
Received December 30, 2020, accepted January 6, 2021, date of publication January 11, 2021, date of current version January 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050625

MDPRP: A Q-Learning Approach for the Joint
Control of Beaconing Rate and Transmission
Power in VANETs
JUAN AZNAR-POVEDA , ANTONIO-JAVIER GARCIA-SANCHEZ , ESTEBAN EGEA-LOPEZ ,
AND JOAN GARCIA-HARO , (Member, IEEE)
Department of Information and Communications Technologies, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

Corresponding author: Juan Aznar-Poveda (juan.aznar@upct.es)

This work was supported in part by the AIM Project [Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional
(FEDER), Unión Europea (UE)] under Grant TEC2016-76465-C2-1-R, in part by the Fundación Séneca, Región de Murcia, through the
ATENTO Project, under Grant 20889/PI/18, and in part by the LIFE (Fondo SUPERA Covid-19 funded by the Agencia Estatal Consejo
Superior de Investigaciones Científicas CSIC, Universidades Españolas, and Banco Santander). The work of Juan Aznar-Poveda was
supported by the Spanish Ministerio de Educación, Cultura y Deporte (MECD) for the FPI Grant BES-2017-081061.

ABSTRACT Vehicular ad-hoc communications rely on periodic broadcast beacons as the basis for most
of their safety applications, allowing vehicles to be aware of their surroundings. However, an excessive
beaconing loadmight compromise the proper operation of these crucial applications, especially regarding the
exchange of emergency messages. Therefore, congestion control can play an important role. In this article,
we propose joint beaconing rate and transmission power control based on policy evaluation. To this end,
a Markov Decision Process (MDP) is modeled by making a set of reasonable simplifying assumptions which
are resolved using Q-learning techniques. This MDP characterization, denoted as MDPRP (indicating Rate
and Power), leverages the trade-off between beaconing rate and transmission power allocation. Moreover,
MDPRP operates in a non-cooperative and distributed fashion, without requiring additional information
from neighbors, which makes it suitable for use in infrastructureless (ad-hoc) networks. The results obtained
reveal that MDPRP not only balances the channel load successfully but also provides positive outcomes in
terms of packet delivery ratio. Finally, the robustness of the solution is shown since the algorithm works well
even in those cases where none of the assumptions made to derive the MDP model apply.

INDEX TERMS Vehicular ad-hoc networks, connected vehicles, vehicle-to-vehicle (V2V) communications,
congestion control, power control, rate control, reinforcement learning, IEEE 802.11p, SAE J2945/1.

I. INTRODUCTION
The transportation industry has evolved according to the
growing demand for moving goods and passengers. The num-
ber of vehicle registrations is projected to triple by 2050,
reaching 3 billion vehicles [1], stimulated by the displace-
ments required by millions of citizens in increasingly larger
and overpopulated cities [2].

In this crowded situation, future Intelligent Transporta-
tion Systems (ITS) and connected vehicles are expected
to improve safety, reducing the number of fatal events on
roads and accident severity. In particular, connected vehi-
cles exchange information wirelessly through what is called
vehicle-to-vehicle (V2V) communications [3], [4]. In turn,
V2V services rely on the exchange of periodical broadcast
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single-hop messages, called beacons, containing information
about the vehicle [5]. Data such as position, speed, acceler-
ation, steering angle, or vehicle type are part of these mes-
sages’ payload aimed at tracking and predicting the behavior
of neighboring vehicles.1 This information empowers vehi-
cles with context or situation awareness [5] and is the basis
of many safety applications, which are essential for reducing
the risk of collision among vehicles [6]–[8], among other
things. As vehicle density increases, situation awareness may
be compromised by channel congestion. Channel overload
results in high packet and information loss, a critical issue
in the case of event-related messages triggered in emergency
cases [9]. Therefore, congestion control is vital to guarantee

1In V2V communications, neighbors are usually defined as the set of
vehicles from which at least one message has been correctly received during
a given time interval.
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the safety of the drivers. Basically, it consists of limiting
the channel usage in some way (typically to 0.6), leaving
unused a certain fraction of the channel to guarantee the
timely delivery of event-driven messages.

More to the point, channel congestion can be controlled
with different transmission parameters, and a significant
number of proposals have dealt with adapting them. The
most common solutions are aimed at reducing the num-
ber of transmitted messages per second or beaconing rate,
such as [10]–[14]. Other approaches addressed congestion
by adjusting transmission power, which means varying the
number of receiving vehicles and then influencing overall
congestion [15]–[18]. These solutions focused on adjusting
a single parameter pose some challenges. On the one hand,
insufficient beaconing rates to relieve congestion may entail
a lack of situation awareness of the surrounding vehicles.
Likewise, a sharp reduction in transmission power can result
in messages reaching only a few close vehicles, failing to
reflect the real situation. That is, independent settings of
each parameter may produce a similar effect to congestion
itself, which should be avoided. In contrast, a combination
of beaconing rate and transmission power may result in a
trade-off benefitting both meaningful parameters. An optimal
allocation of beaconing rate and transmission power would
be ideal; however, the associated optimization problem is not
convex [19], making ordinary optimization methods ineffec-
tive. Recent approaches for joint optimization use Artificial
Intelligence (AI) techniques, such as Reinforcement Learning
(RL) [20], [21]. Nevertheless, most of these proposals assume
a centralized infrastructure; that is, they are better designed
for cellular networks, where in addition to vehicles, base
stations have a pre-eminent role. Furthermore, they tend to be
remarkably complex, requiring highly demanding computing
power.

In this article, we apply the Markov Decision Pro-
cess (MDP) framework, which is the basis of the well-known
RL, for joint transmission power and beaconing rate conges-
tion control. Unlike previous solutions [20], [21], the pro-
posed MDP model can be used in infrastructureless (ad-hoc)
networks, namely, with ETSI ITS-G5, incorporating a set of
simplifying assumptions. Then, the MDP model is resolved
by using Q-learning techniques. Results show that the pro-
posal is still robust even to violations of these assumptions.
The MDP model solution, known as policy, can be loaded
onto vehicles, becoming very efficient at runtime since it
only requires a table lookup search. The prescribed actions
maximize the reward function, which specifically controls
the channel busy rate (CBR) and the transmission power
used, maintaining an appropriate level of congestion. More-
over, the MDP framework allows congestion to be alleviated
in a non-cooperative manner; that is, without the need for
additional information from neighbors. Also, the proposed
algorithm implements fully distributed congestion control in
which every single vehicle contributes to reducing overall
congestion. In short, the main contributions of this research
work can be summarized as follows:

• The policy derived can be applied in a fully distributed
fashion, without the need for a centralized network
infrastructure.

