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ABSTRACT In analyzing dynamic characteristic of time-series data, classic prediction models rely heavily
on static historical data, and tacit knowledge is difficult to be mined effectively. Therefore, a hybrid prediction
model GS-GMDH is proposed based on growing neural gas (GNG) and the group method of data handling
(GMDH). Firstly, a dynamic prediction mechanism, based on an incremental learning algorithm and time-
series prediction, is established by GS-GMDH, by which the singularity is recognized and the prediction
efficiency is improved. Secondly, to compare the performance of the proposed method, the multi-step ahead
predictions with time-series data onto iron and silicon content are employed, and the new model is compared
with classic machine models. Finally, the results show that the hybrid prediction model (GS-GMDH)
proposed in this paper ensure an accurate and efficient prediction of time-series data for iron and silicon

content.

INDEX TERMS Contents of iron and silicon, machine learning, aluminium electrolysis, GNG, GMDH.

I. INTRODUCTION

The rapid development for the aluminium electrolysis, from
which waste-water and discarded aluminium are generated,
has caused the destruction for the ecosystem [1]. To response
the problem, people have explored aluminium electrolysis
technology in terms of energy saving, emission reduction, and
green production [2].

Zeng et al. [3] proposed liquidus model to reduce the
energy consumption for aluminium production based on mea-
suring the temperature of the electrolyte and the concentra-
tion of AlF3. Sun et al. [4] applied colorimetric method to
determine the content of Fe in the anode for the electrolytic
cell, which provides theoretical support to remove impuri-
ties. Vasyunina et al. [5] used flotation reagent produced by
Clariant(Germany) to filter out Fe and Si elements of waste
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aluminium products, which is convenient for recycling of
aluminium. However, most of the research is on physical and
chemical properties, and there is still no efficient method for
removing Fe and Si of aluminium production [6], which leads
to slow progress in energy saving and emission reduction for
aluminium electrolysis technology [7].

To the aluminium electrolysis technology, high-purity alu-
minium liquid is the product of aluminium electrolysis and
is often affected by many physical indicators, which makes
it difficult to mine the coupling relationship between various
indicators based on traditional models. To response the above
problems, machine learning is regarded as a new attempt.
Khera et al. [8] used BP network to monitor the health for
capacitors in the electrolytic cell, which prevents failures
for power electronic system. Zhou et al. [9] proposed a
singular value thresholding and extreme gradient boosting
(SVT-XGBoost) model, which achieves anode effect is pre-
dicted, to improve efficiency of aluminium electrolysis.
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The application of the above machine learning in industry
is very successful, but there are still deficiencies. The compu-
tational capabilities of models with deep structures and com-
plex structures have been enhanced (such as the DBN [10],
DBM [11], and CNN [12], [13], but the hyper parameters
and complex structural designs lead to the need for a large
amount of noise-free data [14]-[16]. To response the above
problems, a deep convolutional transfer learning network
(DCTLN) is developed by Guo et al. [17], which accurately
classified faulty bearings with incomplete data information.
Due to the lack of ideal samples, a simple but very practical
GMDH polynomial network is used to estimation the state
of battery health by Wu et al. [18]. However, the above
models are still not stable enough, especially when working
in the non-stationary and noisy environment of aluminium
electrolysis [19].

The electrolytic cell is a non-stationary and noisy envi-
ronment, where most chemistry takes place of aluminium
electrolysis, and various impurity elements are produced. The
control of Fe and Si content is a hotspot for aluminium elec-
trolysis technology. Most Fe and Si are come from material
and production equipment[20]. Excessive Fe impurities cause
internal stress concentration and cracks of aluminium mate-
rial. In addition, the mechanical properties and conductivity
are affect by excessive Si impurities[21].

In a dynamic and noisy environment, the analysis of rep-
resentative features for dynamic data, from which provide
theoretical support for future work, has become a difficult
problem [22], [23]. In anomaly detection and early warning of
industry, it is urgent demand that clustering and classification
analyses based on data-drive. Duan et al. [24] completes
anomaly detection of breakout in continuous casting based
clustering analysis, but this method relies on static data and
cannot achieve true online monitoring. A K-mean dynamic
clustering is proposed by Liang et al. [25], which over-
comes the hysteresis and low accuracy of conventional over-
flow monitoring methods. Nooralishahi er al. [26] develops
an online semi-supervised multi-channel classifier based on
GNG learning scheme, to really complete machine learning
online.

The incremental clustering model can build a balance
mechanism between plasticity and stability in a noisy envi-
ronment [27]-[30], which combines with a neural network is
one of the effective methods to solve the above problems [31],
[32]. An incremental learning clustering GNG-L is proposed
by Wu et al. [33], which can monitor the dynamic charac-
teristic of real-time data, and on the basis of its research,
the GNG-based singularity recognition algorithm (GS) is
developed in this paper. GMDH and other classic models
have strong convergence. The GMDH model has been widely
used in the fields of material structure [34], [35], traffic
flow prediction [36], new energy technology [37]-[39], and
mobile communication [40]. Then, the GS algorithm is com-
bined with GMDH model to become a new hybrid predic-
tion model, namely the GS-GMDH in this paper. The brief
description of the hybrid prediction model is as follows:
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e The singularity recognition phase: the GS algorithm is
used to monitor and recognize the singularity of the time-
series data, and the recognition result is adapted as the basis
for triggering the prediction phase.

e The prediction phase: MLs algorithms are triggered for
training and prediction.

The prediction of Fe and Si content in the electrol-
ysis process is proposed as a new research method in
this paper, the GS-GMDH model is used to predict the
time-series data of iron and silicon content. Moreover, the
GS-GMDH model performed better than classic models such
as MLFENN, ANFIS and GMDH. In addition, GS-GMDH
can efficiently and accurately predict the content of iron
and silicon in aluminum electrolysis with the less and noisy
data.

