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ABSTRACT We propose an end-to-end deep learning architecture for 3D reconstruction from
high-resolution images. While many approaches focus on improving reconstruction quality alone, we pri-
marily focus on decreasing memory requirements in order to exploit the abundant information provided by
modern high-resolution cameras. Towards this end, we present HighRes-MVSNet, a convolutional neural
network with a pyramid encoder-decoder structure searching for depth correspondences incrementally over
a coarse-to-fine hierarchy. The first stage of our network encodes the image features to a much smaller
resolution in order to significantly reduce the memory requirements. Additionally, we limit the depth search
range in every hierarchy level to the vicinity of the previous prediction. In this manner, we are able to produce
highly accurate 3Dmodels while only using a fraction of the GPUmemory and runtime of previous methods.
Although our method is aimed at much higher resolution images, we are still able to produce state-of-the-art
results on the Tanks and Temples benchmark and achieve outstanding scores on the DTU benchmark.

INDEX TERMS Convolutional neural network, dense 3D reconstruction, multi-view stereo.

I. INTRODUCTION
Multi-View Stereo (MVS) attempts to reconstruct a highly
detailed 3D model of an observed scene from images with
different viewpoints. The prerequisites are known intrinsic
and extrinsic camera parameters which can be obtained via
Structure from Motion (SfM) (see Fig. 1). MVS has been
a well studied problem for decades and traditional meth-
ods based on geometric context [2], [6], [7], [26] achieved
great success when reconstructing scenes with Lambertian
surfaces, especially in terms of accuracy. However, they
struggle with the reconstruction of low-textured, specular,
and reflective regions and in terms of completeness. Further-
more, they usually take a very long time to establish the 3D
correspondence and larger scenes can take several hours to
process.

To address these issues more recent approaches [12], [15]
use deep Convolutional Neural Networks (CNNs) which
are several times faster while also improving the overall
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FIGURE 1. Overview of the Structure from Motion pipeline. MVS attempts
to create a denser, more appealing 3d model from sparse reconstruction
information.

3D reconstruction quality of a scene. This can be mostly
attributed to the fact that learning-based methods can incor-
porate global semantic information such as specular and
reflective priors formore robust matching. Furthermore, if the
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receptive field of the CNN is large enough, poor textured
regions can be better reconstructed.

Many networks [9], [29], [33] follow the approach of
Yao et al. [32] and build a cost volume based on a plane
sweep process and variance metric to estimate a depth map
for every reference image. The cost volume is then regu-
larized by applying multi scale 3D convolutions, which is
an extremely memory intensive operation, growing cubically
with the image resolution. This issue has been addressed
by several subsequent works by either sequential regulariza-
tion [33], reducing the depth dimension of the cost volume [9]
or working with a sparse cost volume [35].

FIGURE 2. (a) Comparison between one of the best performing methods
on the DTU dataset CasMVSNet (top) and Ours (bottom). (b) Although we
only use a fraction of the GPU memory and runtime, we can still
reconstruct small details in the 3D model.

However, even these latest MVS networks are already
at the limit of current consumer grade GPU memories
when using an input image size of only 2 Megapixels (see
Fig. 2). With the unprecedented ubiquity of inexpensive
high-resolution cameras (e.g. phones), we saw the need for
an efficient network that is able to exploit this abundant
information. The value of high-resolution data to increase
accuracy has been explored for the binocular stereo case by
Yang et al. in their HSM-Net [30]. They suggest to search for

correspondences incrementally over a coarse-to-fine hierar-
chy and achieve impressive results on the respective stereo
datasets [22], [24].

In this article, we propose HighRes-MVSNet which com-
bines an hierarchical correspondence search through feature
pyramid encoding with the cascading cost volume formula-
tion. Our main contributions can be summarized as follows:
• We propose a novel MVS network architecture that uti-
lizes insights from algorithms designed for the binocular
stereo case to address the issue of 3d reconstruction from
high-resolution images.

• We achieve state-of-the-art results on challenging
benchmark datasets while significantly reducing GPU
memory requirements and runtime. In particular, our
method is at least 8× faster while requiring 6× less
memory when compared to other MVS methods using
the same input image resolution.