• The policy is evaluated in realistic scenarios, includ-
ing those cases not satisfying the model assumptions,
thereby, demonstrating the robustness of our congestion
control method.

• It is shown that channel load is kept below a certain level
to avoid congestion, which reduces packet loss signifi-
cantly. Moreover, channel underutilization is prevented.

• The packet delivery ratio achieved is similar to other
approaches under comparison at short coverage dis-
tances but improves at long distances, which enhances
the overall level of vehicle awareness of the network.

• Finally, no information from neighboring vehicles is
required to carry out the actions, so any exchange with
the application layer is disregarded for a proper resource
allocation operation.

The remainder of the paper is organized as follows. First,
Section II states the related work and delves into the conges-
tion control problem for vehicular ad-hoc communications
from a beaconing rate and transmission power viewpoint.
Then, in Section III we formulate the mathematical model
used and its particularization to the problem mentioned in
Section II. Section IV conducts the performance evaluation,
discussing simulation environments, defined metrics, and
comparison results with other proposals of interest. This will
show the effectiveness of the proposed algorithm. Finally,
Section V summarizes the main conclusions.

II. RELATED WORK
The European Telecommunications Standards Institute
(ETSI) defines a 10 MHz control channel for vehicular
communications at the 5.9 GHz band [22], called the ITS-
G5 radio channel, as one of the basic network access tech-
nologies. Transmissions over this kind of network are of a
broadcast nature and employ Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) as a medium access
control (MAC) protocol. The ETSI Cooperative Awareness
Service (CAS) states periodic beaconing over one-hop com-
munications as the basis of cooperative awareness. Formally
called Cooperative Awareness Messages (CAM) in Europe
or Basic Safety Messages (BSM) in the US, beacons are
responsible for disseminating status and environmental infor-
mation to vehicles on the control channel (G5CC in Europe
and Channel 172 in the US, respectively). The excessive
aggregated load caused by these beacons results in inaccurate
and outdated information for safety applications. In addi-
tion, the Decentralized Environmental Notification (DEN)
service, in charge of notifying about risk-related road events
[9], requires certain channel availability to guarantee the
delivery of the event-related messages in emergency cases,
called Decentralized Environmental Notification Messages
(DENM). In this way, the Cross-Layer Decentralized Con-
gestion Control (DCC) Management Entity [23] is aimed at
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preventing the overloading of the ITS-G5 radio channel by
tuning the beaconing rate. DCC combines the operation of
two procedures: adaptive control, based on some CAM gen-
eration rules dependent on vehicle dynamics [5], [24], [25],
and straighforward reactive control called LIMERIC [10].
LIMERIC is a distributed and adaptive linear rate-control
algorithm in which each vehicle updates the beaconing rate
in accordance with the locally measured channel busy rate
(CBR), which is driven towards a certain goal. LIMERIC only
converges when all vehicles are within the coverage range
of each other, so it has been combined with the PULSAR
mechanism [26] to extend its application to multi-hop sce-
narios. PULSAR is another popular rate-based solution [11]
that uses Additive Increase Multiplicative Decrease (AIMD)
with feedback from two-hop neighbors. Unlike the afore-
mentioned proposals employing channel information, other
solutions set the beaconing rate as a function of some con-
text information, such as the tracking error of neighboring
vehicles [27]–[29], detecting rear-end collisions [30], [31],
predicting vehicle trajectory [32], and estimating collision
probability [12] or vehicle density [13], [14]. Overall, these
approaches succeed in reducing congestion by varying the
message rate. Nevertheless, in some cases, the only way to
alleviate congestion is to excessively decrease the beaconing
rate, which may especially threaten situation awareness and
vehicle safety [33].

The other parameter widely used in congestion control is
transmission power. Congestion is thus alleviated by reduc-
ing transmission power, decreasing the number of vehicles
that receive the broadcast messages. Several works pro-
posed controlling transmission power depending upon dif-
ferent variables. Authors in [34] employed the channel state
information (CSI) to improve energy efficiency. The work
in [15] used the speed of the vehicle to allocate transmission
power. This approach extended the transmission range in
the case of high speeds to raise awareness in neighboring
vehicles of their respective lower time-to-collisions. Vehicle
density is also employed in [16] to decide whether to increase
or decrease transmission power. Likewise, [35] includes an
SNIR estimation. Conversely, some proposals allocate trans-
mission power directly as a function of the channel load
[17], [18]. The vehicle position prediction error is also used
in [36] to determine whether to increase or decrease transmis-
sion power. However, congestion management considering
only transmission power has a clear drawback: if transmission
power receives insufficient values, the number of receivers
drops, and, consequently overall awareness is harmed. On top
of this, excessive transmission power variations may give rise
to instabilities, as is dealt with in [17].

Instead of using beaconing rate or transmission power
individually to handle congestion, more advanced proposals
combine both simultaneously [37], [38]. However, joint bea-
coning rate and transmission power control usually makes
the optimization problem non-convex, which entails employ-
ing heuristic algorithms instead of ordinary optimization
methods. Even though hybrid solutions clearly improve the

usefulness and flexibility of congestion control [39], there is
no silver bullet to jointly resolve beaconing rate and trans-
mission power control. Thus, each emerging approach faces
the allocation problem by claiming several contributions but
inevitably falling short in other aspects. In this sense, some
proposals are based on measuring different factors to carry
out resource allocation and improve specific aspects. For
instance, authors in [40] measured the packet Inter-Reception
Time (IRT) at a given distance to optimize packet reception.
The algorithm proposed in [39], called ECPR, varies trans-
mission power to reach a certain awareness ratio by estimat-
ing the Path Loss Exponent (PLE). Meanwhile, channel load
is individually controlled by LIMERIC [10]. FABRIC-P [19]
modeled rate allocation as a Network Utility Maximization
problem, maximizing the beacons delivered at each trans-
mission power. Other examples are MERLIN and PRESTO
mechanisms [41], not only focused on reducing congestion
but also on satisfying the requirements for different safety
applications simultaneously. Most of the algorithms men-
tioned above require piggybacking additional information
embedded in the messages, which makes congestion control
dependent on the channel state. This piggybacking process
may degrade the quality of awareness in those cases in which
the environment changes rapidly, so tracking error should
also be considered in the congestion avoidance mechanism,
as suggested in [42].