This paper is organized as follows: Section 2 introduces
the practical case and data source. The description of classic
MLs in Section 3. Section 4 describes the hybrid prediction
model proposed in this paper. Section 5 introduces the per-
formance evaluation measures and experiments. Section 6 is
the conclusion and work later.

Il. CASE STUDY

The data used in the study are real-time data collected from
an aluminium electrolysis plant in Guiyang, China. The
research recorded the daily percentage of iron and silicon
content in the electrolytic products from March 1, 2019 to
August 31, 2019. The samples were collected once a day for
a total of approximately 184 days. As shown in (a) and (b)
of Figure 1, the changes in iron content and silicon content
are similar. Therefore, the average values of iron and silicon
content are used as experimental data in this paper. It is worth
mentioning that this article takes the element content percent-
age as the experimental object. If we need to calculate the
specific mass, we only need to refer to the daily production of
aluminium. The raw data (Fe%, Si%) and experimental data
([Fe% + Si%]/2) are shown in Figure 1.

Figure 1 (a) shows the percentage of heavy metal iron
content in the molten aluminium, (b) indicates the percentage
of silicon content in the molten aluminium, and (c) indi-
cates the average content of iron and silicon in the molten
aluminium. The x-axis represents March to August, and the
y-axis means the beginning of the month to the end of the
month. Observations show that the content of impurities is
the lowest in March and highest in the middle of June.
(d) shows the change in Fe%, Si%, and (Fe% + Si%)/2 in
six months, and the data used in this paper are the
yellow.

Based on the practical production data for Guiyang
Aluninium Plant, the change of dynamic characteristic for
Fe and Si contents, doesn’t rises and falls steadily, but does
irregular dynamic change with seasonal change, which is
obvious rise in summer and then fell slightly. For the dynamic
and noisy environment, a machine learning model with strong
adaptability and high stability is required to supervise and
predict the content of Fe and Si.
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FIGURE 1. Collected data(a, b) and experimental data(c, d).
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FIGURE 2. Multilayer neural network.

Ill. THE CLASSIC PREDICTION MODELS BASED ON
MACHINE LEARNING

The classic prediction models adapted in this paper mainly
include MLFFNN, ANFIS, and GMDH. Five types training
function are used for comparative analysis in MLFFNN; three
ANFIS models are built, including ANFIS-GP based on grid
partition, ANFIS-SC based on subtractive clustering, and
ANFIS-GCM based on fuzzy c-means clustering. To improve
the prediction potential of the ANFIS model, GA and PSO
algorithms are combined to optimize ANFIS;
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A. MULTILAYER FEED-FORWARD NEURAL

NETWORK (MLFFNN)

Multilayer feed-forward neural networks (MLFFNNs) are
most widely used in artificial neural networks (ANN). Com-
mon MLFFNNSs include perceptron networks, BP networks,
and RBF networks. The BP network used in this paper is a
typical application of back-propagation learning algorithm in
MLFFNN [41]. The MLFENN model is mainly includes of
the input layer, the hidden layer, and an output layer. The
multilayer neutal network structure is shown in Figure 2.
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As shown in Figure 2, the input value of each layer in
the network come from the previous layer, and the values
calculated by the activation function is used as the output
value of this layer. x is the input value. W, , is the weight
between the a — & input data and the n — th neuron in the
input layer. X is the weighted input of the input layer, see
Eq. (1). by is the threshold of the k — th neuron in the m — th
layer. f;, is the transfer function (activation function) of layer
m. W, is the weight of the n — th input layer vector in Layer 1
(input layer) and the i — th neuron in Layer 2 (hidden layer 1).
Hy; is the weighted input of the i — th neuron in Layer 2
(hidden layer 1), see Eq. (2). Wi’k is the connection weight
between the i—th neuron in the Layer m (hidden layer (m—1))
and the k —th neuron in Layer (m+ 1) (hidden layer m). W,;’, is
the connection weight of the k — th neuron in Layer (m + 1)
(hidden layer m) and the p — th neuron in the output layer.
Eqgs. (3) and (4) show the weighted input Y}, at the output layer
and the network output y.

a
X1 =bi1 + qu * Wy
qg=1
a
X2=b12+qu*Wq,2 !
< M
M
a
Xy =bin+ Y xg%Won
g=1
n
Hy = by + Zfl (Xg) * Wy
g=1
n
Hy =by + Zfl(Xq) * Wpo 5
< @)
M
n
Hyi = by + Zfl (Xy) * Wy
q=1
k
Y1 = bty + me(qu) * Wi
g=1
k
Y, = b(m+l)2 + me(qu) * Wq2 3)
g=1
M
k
Yp = bm+1yp + me(qu) * Wep
g=1
Y1 =Jfmt1(Y'1)
y2 = fm+1(Y2)
| )
Vp = finr1(Yp)

It can be known from the above that the simple MLFFNN
model does not exist in adjusting weights and thresholds.
In this study, the weights and thresholds are repeatedly
adjusted by the error back-propagation algorithm (BP) is
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FIGURE 3. Structure of an ANFIS with weo inputs, one output and two
rules.

adopted to adjust, and a variety of training functions are
used for comparative analysis, including the gradient descent
training function (traingd), Bayesian regularization training
function (trainbr), Levenberg-Marquardt algorithm (trainlm),
Powell-Beale algorithm (traincgb), and conjugate gradient
algorithm (trainscg).

B. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
ANFIS is called an adaptive neural fuzzy system, which is
considered to be a combination of a learning algorithm of the
ANN and a concise form of fuzzy inference (FIS); namely,
the training process of the model can be simplified as a
process of back-propagation through errors and parameter
adjustment through least squares. There are two inference
methods for ANFIS, namely Mamdani and Sugeno. The
fuzzy system mainly includes three parts: fuzzification, infer-
ential decision and defuzzification [42]. Figure 3 shows a
simple ANFIS model based on two inputs. The fuzzy rules
base of this model combined two Sugeno “‘if-then” rules,
which defined by Eqs. (5) and (6).