• To the best of our knowledge, this is the first MVS net-
work that can effortlessly process input images of 12MP
on a consumer grade GPU (e.g. NVIDIA GeForce GTX
1080 Ti).

The remainder of this article is organized as follows:
In Section II, we present an overview of related works and
their achievements. Subsequently, we explain our method in
detail in Section III. Implementation details about param-
eter choices can be found in Section IV. We evaluate our
method on well known datasets and conduct experiments in
Section V. Finally, we conclude our findings in Section VI.

II. RELATED WORK
Traditional MVS methods use handcrafted features and the
projection relationship between multiple views to optimize
the depth value of each pixel. An example is Colmap by
Schoenbergerand and Frahm [25], Schoenberger et al. [26]
which performs well in a multitude of scenarios ranging from
public benchmarks to internet photo collections. However,
one of the major downsides of such traditional methods is
their long processing time. The classic patch-match approach
can take several minutes to estimate a depth map for a single
image.

An alternative to traditional handcrafted features is to
use learned features. In recent years, learned features have
reached an unprecedented performance in image detection,
segmentation and classification tasks [5], [8], [11], [19], [23].
Pioneered by Han et al. [10], the learning approach has
also been applied to the two-view stereo case. Zbontar and
LeCun [36] and Luo et al. [21] extract features with siamese
networks and build a traditional cost volume followed by
classic post-processing. Subsequent methods [3], [16], [17]
apply 2D/3D convolutions to regularize the cost volume
and thereby replacing the post-processing step. In particu-
lar, Yang et al. [30] propose an encoder-decoder architec-
ture which searches for correspondences incrementally over
a coarse-to-fine hierarchy. Such end-to-end learning algo-
rithms remarkably boosted the performance and outperform
traditional stereo approaches on the KITTI benchmark [22].
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FIGURE 3. The proposed network architecture of HighRes-MVSNet. Given a set of images, features are extracted on 4 different scales in
the encoder part utilizing pyramid pooling (PP). Then we assemble a cost volume at the coarsest scale (C4) through differentiable
homography warping and the variance cost metric. Next, the decoder produces 2 outputs: 1) A cost volume, which will be upsampled and
fused with the raw cost volume of the next stage. 2) A classified cost volume, which through depth regression yields a depth map to
initialize the feature volumes in the next stage. This process is repeated for 4 stages until we get our final output depth map.

Inspired by the success of learned features and cost volume
regularization for the stereo case, MVSmethods picked up on
this idea. First approaches [14], [15] use a volumetric scene
representation where the cost volume is built upon. A com-
mon drawback here is that due to memory requirements
only small scale reconstructions are possible. Yao et al. [32]
propose to compute the variance of cost volumes and produce
a depth map for one reference image at a time. Depth maps
can then be fused into a single point cloud. This allows for an
adaptive reconstruction of a large scene.

However, even this one image at a time approach has
severe memory issues when it comes to higher resolution
images. To combat the high memory consumption of 3D cost
volumes, several attempts have been made: R-MVSNet [33]
tackles the problem by sequentially regularizing the 2D cost
maps along the depth dimension via the gated recurrent unit
(GRU). Nevertheless, this comes at the cost of efficiency
and increases the runtime significantly. CasMVSNet [9]
addresses the issue by building the cost volume upon a feature
pyramid encoding geometry. Then the depth search range can
be narrowed down by the prediction of the previous stage thus
decreasing the depth dimension of the cost volume. In their
Fast-MVSNet [35], Yu and Gao explore a sparse-to-dense
approach: They only construct a sparse cost volume to learn
a sparse, high-resolution depth map and densify local regions
afterwards.

Even though the above mentioned networks achieve great
results on public benchmark datasets [1], [18], they are easily

brought to their limits when using input data with a resolution
of over 2 Megapixels. Moreover, when it comes to the recon-
struction of a larger dataset the seemingly small processing
time will add up.