The solution to this problem is to isolate congestion control
from fluctuating parameters that rely on neighboring vehicles
or channel conditions. This is known as non-cooperative
algorithms since no additional information from neighbors
is required for the proper operation of congestion control.
This approach was introduced in the J2945/1 standard by
the Society of Automotive Engineers (SAE). In particular,
the J2945/1 standard specifies a congestion control algorithm
based on two input parameters, the CBR and vehicle density,
which regulate transmission power and beaconing rate when
the channel is congested [43], [44]. The J2945/1 algorithm
has been adjusted to manage beaconing rate and transmission
power allocation in cellular V2X communications [45]. Also
using the aforementioned, non-cooperative scheme, BFPC is
introduced in [46]. BFPC is a beaconing rate and transmission
power control algorithm based on non-cooperative game the-
ory that successfully maintains congestion at a certain desired
level. However, the CBR level is not automatically reached
and some parameters must be manually adjusted for each
scenario.

Given the complexity of the optimization problem, which
is similar to that of game theory, decision-making the-
ory has also been used to find optimal congestion con-
trol and endow a certain level of intelligence to vehicles.
In this context, the Markov Decision Process (MDP) is
one of the decision-making techniques of choice and the
basis of reinforcement learning (RL) [47]. Congestion con-
trol based on transmission power is proposed using both
Q-Learning, in the particular case of LTE-V2V communica-
tions [48], and a multi-agent approach for overall wireless

10168 VOLUME 9, 2021



J. Aznar-Poveda et al.: MDPRP: A Q-Learning Approach

communications [49]. Regarding hybrid solutions whereby
more than one parameter is optimized, authors in [21]
included the selection of the optimal frequency sub-band
in the decision-making problem, in addition to transmission
power. In [20], both beaconing rate adaptation and the trans-
mission power control problem are dealt with. This work
characterizes the system state, the reward function, and the
method of learning the control policy in the downlink of base
stations for the case of cellular networks C-V2X. Therefore,
such solutions are intended for cellular networks. To the best
of the authors’ knowledge, none of them have proposed a
non-cooperative, distributed algorithm to control both the
beaconing rate and transmission power of the vehicles using
an MDP-based model. To contribute to filling this research
gap, we propose the MDPRP scheme, an approach to derive
MDP-based transmission policies (Rate and Power), resolved
by Q-learning techniques, that fully prevent congestion while
maximizing channel utilization and helping to preserve the
performance of safety applications.

III. CONGESTION CONTROL USING MDP
Congestion control is addressed to maintain the channel load,
usually measured using the CBR, around a certain target
value. This value is defined as Maximum Beaconing Load
(MBL), whose optimal value is assumed to be around 0.6 and
0.7, according to several works [27], [46], [52]. A higher
load may increase packet loss and hinder safety application
operations, so congestion control is a crucial aspect. In this
article, we aim to control congestion by using both the bea-
coning rate and transmission power. However, this is not
trivial. For instance, an absence of awareness and instabili-
ties in the resource allocation may give rise if they are not
properly assigned. Consequently, a subtle trade-off between
both parameters is required to achieve an appropriate level of
CBR, as closely as possible to the MBL.

To this aim, as mentioned in Section I, we model the prob-
lem using the formal framework of finite Markov Decision
Processes. This framework addresses the congestion control
in ad-hoc vehicular communications as an optimization pro-
cedure over discrete actions, taken by the vehicles themselves
in a distributed fashion. Despite the complexity of the V2V
environment, some simple assumptions aremade tomodel the
MDP. However, it is worth mentioning that positive outcomes
are still obtained even in those scenarios that differ from the
ones used in the training phase of the proposed mechanism.
Moreover, unlike other solutions that require additional pro-
cessing tasks to compute the optimal action, our proposed
solution can be preloaded in tables, which is quite efficient
in terms of reading speed.

A. MARKOV DECISION PROCESS FRAMEWORK
MDPs are used to formulate and study optimization prob-
lems, because they provide a mathematical framework for
deriving optimal sequences of actions. This is especially use-
ful in those challenging environments where outcomes may

be partially random or difficult to predict. Formally, MDPs
consist of the following elements:
• The agent (in our particular case, a vehicle) is the
decision-maker or learner entity that continuously seeks
optimal behavior.

• The environment is defined as everything outside the
agent that is capable of perturbing it (e.g. road condi-
tions, other vehicles, pedestrians, etc.). In order to reach
the desired behavior, the agent is continuously sensing
the environment to accordingly select an action.

• The agent is able to perform an action a ∈ A(s). This
action belongs to the available set of actions for each
state.

• This environmental situation, along with the properties
of the agent is called state. Usually, the state is defined
as a vector s ∈ S that embraces both the outer and inner
properties of the agent, with S being the set of possible
states.

• Every time the agent acts, the environment is modified,
presenting a new situation to be explored. In this change
of state from s to s′, the agent obtains a reward r . This
reward is considered feedback from the environment
that the agent seeks to maximize through its choice
of actions over time. Therefore, it can be modeled as
a function of the state s and the action taken a, i.e.
r(s, a) = f (s, a) ∈ R.

The solution for complete knowledge of the MDP is given
by deterministic state-transition models, depicted by the
probabilities of transitioning among states. Nevertheless, this
is not available in realistic environments such as V2V com-
munications. Instead, MDP-solving algorithms employ what
is called policy, denoted as π , a mapping between states and
actions; that is π : S → A. The main objective, through
solvingMDPs, is to reach the optimal policy π∗, which maxi-
mizes the accumulated sum of rewards over the entire lifespan
of the agent during training. As shown in (1), the total reward
is usually computed using a discount factor γ [50], a number
less than one (typically 0.9 or closer to 1), which deter-
mines the present value of future rewards. This discounted
formulation allows the algorithm to converge more easily in
continuing tasks in which the agent-environment interaction
does not naturally break into episodes but continues without
limit.