Rulel: if x is Aj and y is By,
Rule2: if x is A2 and y is Ba,

thenf =p1+qiy+r ()
thenf =pr+qry+r (6)

As shown in Figure 3, the structure of ANFIS has five
layers. The nodes of the first and fourth layers need parameter
learning, which is the core part of the model. The functions
of these layers are described as follows:

Layer 1 (fuzzification layer): This layer is a fuzzification
layer, which the input variables become fuzzy and the mem-
bership degree of the fuzzy set is output to the next layer.
The A;, B; are fuzzy sets. The cells outputs (Oil) of this layer
can be used to indicate the extent to which x and y belong
to A; and B;, which are defined as Eqgs. (7) and (8). The
membership functions p4; and wp; are often represented by
Gaussian functions, as follow:

0; = paitx) i=1.2 ™
O} = ppix) i=1,2 ®)

pai = exp | — [(" a'c,> } ©)
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where the x and y are inputs. The {a;, b;, ¢;} are premise
parameters, which can be adjusted in training.

Layer 2 (rule layer): the layer can complete the operation
of the fuzzy set of the premise part. The firing strength of
the fuzzy rule is represented by the product of membership
functions of each feature.

07 = wi = i (x) - pugi ) i=1,2 (1)

Layer 3 (normalization layer): this layer normalizes the
firing strength of each rule obtained from the previous layer
and characterizes the firing proportion of the rule in the entire
rule base (represented by probability).

O =wm=—21_ =12 (12)
3 1 wi + wo )
Layer 4 (defuzzification layer) is used to calculate the

output of each rule.

Oy =wif =wipix +qy+r) i=1,2  (13)

where {p;, i, ri} are the consequent parameters and the wj is
the normalized firing strength in layer 3.

Layer 5 (sum layer), the output of ANFIS model is
achieved by collecting the output values for each rule that are
obtained from the previous layer.

Oy=> "wfi=Y wfi/y wi i=12 (14

where the total output for this layer can be seen as the linear
combination for the following parameters:

05 = Wifi +Wofs = Wix)p1 + (W1y)q1
+Wpr1 + (Wax)pa + (Woy)gqr + (o) (15)

Particle swarm optimization (PSO) [43] and a genetic
algorithm (GA) [44] are adopted to develop the training
process of ANFIS so that the prediction strength of ANFIS
is improved. ANFIS training is actually a process of reduc-
ing errors by finding the right premise (see Egs. (9) and
(10)) and consequent (see Eq. (13)) parameters. The choice
membership functions refer to the Gaussian function with
positive distribution, and {a;, b;, ¢;} are seen as the premise
parameters (a; is the peak of Gaussian curve, b; is a trainable
parameter and c; is the root mean square of the membership
function). The consequent parameters are {p;, g;, r;} and are
given in Eq. (29). For example, the parameters are optimized
by the GA, each chromosome has R x (F x D + B) genes
(R is the number of rules, F' denotes the number of premise
parameters for each membership function in Layer 1, and
D represents the dimension of the input data. In addition, B
denotes the number of consequent parameters for each rule
in Layer 4). Based on a large number of genetic, crossover,
and mutation operations, a new chromosome with the best
fitness will be generated. The value of the gene on this
chromosome represents the new parameters of the ANFIS
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model (the optimization process is always in the direction of
reducing the output error of ANFIS). The idea of applying the
PSO to develop these parameters is similar.

C. GROUP METHOD OF DATA HANDLING (GMDH)
The group method of data handling (GMDH) was discovered
by Ivakhnenko [45] in 1971 and can automatically find the
correlation of various indicators in the data. Additionally,
the neurons in the same layer are combined in pairs to gen-
erate intermediate models (internal criteria), and then these
intermediate models are filtered based on external criteria.
The unfiltered models become the neurons in the next layer.
The above process is repeated until the network has the best
complexity [46]. The GMDH structure is shown in Figure 4.
y is the expected output and X = (X1, X2, ... Xin)
(i =1, 2...m) is the input vector. If there are m input vectors
and each vector has dimension 7, y and x in function f satisfy
Eq. (16):

yi =f (it X2, X3, ... xip)  ((1=1,2,3...m) (16)

To fiqd a suitable function f, the GMDH network is trained
to find f which is similar to f. The actual output (;) of the
network is as follows,

Si=F G X, X3, o) (i=1,2,3...m)  (17)

The goal of training is to minimize the cumulative error,
as follows:

m
> [f (X, Xi2, X335 - - -

i=i

Xin) = yi| = min  (18)

The input and output of neurons in the GMDH network
need a reference function. The Volterra function is commonly
used to represent the input-output relationship as follows:

m m m

y= ao—i—z aixq +Z Z aijXiX; +ZZZ Qijk XiXjXj+

i=1 j=1 i=1j=1k=1
19)

where the g; is the weight vector determined by the regression
method to reduce the error between y and y. Since each neuron
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of the GMDH has only two inputs, Eq. (19) can be reduced
to a binary quadratic polynomial, such as Eq. (20):

y=G (x,', xj) =ag+ a1x1 + axxy + a3x12 + a4x22 + axixy
(20)

where the value of G; is calculated by the binary quadratic
polynomial of Eq. (20). The value of G; should make the
mean square error of the whole (all possible pairwise combi-
nations) small, Eq. (21). The mean square error can be used
to select neurons in the intermediate model related to external
criteria.

m

> 0i— Gi)?