We combine several insights of these previous works to
create HighRes-MVSNet, a network that is able to signifi-
cantly reduce memory requirements and runtime while still
achieving superior accuracy.

III. METHOD
We introduce HighRes-MVSNet, a deep CNN that is espe-
cially designed to handle high-resolution images as input.
This is done by encoding features from the input image to
different coarser scales. Afterwards, we utilize the cascading
cost volume formulation [9] to predict the depth for every
image in a coarse-to-finemanner. Figure 3 shows an overview
of our architecture.

A. FEATURE EXTRACTION
We follow [30] in using an encoder-decoder architecture with
skip connections and pyramid pooling (see Fig. 4). In the
encoder, the network first applies 3 convolutions with stride 2
in the first layer, followed by a pooling layer and another
convolutional layer with stride 2. This is done to already
reduce the feature volume size to 1

8 of the input while still
taking into account all of the given information.

We then apply a unet architecture to extract features at
4 different scales: 1

8 ,
1
16 ,

1
32 and 1

64 as the coarsest scale
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FIGURE 4. A detailed overview of our encoder architecture. The input is
aggressively down sampled at the beginning through several
convolutions and a pooling layer. A U-net architecture is then applied to
extract features at different scales. The final convolution layer in each
stage is used to project the features to a lower dimensional subspace to
control the size of the output feature volume. An upscaling by a factor
of 2 is indicated by the green arrows.

at level 4. At every scale, the features are projected to a
lower dimensional subspace to control the size of the resulting
feature map.

As in [30] our reasoning behind this approach is twofold:
1) Through this coarse-to-fine design principle, we drastically
increase the receptive field. 2) Memory requirements are
severely reduced by encoding the high-resolution image to
1
8 of its original size at the first output stage.
This promising concept has successfully been used in

two-view stereo, but to the best of our knowledge has not been
extended to MVS.

B. COST VOLUME FORMULATION
AsmanyMVS networks before [9], [29], [31], [33], we apply
the differentiable homography warping operation [32] to
build 3D cost volumes from the previously extracted feature
maps at every scale. In its essence, this operation warps
all feature maps into different fronto-parallel planes in the
reference camera frustum. This process is similar to that of the
classical plane sweeping stereo and the depth range is usually
determined from the sparse reconstruction. The warping is
defined by the homography:

Hi(d) = Ki · Ri ·

(
I −

(t0 − ti) · nT0
d

)
· RT0 · K

T
0 (1)

where Hi(d) is the homography between the ith feature map
and the reference feature map at depth d . Moreover, Ki,Ri, ti
refer to the camera intrinsics and extrinsics with index 0 indi-
cating the reference view, and n0 is the principle axis of the
reference camera. Since for the reference feature map itself
the homography is the identity matrix, the original feature
map is repeated on every plane.

Next, we can aggregate N feature volumes Fi to one cost
volume C by using a variance based cost metric:

C =

∑N
i=1(Fi − F̄i)

2

N
(2)

where F̄i is the average volume among all feature volumes.
We perform these operations on all of our feature extraction

levels to acquire 4 cost volumes, each corresponding to a
different scale.

C. COST VOLUME REGULARIZATION
Next, we decode (i.e. filter) our cost volumes in a coarse-
to-fine manner and fuse each output with the finer scale raw
feature volume. This is in contrast to [9], where the cost
volumes themselves are not propagated.

1) DECODER
We adapt the decoder structure used in [30] with 4 decoder
blocks, each responsible for the output of our 4 stages. Each
decoder block consists of 6 3D convolution blocks which in
turn contain two 3D convolutions with a residual connection.
As in the feature extraction (encoder) part, pyramid pooling
is then used to make sure sufficient global context for the
high-resolution input is captured. The decoder block then
generates 2 outputs: 1) A cost volume, which will be fused
with the input of the next stage. 2) A classified cost volume,
which when put through a softmax layer and depth regression
yields a depth map to initialize the feature volumes in the next
stage. The classification is done via a 3D convolution layer,
followed by a ReLU layer and another 3D convolution layer
whichmaps every feature to 1 channel. By applying a softmax
layer afterwards this can be seen as the probability for every
depth hypothesis.