π∗ = argmax
π

inf∑
τ=0

γ τ r(sτ , aτ ) (1)

It is worthy of mention that the state sτ , where the agent
is, the taken action aτ , and consequently, the reward obtained
also refer to a specific time. This is because Markovian sys-
tems operate using discrete spaces, so the agent and environ-
ment interact with each other in a sequence of discrete-time
steps, or slots τ . As occurs in our particular case, more com-
plex problems comprising continuous variables could hinder
their MDP formulation, requiring some approximations to be
defined and solved. This will be detailed in the following
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subsection while particularizing the elements making up the
proposed MDP model.

B. PARTICULARIZATION OF THE MODEL
1) AGENT OR LEARNER
To start with, the agent is represented by each single vehicle,
which continuously senses the environment to adequately
adjust its transmission power and beaconing rate. The goal is
to reduce overall channel congestion in a distributed manner.
This means that vehicles control their transmission parame-
ters, only making use of their own metrics, without relying
on any centralized infrastructure, in contrast to the practice
in the cellular communications scheme.

2) SET OF ACTIONS
Concerning the actions undertaken by the agent, they con-
sist of a tuple of both beaconing rate (b) and transmission
power (p) actions, a = (b, p). These two parameters can be
easily discretized to properly satisfy the MDP requirements.
In particular, the beaconing rate appended in the joint action
can be increased, decreased, or maintained, selecting among
the set b = {0,±1} Hz (also expressed in beacons per sec-
ond). Likewise, the transmission power is defined by 3 dBm
steps, resulting in the set p = {0,±3} dBm. All available
actions are logically constrained to the bounds stated in the
standards [22], [23]. For instance, if a vehicle is already using
the maximum transmission power, the available actions for
this particular state will exclude those that involve a power
increase.

3) ENVIRONMENT
The environment is depicted by the road on which the vehicle
and its neighbors pass. Roads are fairly complex environ-
ments in which many factors are involved, not only the phys-
ical parameters of the road and vehicles (e.g. speed, position,
acceleration, etc.) but also several human factors (e.g. driver
fatigue, drug ingestion, lack of focus, among others). In terms
of congestion (both network and traffic), roads are also quite
unpredictable since they depend on vehicle density variations
which are directly affected by abrupt changes in traffic con-
ditions, such as accidents and other undesired events. Actions
should change the state, leading the vehicle to a certain
desired behavior, such as handling congestion. However, each
vehicle is unable to alleviate overall congestion by itself
since its contribution to channel utilization (beaconing rate or
transmission power) is just a fraction of the total capacity. Let
us take the very simple example of 200 neighboring vehicles
transmitting at 5 Hz with a channel capacity of 1200 beacons
per second. If a vehicle decides to decrease its beaconing
rate from 5 to 1 Hz, the CBR will be reduced by only 0.003
( |5−1|1200 ), from 0.833 ( 5×2001200 ) to 0.83. Even though this change
is slight from a global perspective, it affects the CBR sensed
by each neighboring vehicle, hindering the MDP states’ def-
inition and preventing the problem from being addressed
as a clear transition model. In other words, the next state

would also depend on neighboring vehicles’ actions, resulting
in an exponential increase in the dimensionality needed to
characterize the state. Transmission power also causes the
model to be even more complex and unpredictable by varying
the number of available vehicles receiving the transmitted
beacons. Some solutions employ a multi-agent scheme, such
as that designed for base stations in [49], but the aspiring
MDP model for controlling congestion in a distributed fash-
ion would become too complex.

4) ASSUMPTIONS
To characterize the aforementioned problem as anMDP, let us
state some simplifying assumptions about the environment.
As can be expected, these assumptions are related to control
variables; that is, channel load (CBR), beaconing rate, and
transmission power, allowing us to completely address the
transition model.
Assumption 1: Firstly, let us assume that the channel load

sensed by nearby vehicles is approximately the same. This
is a reasonable assumption when the density of vehicles (ρ)
barely differs within the same neighborhood. For instance,
in congested areas, as illustrated in Figure 1, the closer the
vehicles to each other, the more similar the channel load
they perceive. Likewise, the resources required will be also
similar (in our case, beaconing rate and transmission power).
Because of this assumption, vehicles decide their actions
as if their neighbors had precisely its same channel load.
In other words, agents suppose that their neighbors select
the same actions they do. This allows CBR to be expressed
as a function of the selected beaconing rate b, the number
of neighbors sensed n (we add one to include the vehicle’s
own load), and the channel capacity C (beacons per second),
as follows:

CBR = (n+ 1)
b
C

(2)

FIGURE 1. Assumption of channel load similarity among nearby vehicles
within the same area. The carrier sense ranges of two close neighbors
(e.g. A and B) are represented by yellow and blue circles.

Assumption 2: Secondly, a realistic Nakagami-m [51] fad-
ing and path loss propagation model is assumed in order to
characterize a wide range of fading conditions realistically.
This is key to model the number of neighbors and channel
load. In our particular case, we employ the average carrier
sense range (rCS ) to estimate the number of neighbors as a
function of the transmission power. The carrier sense range
is defined as the distance from the transmitter in which the
power sensed by the receiver is above its sensitivity (S),
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as suggested in [17], as follows:

rCS =
0(m+ 1

β
)

0(m)(SAmp )
1
β

(3)

where 0(x) is the gamma function, p the transmission power,
β the path loss exponent. A = ( 4π

λ
)2, with λ the wavelength

of the carrier, and S the sensitivity of the receiver. Finally, m
is the so called shape parameter, which indicates the severity
of the fading conditions. The lower them parameter, the more
severe the fading.

Combining the assumed fading model with Assumption 1,
we can derive an estimate of neighbors using the carrier sense
range itself, as explained in the next subsection. In short,
Assumption 1 allows us to define the transition model and
obtain a feasible MDP that can be solved in a distributed
manner. Meanwhile, Assumption 2 provides concrete formu-
lation to compute clear transitions among states in terms of
transmission power. With these two assumptions, we relate
the CBR measured with the beaconing rate and transmission
power. In the next subsection, we will see how theMDP states
are defined using the assumptions made.