E = — min 21

m
If the dimension of a single sample is n and there are m
samples, the matrix of the input data set and the input target
value are defined, as shown in Eq. (22),

X1r Xls cee Y1
X2r X2s ce 2

(22)
Xmr  Xms ot Ym

in which Eq. (22) satisfies {(y;, xir, xis), i =1,2,...m},
r,s € {i =1,2,...n}. Amatrix equation can be found based
on Eq. (20),

Y =Xa (23)
where X, Y are as follows:
1 x1r X xlzr xlzx
1 x x5 xz2 x%
x=|_ = 7 (24)
U X Xms X2, X2
Y = [V1, 52,3 - Yml” (25)

It can be known by Eq. (23) that the weight coefficient can
be solved by the least square method in regression analysis as
follows:

a= (XTX)il Xy (26)

IV. A NEW HYBRID PREDICTION MODEL GS-GMDH

The GS-GMDH model proposed in this paper is a fusion
of the improved GNG and the GMDH models. The main
contents are as follows:

e The singularity recognition phase. To monitor the
dynamic characteristic for time-series data, the GS model
proposed of singularity recognition based the GNG algo-
rithm, which is a combination of the dynamic feature anal-
ysis [33] and actual production demand.

e The prediction phase. The prediction mechanism is
triggered after the singular point is recognized, namely the
time-series data is employed to complete the training and
prediction of ML models. Then, the performance of each ML
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model is compared based on the evaluation results. Finally,
a hybrid prediction model GS-GMDH is proposed based on
GS and GMDH models.

A. THE GS ALGORITHM BASED ON GNG
An improved GNG [47] was used to realize real-time moni-
toring for drift data onto Wu et al. [33], but the model does
not have the ability of singularity recognition. To solve the
problem, a GS model is proposed based on the study of
Wu et al. [33], which can monitor the real-time data and
distinguish the singularity. The GS algorithm is described as
follows:

Step1: The number of neural nodes N is initialized; The
data is normalized, and the dimension of data is obtained.

Step2: Input the sample x; all nodes are traversed; the
winning neural node J,+ is calculated, and the local error E
of the node is updated.

Epr = Eppr + |lx — I |1? 27)

Step3: The weight of J,» and the domain node J,+ are
adjusted.

Jpe = al x (x — Jpe) (28)
Jn** = a2 X ()C — Jn*x) (29)

Step4: A connection between the J,+ and the second win-
ning node J; is establishing, and the connection age between
Jy+ and Jg is cleared.

Step5: Neural nodes whose connection age reaches the
upper limit #n,x are removed; the isolated nodes are removed.

Step6: The average Euclidean distance d,y., is calculated
of interconnected nodes in the topology.

Step7: The neuron generation mechanism. If Eq. (3) is
satisfied, a new node be generated.

Jnewnode =0.5x (Jerr max — Jerr max 2) (30)
Enewnode = 0.5 X Emax 3D

Step8: The neuron deletion mechanism. Ny iS taken as
the center, if Nyp < N x b is satisfied, Neypmin is deleted.
Nerrmin, Nin2, are the node with minimum local error, the num-
ber of nodes with distance from N, i, 1S less than dger,
respectively.

Step9: The global error of the neural network is reduced.
Ey is the global errors. § is the global error coefficient, 8 €
0, 1).

EN < /3 X EN (32)

Step10: The GS model is used for real-time monitor the
singularity of the real-time data. If the preset conditions are
met, it’s determined that there is a singularity.

Step11: The input x is processed and repeats Step 2.

B. THE PREDICTION STEPS
Based on the result for clustering analysis of GS model,
the value x of [Fe% + Si%]/2 is the demand of prediction
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FIGURE 5. The train or test example for 3-step ahead of windows size 5.

phase by multi-step prediction, from which the past values of
[Fe% + Si%]/2 to be used as shown in Figure 5.

As the Figure 5, the input sample is composed of [x1,
x4, x7, x10, x14], in which [x1, x4, x7, x10] are input data
for ML models and x14 is output(for testing) or target(for
training). Namely, sliding window operation is adopted to
obtain samples [48], which the size of window is fixed for
5. The simple X of MLs models is as follows:

X; = [xi, Xij» Xivoj, Xit2j, Xi+3;] j€[1,3], i € [1,183]
(33)

Time-series forecasting is widely adopted in meteorol-
ogy [37]-[39], traffic management [49], finance [50], and
energy source [51], etc. Especially for intelligent trans-
portation, many achievements have been made based on
time-series forecasting. The analysis of similarity and
repeatability for time-series data, from which the potential
periodic patterns are identify, has become a new ideas for
long-term prediction [52]. In addition, deep neural networks
(CNN, GMDH, ST-ResNet, etc.) may perform well for traf-
fic flow prediction [36], [53] based on match-then-predict
and prediction-after-classification. For this paper, the first
is the phase of singularity recognition, the GS incremental
learning model is used to monitor the dynamic characteristic
of time-series data (2, 3 and 4-step ahead predictions are
considered), which the monitoring results meets the condi-
tion is the premise for triggering prediction mechanism (The
establishment of preset conditions should refer to the actual
needs of the factory); The second is the prediction phase, five
ML models are employed to predict the contents of iron and
silicon, namely MLFFNN (traingd, trainbr, trainlm, traincgb
and trainscg five training functions), ANFIS (ANFIS-GP,
ANFIS-SC and ANFIS-FCM), ANFIS-GA, ANFIS-PSO and
GMDH; The final evaluation indicators are used to select the
best performance model. The flow of GS-GMDH is shown
in Figure 6.