In the coarsest stage (i.e. stage 4), we generate the output
only from the raw cost volume which covers the whole depth
range of the input scene in only a few hypothesis planes. Sub-
sequent decoder blocks use the bilinearly upsampled output
fused with the corresponding raw cost volume.

2) CASCADING COST VOLUMES
Following [9], we build these ensuing cost volumes upon a
narrower depth range based on the previous prediction using
the cascading cost volume formulation. The main idea behind
this concept is that if we have a network that estimates depth
in a coarse-to-fine manner, we can take the coarse prediction
as a prior for the next stage and only search hypothesis
planes in its vicinity. This controls the cost volume size and
drastically reduces memory requirements. One drawback of
this method is that it is very dependent on the coarsest depth
estimate. If the coarsest estimation is too far off the real
depth value, there is no way for the network to predict the
correct depth, resulting in a large error. This can especially be
observed at object borders, where depth at the coarsest level
is often ambiguous. However, if we later fuse multiple depth
predictions into one point cloud the issue does not persist,
since the wrong predictions are not consistent.
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FIGURE 5. Example depth map outputs of our network at all 4 stages. Note, how we already have a good rough estimate at the
coarsest stage (stage 4). The depth map gets smoother and smaller details appear throughout the finer stages.

We estimate the depth on every scale by upsampling the
classified cost volumes to the desired output size before using
depth regression (see Fig. 5).

D. LOSS
To regularize the network, we apply a multi-scale loss:

L = λ1L1 + λ2L2 + λ3L3 + λ4L4 (3)

with

λ1 + λ2 + λ3 + λ4 = 1 (4)

where Lk refers to the loss at stage k and λk is the cor-
responding loss weight. To be consistent with the encoder
formulation, L1 represents the loss on the finest scale, while
L4 is the loss on the coarsest scale. To account for the different
scale levels we set:

λn =
1
4
λn−1 (5)

We calculate the loss at every stage as the mean absolute
difference between predicted and ground truth depth map.
This is compliant with the loss formulation used in [30].

IV. IMPLEMENTATION
We implement our HighRes-MVSNet in Pytorch. Our net-
work is flexible to take in any input size as long as both,
height and width, are divisible by 64. This is due to our
coarsest scale being 1

64 of the input size. Our dataloader
will take care of this and also adjust the intrinsic camera
parameters accordingly. The output size is also adaptable,
since the network uses a cost volume scaling in its final stage.
Through empirical evaluation we found that an output size
that is equal to 1

2 the input size is the most practical as it yields
the best evaluation results while the point cloud fusion does
not take an exaggerate amount of time.

A. DEPTH HYPOTHESIS PLANES
For every input image we have to define a depth range
between the minimum depth dmin and the maximum depth
dmax . We can usually extract this information with a Structure

from Motion pipeline. In SfM, camera poses of images are
recovered by matching sparse features. From the sparse fea-
ture information, we can determine the closest and furthest
point of interest in the image. This effectively gives us the
required depth range r .
We uniformly sample D depth hypotheses over this range.

The finest depth difference between our hypothesis planes
is then r

D . Since we are using the cascading cost volume
formulation, we only need to cover a fraction of the depth
range in every stage except stage 4, which covers the whole
depth range. Each subsequent stage will have its hypothesis
range defined by the previously predicted depth.

Let us define the number of hypothesis planes at stage k
as hk . In order to cover the whole scene hk has to satisfy:

ik+1 ≤ ik · hk (6)

where ik is the depth interval between hypothesis planes at
stage k ≤ 3 defined as:

ik =
r
D
· 2k−1 (7)

To get an estimate over the whole scene in the coarsest stage
we set i4 = r

h4
.

Furthermore, hk−1 can only differ from hk by a factor of
2n or 1

2n . This is due to the fact that the network has to up or
downsample the cost volume of the previous stage to fuse it
with the cost volume of the current stage.