5) SET OF STATES
Once the requirements to generate a transitionmodel between
states have been specified, it is time to define the states of
our proposed MDP. The states allow the agent to model the
current situation of its environment so both the beaconing
rate and the transmission power must be part of them. More-
over, since the main goal of the algorithm is to alleviate
overall congestion and maintain the measured CBR under
a certain level, the CBR itself must also be considered in
the configuration of the state. Basically, we derive an esti-
mate of neighbors to reflect the CBR as part of the states
in the MDP, using the relationship between the CBR and
the number of neighbors shown in (2). The states are thus
defined as a 3-tuple containing the beaconing rate, the esti-
mated number of neighbors, and the transmission power,
s = (b, n, p). The resulting space of states can be represented
in a three-dimensional fashion, as shown in Figure 2, where
axes depict each of the aforementioned parameters. When
a vehicle executes an action a = (b, p), the environment
response leads the vehicle to a new state s′, as follows. The
beaconing rate and transmission power just apply the action
values to the state. If, for instance, the current state transmits
at 10 Hz (beaconing rate) and 23 dBm (transmission power),
and a = (0,−3), the new state maintains the beaconing rate
and reduces the transmission power to 20 dBm. Concerning
the estimated number of neighbors, given the old (p) and new
(p′) transmission powers, what the environment does first is
to assume a Nakagami-m model and to compute the carrier
sense ranges using (3). Then, Assumption 1makes similar the
resources needed among nearby vehicles, so neighbors act in
the same way. To associate transmission power changes with
the channel load, we derive an estimate of the updated number

FIGURE 2. Three-dimensional state-space used to model the joint power
and rate allocation problem as an MDP. Axes represent each constituent
element of the available states of the MDP: beaconing rate, estimated
number of neighbors, and transmission power.

of neighbors, as shown in (4).

n′ = n
r ′CS
rCS
= n

(SAm
p′ )

1
β

(SAmp )
1
β

= n
(
p
p′

) 1
β

(4)

Therefore, the transition to a new state s′ = (b′, n′, p′)
(comprised of the updated beaconing rate, the estimated num-
ber of neighbors, and transmission power), are calculated
depending on action a = (b, p).

6) REWARD FUNCTION
Every time the agent performs an action and moves from
the state s to the state s′, a reward r(s, a) ∈ R is obtained.
Maximizing the total reward allows the agent to learn the
most suitable actions and finally obtain the optimal policy (1).
As previously mentioned, the desired behavior is to maintain
the sensed CBR value around a certain limit, called MBL,
which is typically assumed between 0.6 and 0.7. Note that a
higher channel load may increase packet loss, hindering suit-
able safety application operations, and jeopardizing the deliv-
ery of event-drivenmessages in emergency cases. Conversely,
a lower load implies a loss in the levels of situation awareness
and channel underutilization. This behavior is obtained by
modeling the reward function properly, which is specifically
shaped to be proportional to the CBR and maximized up to
the MBL. This is achieved through the following function
g(x, k):

g(x, k) = x(H (x)− 2H (x − k)) (5)

where H is the Heaviside function. As can be observed in
Figure 3, we use a linear combination (h(x, k)) of the H
function and the same function shifted (by k) to discrimi-
nate the input values between negative or positive outputs
depending on whether they are above or below the thresh-
old k , respectively. Then, we multiply h(x, k) by f (x) = x
to endow the overall function with slope, which means that
higher inputs offer higher rewards, but once k is exceeded
the rewards become more and more negative. Using negative
rewards allows us to speed up the learning process [47] since
this tells the agent how unwanted the action is as the reward
becomes more negative. The resulting g(x, k) function is the
basis of the reward function, defined by (6).

r(s, a) = πbg(CBR, kb)− πp1 |p− p
′
| − πp2g(p

′, kp) (6)
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FIGURE 3. Illustrative example of g(x, k) function to restrict the CBR up to
kb = MBL = 0.6. Different areas represent both a positive (green) and
negative (red) reward, depending on whether or not the input CBR is
above threshold kb, respectively. Note that generic g(x, k) is also
employed in the reward function to constrain transmission power, using
p′ as input within the standard limits (1-30 dBm) and kp as threshold and
target.

FIGURE 4. Evaluation of the carrier sense range estimation rCS (3) for
different transmission powers and path loss exponents.

This expression consists of three terms. The first term is
the g(x, k) function in which the CBR is the input parameter
and the threshold k = kb is the MBL,2 set, in this case, to 0.6.
Note that the CBR is estimated by equation (2) once the action
is executed, thus using the pair (b′, n′), and, consequently,
also p′ included in the n′ estimate given by expression (4).
So, this first term not only prioritizes CBR values close to
MBL = 0.6 but also penalizes higher values. The second term
is related to excessive variations in transmission power, which
may hinder the whole algorithm convergence. Its objective is
to inhibit consecutive power actions (p and p′) unless they sig-
nificantly overcome the benefit of the main CBR term. Also
associated with transmission power, the third term prevents
the algorithm from reaching those states with insufficient
power values. These low power states are fairly undesired
in terms of awareness since they prevent other vehicles from
becoming aware of the presence of the vehicle under study
and vice versa. In this case, the g(x, k) function is used intro-
ducing transmission power. Regarding the power threshold
kp, we first evaluate the carrier sense ranges resulting from
the Nakagami-m fading model (3). We assume a worst case,
thus setting severe fading to m = 2 and a path loss exponent
to β = 2.5. As can be seen in Figure 4, carrier sense ranges
higher than 250 m are reached with a transmission power
of about 20 dBm or greater. Keeping these values in mind,
we focus on maintaining carrier sense ranges higher than or
equal to 250 m, so we have fixed the power threshold to
kp = 20 dBm. Finally, each term of the reward function is
normalized and weighted. Weights have been set experimen-

2A different MBL value can be used. In our particular case, we employ a
value of 0.6 value as an optimistic case within the optimal 0.6-0.7 interval.

tally to the following values: πb = 75, πp1 = 5, πp2 = 20,
after several iterations. This iterative process was performed
assessing the results of different combinations of weights.
For instance, too high values of πb with respect to πp1 and
πp2 entail satisfying the CBR limit (kb = MBL = 0.6), but
transmission power would vary widely or below the target
value (kp = 20 dBm). On the contrary, lower values of πb
could violate the desired MBL objective, which means that
congestion is not controlled anymore. In essence, a trade-off
among weights is required to satisfy the different constraints
appropriately.