V. PERFORMANCE EVALUATION MEASURES

AND EXPERIMENTS

The first part of the experiment is the singularity recognition
based on the GS model, from which the 2, 3 and 4-step
ahead time-series data are considered, singularities are found
at different moments. The second part of the experiment is
the prediction based on different MLs, including MLFFNN,
ANFIS, ANFIS-GA, ANFIS-PSO and GMDH. In prediction
phase, three statistical indicators, including the correlation
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coefficient R (which is used to reflect the close degree of
correlation between variables), mean square error MSE, and
root mean square RMSE, are used to evaluate the proposed
models. The calculation formulas are as follows:

I 0
RMSE = |~ ; (xi — yi) (34)
I oo
MSE = p ;(x, Vi) (35)
R Do i =X —yH) (36)

\/Z?zl (i = x*)2 30 i —y*)?

where n, x;, y;, x* and y* are the number of data, the expected
value (target), predicted value (output), mean of expected data
and mean of predicted data, respectively.

A. THE SINGULARITY RECOGNITION PHASE-GS MODEL
The proposed model of GS is used to monitor the dynamic
characteristics and discover the singularity of time-series
data. The preset condition for discover the singularity (a. the
number of times that a cluster wins in the GS model is higher
than 90% of the total number of input data. b. the Euclidean
distance from a certain neural node to the origin is greater
than 0.18). The experimental results are shown in Figure 7.
For the 3-step ahead data, the sample [x45, x47, x49, x51]
is recognized as a singularity; For the 4-step ahead data,
the sample [x54, x57, x60, x63] is recognized as a singularity;
b. the Euclidean distance from a certain neural node to the
origin is greater than 0.18). The experimental results are
shown in Figure 7. For the 3-step ahead data, the sample [x45,
x47, x49, x51] is recognized as a singularity; For the 4-step
ahead data, the sample [x54, x57, x60, x63] is recognized as
a singularity; For the window 5-step ahead data, the sample
[x42, x46, x50, x54] is recognized as a singularity.

To the 3-step ahead data, the sample [x54, x57, x60, x63]
is input to GS model and recognized as a singularity, then the
sample S3 used in the prediction phase (data x1-x53 are not
participate involved in prediction phase, namely the data used
for train and testing are reduced by about 28.96%). The data
xi is the past value of (Fe% + Si%) /2, and the window size
of time series is 5. The input sample S3 and output O3 are
defined as follows:

83 = [xi, x(i +3),x(@(+6),x( +9)], ie[54,174] (37)
03 =x*(i+12), ie[54,174] (38)
where O3 is the predicted value (output).

For 2-step ahead and 4-step ahead data, the sample S»,
output Oz, S4 and Oy are as follows:

Sy = [xi, x(i+2), x(i+4), x(i+6)], ie[45, 1771 (39)

0r = x*(i+8), iecl[45,177] (40)
Sy = [xi, x(i+4), x(i+8), x(i+12)], i€ [42,171] (41)
O4 = x*(i +16), ie[42,171] (42)
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FIGURE 7. Analysis result of GS for time-series data.

TABLE 1. The impact of GS on computing cost.

Model No GS GS
2-step 3-step 4-step
NRD (%) 0% 24.04% 28.96% 22.40%

For multi-step ahead predictions, the number of reduced
data (NRD) for prediction phase is shown in Table 1.

B. THE PREDICTION PHASE—ML MODELS

The experimental results of each model with multi-step ahead
data in the prediction phase are shown in Table 2. To obtain
the most reasonable parameters of ML models for multi-step
ahead predictions, we have done a lot of prediction works
based the aluminum electrolysis data. In addition, the rea-
sonable parameters of ML models are shown in Table 2.
In addition, 75% of the inputs and targets are determined
as training data, 10% are as validating data, and 15% are as
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testing data. To be brief, the element of “Train” represents
the average result for training and verification in Table2, and
the “Test”” represents the test result.

For the MLFFNN model, a three-layer feedforward neural
network is employed, and the number of neurons in the
hidden layers is obtained to be 20. In addition, five train-
ing functions are used (traingd, trainbr, trainlm, traincgb
and trainscg). For the 2-step to 4-step ahead predictions,
the trainbr, traincgb, trainlm and trainscg perform better
with the R are 0.9538, 0.8975 and 0.9717 (for the test set),
respectively.

For the ANFIS model, three ANFIS (GP, SC and FCM)
models are considered. In Table 2, the core parameters of
ANFIS (GP), ANFIS (SC) and ANFIS (FCM) are the num-
ber of membership function N_F, the influence radius /_R,
the number of clusters N_C and the partition matrix exponent
PME, respectively. The ANFIS (FCM) has better perfor-
mance for 4-step ahead prediction with R = 0.9875 (for test
set).

For the ANFIS-GA model, the ANFIS is improved by GA
(the ANFIS is ANFIS-FCM). The number of clusters is 2,
the GA’s parameters of mutation rate, crossover percentage,
mutation percentage and maximum number of iterations is set
t00.15,0.4,0.7 and 1000, respectively. In addition, the case of
the numer of population N is 10, 20, 50 and 200. As is shown
in Table 2, ANFIS-GA models with better performance of Rs
are 0.9778, 0.9711 and 0.9878 for multi-step prediction (for
test set), respectively.

Particle swarm optimization can also give ANFIS models
an advantage in prediction, and the number of clusters is 2.
The core parameters of the model were set as follows: the
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TABLE 2. Comparisons between the proposed model and classic MLs for predicting the content of Fe and Si.