B. TRAINING
For a fair comparison with other MVS methods, we firstly
train HighRes-MVSNet on the DTU [1] training data gen-
erated by MVSNet [32] and set D = 384. We use Adam
optimizer with β1 = 0.9 and β2 = 0.999 and set the learning
rate to 0.001. During training, we reduce the learning rate at
epochs 10, 12 and 14 by 2 and train for a total of 16 epochs.
We fix the number of input images to 3 and the input image
resolution to 1600×1152. As the number of hypothesis planes
for every stage we choose h4 = 16, h3 = 16, h2 = 16, and
h1 = 8. The training takes approximately 5 days with a batch
size of 2 on an NVIDIA GeForce GTX 1080Ti.
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We also train our network from scratch on the recently
released BlendedMVS [34] high-res dataset. This dataset
offers 113 diverse scenes and images come at a resolution
of 2048 × 1536. We use the same hyperparameters as for
the DTU dataset, except for D = 512, h4 = 16, h3 = 32,
h2 = 16, and h1 = 8. Furthermore we replace the batch
normalization (BN) [13] with group normalization (GN) [28]
as suggested in [34]. We further discuss this in Section V-C.

C. POINT CLOUD FUSION
Our network outputs a depth prediction in form of a depth
map for every input image. However, depending on the image
content, many of these predictions can be outliers since the
pixel may belong to the background or an occluded area. We
therefore check for geometric consistency before projecting
every pixel into 3D space in order to obtain a dense point
cloud. We do this by projecting a reference pixel pref through
its depth dref to pixel pi in a different view and then reproject
pi through di to obtain preproj and dreproj. The depth is now
2 view consistent if it satisfies:

‖pref − preproj‖ < τ1 (8)

and

‖dref − dreproj‖ < τ2 (9)

where τ1 and τ2 are threshold values for the pixel distance
and the relative depth difference, respectively. We consider
a pixel valid if its depth is consistent in at least n views.
This number of consistent views is a parameter that can be
adapted for different scenes, but in our experience should
always be n ≥ 3.

V. EVALUATION
We evaluate our HighRes-MVSNet on the well known
DTU [1] and Tanks and Temples [18] benchmarks. Note, that
the reported scores are very depended on the point cloud
fusion algorithms and parameters used. We only use the
simple geometric verification as described in Section IV-C.

A. RESULTS ON DTU DATASET
In the case of the DTU dataset every object lies approximately
within the same distance and we set dmin = 425mm, dmax =
1065mm and D = 384 for every scene. We use the network
weights obtained from training on the DTU training set. For
the point cloud fusion we set the number of consistent views
to n = 3 and the thresholds to τ1 = 0.25 and τ2 = 0.01.
Quantitative results evaluated on the test set can be found

in Table 1. We can see that our network achieves state-of-
the-art results in terms of scene completeness, accuracy and
the overall score. In terms of GPU memory consumption and
runtime we outperform all other methods by a large margin
when using the provided image size as input (see Tab. 2).
For [4], [31]–[33] we show the values reported by [31] who
executed the networks on an NVIDIA TITAN RTX. For [9],
[35] and our method we show the values obtained ourselves

TABLE 1. Quantitative results on the DTU dataset. All scores are in mm
and represent the mean average distance (lower is better). Ours(HR)
scales the input images to a resolution of 3200 × 2368. Best results are
shown in bold and the runner-ups are underlined.

by running the official evaluation code of baselines on an
NVIDIA GeForce GTX 1080 Ti.

To show that our network can easily handle high-resolution
input, we also evaluate the dataset when scaling the input
images to a resolution of 3200× 2368 (2x original size) and
setting D = 768. We retrain the network with GN and set
h4 = 16, h3 = 16, h2 = 8, h1 = 8 due to memory constraints
in the training phase. This will improve the results at the
cost of increased GPU memory consumption (2585 MB) and
runtime (0.34 seconds/image). We attribute this to the fact
that we get finer depth estimates at the coarsest stage of our
network. Effectively, the cost volume is then built at 1

32 of
the image size instead of 1

64 . Qualitative results can be found
in Figure 6 and Figure 8.