7) POLICY DERIVATION
Now that the entire MDP model has been defined,
we can resort to efficient MDP-solving algorithms, such as
Q-learning [53], to determine the best action to take in every
single state (i.e. following the optimal policy π∗). In essence,
Q-learning is an iterative algorithm that provides the desired
behavior of any action-state pair Q(s, a). So, the optimal
policy π∗ improves iteratively with the updated estimation
of Q(s, a), as shown in equation (7):

Q(s, a)← (1−α)Q(s, a)+α
[
r(s, a)+γ · maxa′ [Q(s

′, a)]
]
(7)

where α ∈ (0, 1] is a learning rate factor determining how
much of the newly-acquired information is incorporated into
the current estimation of Q(s, a).
The MDP model and the solving algorithm have been

implemented in Python using several interrelated classes
and objects as well as advanced libraries, such as NumPy
[54] or Pandas. The environment is represented by a sim-
ple set of vehicles evenly spaced in a row, satisfying the
vehicle density assumption. This allows us to easily model
the transition between states. The agent-environment inter-
action and action-state relationships are also implemented,
as previously explained, through the state, action, and reward
definitions. Due to the way the reward is shaped, the overall
CBR sensed by vehicles can be controlled in a distributed
fashion. In the first stage, each action-state pair or Q value is
stored in a table, called Q-table, which is initialized to zero,
as written in Algorithm 1. Then, it iteratively calculates the
maximum expected future rewards for each action at each
state. Throughout training, the algorithm attempts to reach
the optimal policy π∗, which maximizes the accumulated
reward over time. As this policy is a simple mapping between
states and actions, it can be also effectively stored in a table;
which, in turn, would be programmed into the memory of
vehicles before deploying them. It is also important to men-
tion that reaching an optimal policy is not guaranteed, but
the training performed was enough to achieve the desired
behavior (CBR close to 0.6). To illustrate this, the learning
curve of the proposed algorithm has been plotted using the
biggest change of consecutive action-state pairs (Q values),
called 1Q. This is carried out in given time intervals for the
whole training time. As shown in Figure 5, the higher the
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Algorithm 1 (Python) MDP-Solving Q-Learning
1: Step size α ∈ (0, 1], small ε > 0
2: Initialize Q(s, a) = 0, ∀ s ∈ S, a ∈ A(s)
3: for each episode do
4: Initialize S
5: for each step of episode do
6: Choose a from S using ε-greedy
7: Take action a
8: Compute reward r(s, a) using (6)
9: Observe the next state s′

10: Update Q(s, a) using (7)
11: s = s′

12: end for
13: end for

FIGURE 5. Biggest change of successive Q values for a given time interval
during the whole training.

TABLE 1. Policy derivation and MDP parameters and their values.

training time, the lower the biggest changes between consec-
utive Q values. Note that this biggest change is a worst-case
metric since lower differences between consecutive Q values
imply a better performance. The most meaningful features
of the proposed MDP model and the parameters used in
the Q-learning algorithm have been summarized in Table 1.
In the next section, the resulting policy is fed into realistic
simulation software to evaluate the algorithm’s performance
in terms of channel congestion. The assumptions and esti-
mates stated in this section given by expressions (2) and
(4) will also be thoroughly tested using different scenarios
to confirm their validity and the robustness of the proposed
algorithm.

IV. PERFORMANCE EVALUATION
In this section, we assess the performance of the proposed
MDP-based algorithm (MDPRP) using OMNeT++ 5.3 [55]
together with the INET 3.5 library [56], which implements
the IEEE 802.11p standard along with realistic radio prop-
agation and interference models. Once the learning process
is finished, and, therefore, the optimal policy is obtained,
results are loaded into the OMNeT++ framework. This
could be interpreted as storing the policy in the vehicles’
memory. As can be observed in Algorithm 2, each time t
that MDPRP is executed, it first reads the current beaconing
rate and transmission power and measures the CBR. Then,
the estimated number of neighbors n is computed, isolating
it from expression (2). This allows the vehicle to determine
its current state s. Once the vehicle knows its state, the action
prescribed by the policy is taken. The action tuple comprising
both beaconing rate and transmission power will take us to the
next state. To do so, the estimated number of neighbors is also
updated using equation (4), after computing the correspond-
ing carrier sense ranges by formula (3), in turn derived from
the power action. This whole process is repeated as many
times as there are available actions (per state) to guarantee
that the most optimal state is reached in a single execution
time of the algorithm, which is especially useful in highly
variable scenarios.

Algorithm 2 (OMNeT++) Policy Evaluation for MDPRP
1: Load policy π file
2: loop F Over time t
3: Measure CBR(t)
4: Read rate and power (b, p)
5: Compute n using (2)
6: s← (b, n, p) F Set state s
7: for i = 1→ size(A(s)) do
8: a← π (s) = (b, p) F Take action a(b, p)
9: b′ = b+ a[0]
10: p′ = p+ a[1]
11: Compute rCS (p) and rCS (p′) using (3)
12: Then n′ using (4)
13: n← n′

14: end for
15: end loop

Bearing inmind thatMDPRP allocates both beaconing rate
and transmission power in a distributed and non-cooperative
fashion, disregarding neighbors’ information, we compared
it with two similar and well-accepted congestion control
algorithms. The first algorithm in the comparison is the
so-called BFPC [46], which employs game theory to allocate
the aforementioned parameters depending on the measured
CBR. However, as discussed in Section II, BFPC is unable
to reach a target CBR level by itself. Instead, it requires its
own internal (utility) parameters3 to be selected for a given