Method Parameters MSE RMSE R NRD(%)
Train Test Train Test Train Test
2-step ahead
MLFFNN rainbr 1.473e-04  1.227e-04 0.0121 0.0111 0.9171 0.9538 0
ANFIS(GP) N _F=4 3.099¢-05 1.317¢-04 0.0056 0.0115 0.9849 0.9512 0
ANFIS(SC) 1 R=0.5 1.024e-04  6.722e-05 0.0101 0.0082 0.9642 0.9738 0
ANFIS(FCM) N_C=2,PME=2 5.282e-05  9.268¢-05 0.0073 0.0096 0.9748 0.9633 0
ANFIS-GA N=20 5.234e-05  5.929¢-05 0.0072 0.0077 0.9749 0.9778 0
ANFIS-PSO  N=20 5.184e-05  6.659¢-05 0.0072 0.0082 0.9754 0.9745 0
GMDH N=15,L=5,P=0.5 8.865e-05  7.225e-05 0.0094 0.0085 0.9648 0.9722 0
GS-GMDH I N=2,4 m=0.5 5.041e-05 5.481e-05 0.0071 0.0074 0.9787 0.9810 24.04
3-step ahead
MLFFNN traincgb 1.478e-04  2.329¢-04 0.0122 0.0153 0.9143 0.8975 0
ANFIS(GP) N F=4 4.892e¢-05 1.233e-04 0.0070 0.0111 0.9765 0.9536 0
ANFIS(SC) 1 R=0.8 4.987¢-05 8.711e-05 0.0071 0.0093 0.9764 0.9655 0
ANFIS(FCM) N_C=2,PME=2 6.889¢-05  8.434¢-05 0.0083 0.0092 0.9686 0.9691 0
ANFIS-GA N=50 7.198e-05  7.569¢-05 0.0085 0.0087 0.9672 0.9711 0
ANFIS-PSO  N=20 4.987e-05  6.659¢-05 0.0071 0.0082 0.9764 0.9697 0
GMDH N=15L=5P=0.5 9.623e-05 4.612¢-05 0.0098 0.0068 0.9647 0.9797 0
GS-GMDH I N=2,4_m=0.5 5.885e-05  2.049e-05 0.0077 0.0045 0.9727 0.9925 28.96
4-step ahead
MLFFNN trainlm 1.279e-04  7.413e-05 0.0113 0.0086 0.9611 0.9717 0
ANFIS(GP) N _F=4 1.431e-05  1.956e-04 0.0038 0.0140 0.9932 0.9048 0
ANFIS(SC) 1 R=0.8 4.479¢-05 1.342e-04 0.0067 0.0116 0.9785 0.9494 0
ANFIS(FCM) N_C=2,PME=2 5.369¢-05 3.611e-05 0.0073 0.0060 0.9745 0.9875 0
ANFIS-GA N=20 5.866e-05  2.896e-05 0.0077 0.0054 0.9729 0.9878 0
ANFIS-PSO  N=20 5.224e-05  3.481¢-05 0.0072 0.0059 0.9753 0.9876 0
GMDH N=15,L=5,P=0.5 6.401e-05  4.256e-05 0.0080 0.0065 0.9698 0.9814 0
GS-GMDH I N=2,4 m=0.5 4.764e-05  2.664e-05 0.0069 0.0052 0.9774 0.9898 22.40%

number of populations N is 10, 20, 50 and 200, the iner-
tia weight is 1, the personal learning coefficient was 1,
the global learning coefficient is 2, and the maximum number
of iterations is 1000. The model has the best performance
for 4-step ahead prediction with R = 0.9876 (for test
set).

For the GMDH model, the variables that need to be set
manually are the number of network layers L, the maximum
number of neurons in each layer N, and the selection pressure
P. GMDH models with better performance of Rs are 0.9722,
0.9797 and 0.9814 for multi-step ahead predictions (for test
set), respectively.

For the proposed GS-GMDH hybrid prediction model,
the initial number of neuron nodes I _N is 2 and the maximum
connection age A_m is 10 of the singularity recognition phase.

VOLUME 9, 2021

In addition, the parameter set is the same as GMDH model
of the prediction phase. For the multi-step ahead predic-
tion, the proposed GS-GMDH model performs better than
other classic model of Rs are 0.9810, 0.9925 and 0.9898,
respectively. The GS-GMDH model has the best prediction
accuracy in the 3-step ahead of considering the prediction
accuracy.

In summary, the proposed GS-GMDH model has best pre-
diction accuracy for multi-step ahead predictions based on
less aluminium electrolysis time-series data in Table 2 and
Figure 8. The incremental clustering model (GS model) can
build a balance mechanism between plasticity and stabil-
ity for aluminium electrolysis in a noisy environment, from
which the tacit knowledge of data has been mined effectively.
Moreover, the processing of GS model provides theoretical
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FIGURE 8. Results of predicting with multi-step ahead data.

support for subsequent prediction work. In prediction of
time-series data for iron and silicon content, the GMDH
model performs well for prediction work based on its strong
convergence.

The results of GS-GMDH model for the singularity recog-
nition phase and prediction phase are shown in Fig. 7. The
training steps are beginning at different positions for multi-
step ahead data (for the 2, 3 and 4-step ahead data, the position
are x45, x42 and x54, respectively). In addition, the per-
formance of proposed GS-GMDH is better than MLFFNN,
ANFIS, ANFIS-GA, ANFIS-PSO and GMDH models (for
test set) for 3-step ahead time-series data with R = 0.9925
and NRD = 28.96%.

This find is unexpected and suggests that small-scale data
sets allow for greater accuracy. It should be mentioned that,
for a single purpose such as the prediction for Fe and Si
contents, it is not always true that the more data we use,
the more perfect result can be obtained [54]. This observation
may support previous descriptions, namely the electrolytic
cell is a non-stationary and noisy environment, where the
distribution of data characteristic is irregular. Further leads to
class-imbalance data, i.e. the imbalance classification prob-
lem, which affects both convergence for the training phase
and generalization for a model in test set [55]. To solve this
problem, an effective strategy is to operate on training set and
change its class distribution [56]. Undersamping is seen as a
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(B) 3-step ahead

meaningful method to clean the data, i.e., to remove a small
number of samples from the dataset. In addition, these deleted
data often considered noise or have other characteristics, i.e.
one-sided selection identifies redundant examples close to
the boundary between classes [57]. In this paper, the based
cluster GS model is developed to ensure that the data charac-
teristics are extracted. Moreover, before the training of deep
neural network, the clustering or classification operations are
significative to reduce the errors caused by class-imbalance
data [58], [59].