B. RESULTS ON TANKS AND TEMPLES DATASET
To evaluate HighRes-Net on the Tanks and Temples bench-
mark, we use the weights obtained from training on the
BlendedMVS dataset. Again, we upscale the input images by
a factor of 2. Since all sequences in this benchmark consist of
many images with large view overlaps, we adapt the point
cloud fusion parameters and set the number of consistent
views to n = 5 and the thresholds to τ1 = 0.5 and τ2 = 0.01.
Table 3 shows the quantitative results on the intermediate

dataset. We achieve state-of-the-art results without the use of
any advanced depth filtering method for point cloud fusion.
The generated point clouds are shown in Figure 7.

C. ABLATIONS
To find the best network hyperparameters, we perform a set
of ablation experiments. Results are shown in Table 4.

1) NUMBER OF HYPOTHESIS PLANES
We test different numbers of hypothesis planes in each stage
and observe that this will only slightly influence the accu-
racy. As long as the requirements discussed in IV-A are met,
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FIGURE 6. Qualitative results on the DTU dataset. We can see that our method is able to reconstruct even more details than provided by the
ground truth models.

FIGURE 7. The qualitative results of the Tanks and Temples dataset.

TABLE 2. Results on the DTU dataset for an input image size of 1600 × 1152. Our method achieves comparable results with state-of-the-art methods in
terms of accuracy and completeness while being at least 8× faster and using 6× less memory with respect to the second best performances. Best results
are shown in bold and the runner-ups are underlined.

the overall score on theDTUdataset onlymarginally changes.
However, it does influence the memory consumption and
runtime, especially in the training phase, since these numbers
are directly related to the cost volume size.

2) BN vs GN
Although our network is very efficient regarding memory
requirements in the evaluation phase, it still needs a consid-
erable amount of GPU memory during training. Therefore,
we are only able to train our network with a maximum

batch size of 2. As we learn from [28], BN’s error can
increase rapidly with a small batch size due to inaccurate
batch statistics estimation. On the other hand, GN stays stable
over a wide range of batch sizes. Furthermore, GN enables
us to train on a batch size of 1, thus further decreasing
memory requirements for the training phase. We observe that
BN works slightly better when we have a more constrained
dataset (DTU). When training on the BlendedMVS dataset
though, BN will lead to invalid values due to the aforemen-
tioned inaccurate statistics estimation.
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FIGURE 8. Further qualitative results on the DTU dataset.

3) OUTPUT SCALING
The finest cost volume produced by HighRes-MVSNet is at
1
8 resolution of the input size. This is due to the fact that
in the first stage of our feature extractor, all information is

already encoded to this smaller resolution. For lower resolu-
tion images, like in the benchmark datasets, we then scale the
cost volume up to the desired output size before regressing the
depth. We find that an output scale of 0.5 uses less memory
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TABLE 3. Results on the Tanks and Temples intermediate dataset of state-of-the-art MVS and our method. Precision and recall is combined as f-score
(higher is better).

TABLE 4. Ablations of HighRes-MVSNet on the DTU dataset for an input image size of 1600 × 1152. Depth hypotheses (i.e. number of planes) are ordered
from coarse to fine (i.e. h4, h3, h2, h1). Scale refers to the corresponding output depthmap size and Prop. indicates that the cost volume is propagated
through the different stages.

while also producing a better overall score. Note, that for
high-resolution images we do not always require full scale
depthmaps to generate very accurate and complete 3dmodels
since we can still recover enough points from the lower scale
depth map.

VI. CONCLUSION
We have presented HighRes-MVSNet, a deep CNN espe-
cially aimed at high-resolution data. We control the cost
volume size by encoding features to a lower resolution and
narrowing down the depth range search through coarse pre-
dictions in the decoder stages. This allows us to massively
reduce GPU memory requirements and runtime while still
achieving state-of-the-art or even better results.

Since this network is aimed at high-resolution input,
we have to upscale the available benchmark input images in
order to receive the best results. In the future, we will look
into adapting the network structure to use finer scale cost
volumes, thus removing the need for this unnecessary input
upscaling step, to increase the accuracy on datasets like Tanks
and Temples.
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