3These parameters control the utility function employed by BFPC, there-
fore tuning beaconing rate and transmission power as well.
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situation; they cannot be calculated a priori to achieve a given
desired CBR level. This means that sometimes the MBL
constraint is not met, while on other occasions the channel is
underutilized. For the sake of clarification, we will show that
by setting different values to the frequency utility parameter
(ui = 4 and ui = 10) for all vehicles, a different CBR level
is obtained in each scenario. Similarly, the power parameter
could be used for this purpose. The second algorithm in the
comparison is the congestion control protocol suggested in
the SAE J2945/1 standard [43], in which each vehicle adjusts
their beaconing rate and transmission power as a function
of the number of surrounding vehicles and the CBR sensed.
In order to carry out the experiments, the parameters of the
simulation are carefully selected, aiming to reduce packet
losses, as suggested in [44]. Overall, the comparisons among
the different approaches are performed by making use of the
following metrics:
• Channel Busy Ratio (CBR) is defined as the fraction of
channel in which the radio is busy either due to transmis-
sions or receptions. It is usually measured each second.
The CBR indicates channel utilization. Thus, a high
CBR is related to a higher number of packet colli-
sions and packet losses, reducing the situation awareness
level and hindering the adequate operation of safety
applications.

• Packet Delivery Ratio (PDR) is usually defined as the
ratio of successfully received packets by all the receivers
to the total number of packets transmitted [37], [51].
PDR is also an estimate of the situation awareness
achieved, closely related to radio channel propagation
and medium access control packet losses. Therefore,
the highest possible PDR is desirable. In our case,
the PDR is transmitter-centric and computed as a func-
tion of the distance at which transmitted packets are
successfully received. More to the point, PDR is cal-
culated in 50 m wide steps, providing more accurate
information in terms of transmission power changes and
their effects on the coverage range. Finally, PDR is also
averaged for each distance over the entire time period of
the simulation.

• Number of decoded packets (NDP). The number of bea-
cons successfully received in the whole network under
the same scenario also provides additional information
about the proper operation of the different algorithms.

The simulations are conducted using a data rate of 6 Mbps
and a beacon size of 500 bytes. This gives rise to a total
message size of 536 bytes, including the MAC headers. The
resulting PHY packet duration is 760 µs, according to [22],
and thus, the total channel capacity is C = 1315.78 bea-
cons per second. All the simulation parameters are specified
in Table 2. The different scenarios tested to assess the appro-
priate operation of our proposal are described below.

A. UNIFORMLY SPACED VEHICLES
The MDP has been trained using a row of evenly spaced
vehicles to satisfy the assumptions made. Therefore, this is

TABLE 2. OMNeT++ simulation settings.

exactly the initial scenario that we evaluate in OMNeT++ to
prove that the proposed MDP-based algorithm works appro-
priately under the same conditions of training. In particular,
we employ a single row of 400 vehicles uniformly distributed
along 2000 m. The results of this scenario, after a simulation
time of 50 s, are shown in Figure 6. As can be observed,
the policy leads the algorithm to the desired behavior pre-
viously described, basically defined by a CBR limited to
0.6 and not too low transmission power. Although all the
algorithms provide a similar response, some of them fail to
meet the desired CBR level, such as SAE J2945/1 standard
(around 0.8), as well as BFPC, using a utility parameter ui =
4, which indicates that the channel is underused. In contrast,
MDPRP and BFPC, with ui = 10, reach the 0.6 constraint
well. In our particular case, the variations of beaconing rate
and transmission power between adjacent vehicles are due
to the fact that the allocation is non-cooperative, but espe-
cially because each vehicle attempts to search for the optimal
response by itself. In any case, these variations have no
significant effects on resource allocation. MDPRP reduces
the beaconing rate of the central congested area (vehicles
surrounded by neighbors) to increase it around those vehicles
located at the ends of the row (not completely surrounded by
neighbors). This behavior makes sense in terms of situation
awareness since these latter vehicles are precisely the most
exposed to risk due to the arrival of other vehicles and their
consequent braking. What is more, the vehicles located in
the middle of the row are supposed to be stopped in the
gridlock, so little risk is involved, and they thus require fewer
resources. It is important to highlight that our algorithm is
working properly even at the ends of the road, even though
the model assumptions are not satisfied in these areas. This
shows the robustness of the proposed algorithm in scenarios
that differ from that used for training. This also means that the
formulated assumptions are reasonable and fit well with the
road environment. Concerning the results obtained, MDPRP
achieves a higher PDR (taking 300 m as a reference) in
comparison with the other solutions, mostly at the edges.
Recall that these areas are subject to higher risk, and an upper
PDR guarantees the proper operation of the safety applica-
tion. This fact is also reflected by the number of decoded
packets.
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FIGURE 6. Comparison of MDPRP with BFPC and J2945/1 algorithms. This
evaluation is conducted under the same conditions as for the training of
the MDP. That is, a congested scenario based on a single row of vehicles
evenly spaced.

B. TWO RANDOMLY DISTRIBUTED MOVING CLUSTERS
The robustness ofMDPRP is thoroughly tested using a worst-
case, in which none of the assumptions made to define
the transition model are satisfied. The simulated scenario
significantly differs from that used to generate the policy.
To begin with, vehicles are not evenly spaced, so there is
no channel load similarity between close vehicles. Instead,
we employ two different clusters bounded within a road
section 1000 m long each and located 1000 m away. Vehicles
are randomly positioned in a row according to a Poisson
distribution of average density ρ = 0.15 and 0.3 vehi-
cles per meter, respectively. This results in a first cluster
(A) comprised of 150 vehicles located from 0 to 1000 m,
an empty road section from 1000 to 2000 m, and a second
cluster (B) composed of 300 vehicles distributed along the
next 1000 m (2000 to 3000 m). A realistic traffic jam scenario
is represented, in which all the vehicles have the same drive
direction. The vehicles located in the front of cluster A are
approaching the rear of cluster B. They are forced to brake
abruptly and this entails a higher risk of vehicle collision.
To this end, the speed of cluster A is set at 40 mps (144 km/h),
supposing free flow, whereas vehicles in cluster B are com-
pletely stopped (0 mps).