VI. CONCLUSION AND LATER WORK

A hybrid prediction model GS-GMDH is developed based on
GNG and GMDH, which includes the singularity recognition
and prediction phases. For the singularity recognition phase,
we propose the GS algorithm based on the GNG, from which
the monitoring of dynamic characteristics and the singularity
recognition are completed of real-time data. For the predic-
tion phase, the machine learning model is employed to predict
the time-series data. Combined with the analysis for the iron
and silicon content in the aluminium electrolysis, the exper-
iment results show the overall performance of GS-GMDH
proposed in this paper is better than other ML models, with
NRD is 28.96% and R is 0.9925. And it is suitable for
predicting the contents of iron and silicon in the aluminium
electrolysis.

VOLUME 9, 2021



L. Chen et al.: Time-Series Prediction of Iron and Silicon Content in Aluminium Electrolysis Based on Machine Learning

IEEE Access

The future work may focus on improving our prediction
methods: (1) we need to improve the adaptability and robust-
ness of GS-GMDH model. In addition, the preset condition
for discovering the singularity needs to explore for other
fields. (2) the source of data sets would also be stricter, and
we would adopt larger-scale data sets with more complex
indicators. (3) the further analysis of the impact on imbalance
data distribution for deep neural networks.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

K. Peng, Z. Zou, S. Wang, B. Chen, W. Wei, S. Wu, Q. Yang, and J. Li,
“Interdependence between energy and metals in China: Evidence from a
nexus perspective,” J. Cleaner Prod., vol. 214, pp. 345-355, Mar. 2019.
M. Dai, P. Wang, W.-Q. Chen, and G. Liu, “Scenario analysis of China’s
aluminum cycle reveals the coming scrap age and the end of primary
aluminum boom,” J. Cleaner Prod., vol. 226, pp. 793-804, Jul. 2019.
S.Zeng, W. Shasha, and Q. Yaxing, ““Control of temperature and aluminum
fluoride concentration based on model prediction in aluminum electroly-
sis,” Adv. Mater. Sci. Eng., vol. 2014, Jan. 2014, Art. no. 181905.

H. Sun, D. Kocaefe, D. Bhattacharyay, Y. Kocaefe, J. Coté, and
P. Coulombe, ““Colorimetric methods for determining Fe, V, and Ni content
in coke and anode,” Chem. Eng. Technol., vol. 42, no. 5, pp. 1011-1017,
2019.

N. V. Vasyunina, S. V. Belousov, I. V. Dubova, A. V. Morenko, and
K. E. Druzhinin, “Recovery of silicon and iron oxides from alumina-
containing sweepings of aluminum production,” Russian J. Non-Ferrous
Met., vol. 59, no. 3, pp. 230-236, May 2018.

L. Zhang, X. Lv, A. T. Torgerson, and M. Long, “Removal of impurity
elements from molten aluminum: A review,” Mineral Process. Extractive
Metall. Rev., vol. 32, no. 3, pp. 150-228, Jul. 2011.

Y. Fang, Z. Nie, J. Yang, Q. Die, J. He, H. Yu, Q. Zhou, and Q. Huang,
“Polychlorinated naphthalene emissions to the atmosphere from typical
secondary aluminum smelting plants in Southwestern China: Concentra-
tions, characterization, and risk evaluation,” Environ. Sci. Pollut. Res.,
vol. 26, no. 13, pp. 12731-12740, May 2019.

N. Kheraand S. A. Khan, “‘Prognostics of aluminum electrolytic capacitors
using artificial neural network approach,” Microelectron. Rel., vol. 81,
pp. 328-336, Feb. 2018.

K.-B. Zhou, Z.-X. Zhang, J. Liu, Z.-X. Hu, X.-K. Duan, and Q. Xu, “Anode
effect prediction based on a singular value thresholding and extreme gra-
dient boosting approach,” Meas. Sci. Technol., vol. 30, no. 1, Jan. 2019,
Art. no. 015104.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18,no0.7, pp. 1527-1554, Jul. 2006.
R. Salakhutdinov and G. E. Hinton, “‘Deep Boltzmann machines,” J. Mach.
Learn. Res., vol. 5, no. 2, pp. 448-455, 2009.

H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep
learning architecture for inverse problems,” IEEE Trans. Med. Imag.,
vol. 38, no. 2, pp. 394-405, Feb. 2019.

L. Wen, X. Li, L. Gao, and Y. Zhang, ‘A new convolutional neural network-
based data-driven fault diagnosis method,” IEEE Trans. Ind. Electron.,
vol. 65, no. 7, pp. 5990-5998, Jul. 2018.

C. L. P. Chen and J. Z. Wan, “A rapid learning and dynamic stepwise
updating algorithm for flat neural networks and the application to time-
series prediction,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 29,
no. 1, pp. 62-72, Feb. 1999.

C.L.P.ChenandZ. Liu, “Broad learning system: An effective and efficient
incremental learning system without the need for deep architecture,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10-24, Jan. 2018.

X. Wen, L. Shao, Y. Xue, and W. Fang, “A rapid learning algorithm for
vehicle classification,” Inf. Sci., vol. 295, pp. 395-406, Feb. 2015.

L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, “Deep convolutional trans-
fer learning network: A new method for intelligent fault diagnosis of
machines with unlabeled data,” IEEE Trans. Ind. Electron., vol. 66, no. 9,
pp. 7316-7325, Sep. 2019.

J. Wu, Y. Wang, X. Zhang, and Z. Chen, ““A novel state of health estimation
method of Li-ion battery using group method of data handling,” J. Power
Sources, vol. 327, pp. 457-464, Sep. 2016.

