMG segments
are amplitude normalized and form a time-domain feature
which is projected using KFD and classified by RBF-NN.
Identification was 91% accurate with 17.28% EER in one
time-verification and 92% accurate with 16.42% EER in
progressive on-going identification for all eight wrist-hand
movements. When deployed on ARM Cortex A-53 embedded
processor representative of the kind used in EMG wearable
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such as that used for acquisition in this paper, the pro-
posed authentication system requires 1.06 ms to execute per
256-sample EMG window, with the identification system
requiring 1.61 ms. Both systems add negligible overhead
where both wrist-hand movement detection and verification
or identification need to be performed in a single window;
the total run-time is still well inside the 128 ms target. Thus,
the proposed EMG biometric systems shows advantage for
real-time realisation on battery-operated hardware platforms
without repeating the same wrist-hand pose.
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