This scenario demands an adaptation of the resource allo-
cation throughout the whole simulation time. In our particular
case, we simulate until both clusters come together, caus-
ing dense network congestion, i.e. 50 s. All the algorithms
compared show similar behavior. Basically, as clusters get
closer, they all attempt to reduce channel congestion, mainly
by decreasing beaconing rate, as illustrated in Figure 7. Con-
cretely, channel congestion is properly alleviated by main-
taining the CBR around 0.6-0.7, with the only exception
being the SAE algorithm, which exceeds this desired CBR
range during the entire simulation time. Keeping the CBR at
that level optimizes the achieved situation awareness. This
is not the case of BFPC for ui = 4, which remains below

the MBL value, and thus showing channel underutilization.
Meanwhile, transmission power is intended to be as high as
possible to avoid insufficient carrier sense ranges, which may
produce a lack of awareness even of closer neighbors. In fact,
both BFPC and SAE mechanisms assign almost the same
transmission power to all vehicles and never decrease it by
less than 20 dBm. In contrast, MDPRP better exploits the
transmission power usage, which acting together on the bea-
coning rate, notably alleviates channel congestion. This effect
can be observed in Figure 7d, where MDPRP reduces overall
congestion when clusters come together and overlap. Since
the proposed algorithm is non-cooperative, this is achieved
after some fluctuations in transmission power, without any
noticeable impact on performance.

Regarding PDR, the bar plot of Figure 9a reveals that
good performance is obtained with respect to SAE and BFPC
algorithms. Three different runs generated with random seeds
have been simulated and averaged. The standard deviation is
included for 14 different distances from 0 to 700 m. The plot-
ted PDR has also been averaged for all vehicles, largely due
to the fact that the scenario is now moving, and a more global
and robust sight is required. In essence, results show that our
proposal improves the PDR, especially at long distances. This
means that transmitted beacons reach the farthest neighbors
with higher probability, which makes the vehicle aware of
risks earlier.

C. ROBUSTNESS UNDER CHANNEL CONDITIONS
The assumption related to the fading model employed should
also be tested to prove the robustness of the proposedMDPRP
algorithm beyond the training conditions scenario. By updat-
ing the number of neighboring vehicles, as shown in equation
(4), all the parameters are common factors of numerator
and denominator, except for the path loss exponent β. For
instance, the shape parameterm, or the receiver sensitivity are
compensated among closer vehicles, allowing the expression
to be simplified. This is not so in the case of β because it
is an exponent of a different base in the numerator (p) and
denominator (p′). So, resource allocation depends on the path
loss exponent. Under this premise, we evaluate the previ-
ous moving scenario IV-B for different values from those
used in training to demonstrate that the algorithm still works
properly. Results using three simulation runs at an arbitrary
time (e.g. 20 s) are illustrated in Figure 8. On the one hand,
by setting β = 2, namely free space attenuation, the carrier
sense range is remarkably higher. This value allows the
vehicles to receive messages from more and more vehicles,
so the transmission parameters are forced to decrease. In con-
trast, using β = 3, the number of neighbors is reduced,
and consequently, the scenario is free of congestion and the
transmission parameters can be maximized. The policy π
trained with β = 2.5 seems to work well even with different
path loss exponent values (β = 2, 3). That is, MDPRP
behaves similarly to those compared algorithms which do
not depend on β. Both BFPC using ui = 10 and the SAE
J2945/1 standard dramatically neglect the MBL constraint
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FIGURE 7. Evaluation of different beaconing rate and transmission power congestion control algorithms in a realistic traffic jam scenario comprised of
two approaching clusters of vehicles. The response evolution is described by using several simulation times (i.e. 5, 20, 25, and 45 s respectively).

FIGURE 8. Path loss exponent assessment at tsim = 20 s for values
differing from those used in training or policy derivation.

with channel utilization above 90%. Note that, unlike in the
previous scenario (IV-B), BFPC for ui = 4 satisfies the MBL
constraint, but for ui = 10, it breaches it. This demonstrates
that BFPC needs an online parameter adjustment to obtain the
proper CBR level for different scenarios. However, MDPRP
still controls congestion well and in a stable manner, even
when trained in a completely different scenario. The resulting
PDR, depicted in Figures 9b and 9c, is aligned with the result
previously provided for β = 2.5. In addition, the proposed
MDP-based algorithm keeps a high PDR with respect to its
counterparts. The PDR results also highlight the importance
of channel load management. That is, overly congested sce-
narios (i.e. SAE and BFPC using ui = 10) clearly decrease
the packet delivery ratio, whereas well-controlled congestion
guarantees proper PDR (MDP andBFPC using ui = 4). In the
case of high fading β = 3, our proposal also provides a high
PDR along with the SAE standard.

FIGURE 9. Packet delivery ratio evaluation using different path loss
exponents in a realistic traffic jam scenario comprised of two clusters of
vehicles.

V. CONCLUSION
Vehicular ad-hoc communications rely on real-time periodic
messages, called beacons, to allow vehicles to be aware
of their surroundings and act accordingly. Indeed, most of
the applications that guarantee driver safety are based on
the situation awareness provided by this exchanged infor-
mation. Channel overload caused by this periodic beacon-
ing results in data loss, which may compromise the proper
functioning of many safety applications. This is especially
important in the case of event-related messages triggered in
emergency cases. Therefore, congestion control capable of
maintaining a certain fraction of the channel free is crucial.
In this article, joint beaconing rate and transmission power
congestion control is proposed. Since the associated prob-
lem posed is not convex, ordinary optimization methods are
usually ineffective. Instead, we have modeled the beaconing
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rate and transmission power control problem, making several
simplifying assumptions in the road environment to apply
the Markov Decision Process (MDP) framework. The pro-
posed solution, called MDPRP, alleviates congestion in a
non-cooperative and fully distributed fashion, disregarding
additional information from neighbors, where every single
vehicle contributes to reducing overall congestion. Simula-
tion results reveal that MDPRP successfully keeps the chan-
nel load under the desired level and offers good outcomes in
terms of packet delivery ratio. Note that despite being non-
cooperative, all vehicles are geared towards the same goal,
which successfully alleviates congestion. The robustness of
the solution is also demonstrated since the algorithm operates
reasonably well, even in those cases which do not satisfy any
of the initial assumptions defining the MDP transition model.
In a future work, we will focus on different reward functions
as well as on applying powerful techniques such as deep
reinforcement learning in order to resolve the new problems
presented. The study of their implications in real implemen-
tation issues will also be a part of the future investigation.
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