N. Masuyama, C. K. Loo, H. Ishibuchi, N. Kubota, Y. Nojima, and Y. Liu,
“Topological clustering via adaptive resonance theory with information
theoretic learning,” IEEE Access, vol. 7, pp. 7692076936, 2019.

VOLUME 9, 2021

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(391

(40]

[41]

M. A. Dewan, M. A. Rhamdhani, J. B. Mitchell, C. J. Davidson,
G. A. Brooks, M. Easton, and J. F. Grandfield, “Control and removal
of impurities from al melts: A review,” Mater. Sci. Forum, vol. 693,
pp. 149-160, Jul. 2011.

J. A. Al-Megjali, G. M. Haarberg, N. Bensalah, B.-A. Benkahla, and
H. P. Lange, “The role of key impurity elements on the performance
of aluminium electrolysis—Current efficiency and metal quality,” Light
Metals, vol. 2, no. 7, pp. 389-394, 2016.

S. Yu, M. Chen, E. Zhang, J. Wu, H. Yu, Z. Yang, L. Ma, X. Gu, and
W. Lu, “Robustness study of noisy annotation in deep learning based
medical image segmentation,” Phys. Med. Biol., vol. 65, no. 17, 2020,
Art. no. 175007, doi: 10.1088/1361-6560/ab99e5.

Y.-Z. Lin, Z.-H. Nie, and H.-W. Ma, “Structural damage detection with
automatic feature-extraction through deep learning,” Comput.-Aided Civil
Infrastruct. Eng., vol. 32, no. 12, pp. 1025-1056, 2017.

H. Duan, X. Wang, Y. Bai, M. Yao, and Q. Guo, “Application of
k-means clustering for temperature timing characteristics in breakout pre-
diction during continuous casting,” Int. J. Adv. Manuf. Technol., vol. 106,
nos. 11-12, pp. 4777-4787, Feb. 2020.

H. Liang, G. Li, and W. Liang, “Intelligent early warning model of early-
stage overflow based on dynamic clustering,” Cluster Comput., vol. 22,
no. S1, pp. 481-492, Jan. 2019.

P. Nooralishahi, M. Seera, and C. K. Loo, “Online semi-supervised multi-
channel time series classifier based on growing neural gas,” Neural Com-
put. Appl., vol. 28, no. 11, pp. 3491-3505, Nov. 2017.

H. Shen, Y. Liu, Z. Xia, and M. Zhang, “An efficient aggregation scheme
resisting on malicious data mining attacks for smart grid,” Inf. Sci.,
vol. 526, pp. 289-300, Jul. 2020.

E. Lughofer, “Extensions of vector quantization for incremental cluster-
ing,” Pattern Recognit., vol. 41, no. 3, pp. 995-1011, Mar. 2008.

E. Lughofer and M. Sayed-Mouchaweh, ‘“‘Autonomous data stream clus-
tering implementing split-and-merge concepts—Towards a plug-and-play
approach,” Inf. Sci., vol. 304, pp. 54-79, May 2015.

C. Wiwatcharakoses and D. Berrar, “SOINN+, a self-organizing incre-
mental neural network for unsupervised learning from noisy data streams,”
Expert Syst. Appl., vol. 143, Apr. 2020, Art. no. 113069.

W. Jia, D. Zhao, and L. Ding, “An optimized RBF neural network algo-
rithm based on partial least squares and genetic algorithm for classification
of small sample,” Appl. Soft Comput., vol. 48, pp. 373-384, Nov. 2016.
S. Ding, W. Jia, C. Su, L. Zhang, and L. Liu, “Research of neural network
algorithm based on factor analysis and cluster analysis,” Neural Comput.
Appl., vol. 20, no. 2, pp. 297-302, Mar. 2011.

Y.-M. Wu, L.-S. Chen, S.-B. Li, and J.-D. Chen, “An adaptive algorithm
for dealing with data stream evolution and singularity,” Inf. Sci., vol. 545,
pp. 312-330, Feb. 2021.

H. MolaAbasi, A. Khajeh, S. N. Semsani, and A. Kordnaeij, “Prediction
of zeolite-cemented sand tensile strength by GMDH type neural network,”
J. Adhes. Sci. Technol., vol. 33, no. 15, pp. 1611-1625, Aug. 2019.

M. H. Ahmadi, M. Sadeghzadeh, A. H. Raffiee, and K.-W. Chau, “Apply-
ing GMDH neural network to estimate the thermal resistance and thermal
conductivity of pulsating heat pipes,” Eng. Appl. Comput. Fluid Mech.,
vol. 13, no. 1, pp. 327-336, Jan. 2019.

X. Song, W. Li, D. Ma, D. Wang, L. Qu, and Y. Wang, “A match-then-
predict method for daily traffic flow forecasting based on group method
of data handling,” Comput.-Aided Civil Infrastruct. Eng., vol. 33, no. 11,
pp. 982-998, Nov. 2018.

A. Khosravi, L. Machado, and R. O. Nunes, “Time-series prediction of
wind speed using machine learning algorithms: A case study Osorio wind
farm, Brazil,” Appl. Energy, vol. 224, pp. 550-566, Aug. 2018.

A. Khosravi, R. O. Nunes, M. E. H. Assad, and L. Machado, “Compar-
ison of artificial intelligence methods in estimation of daily global solar
radiation,” J. Cleaner Prod., vol. 194, pp. 342-358, Sep. 2018.

A. Khosravi, R. N. N. Koury, L. Machado, and J. J. G. Pabon, “Prediction
of hourly solar radiation in Abu Musa island using machine learning
algorithms,” J. Cleaner Prod., vol. 176, pp. 63—75, Mar. 2018.

H. S. Hwang, “Fuzzy GMDH-type neural network model and its applica-
tion to forecasting of mobile communication,” Comput. Ind. Eng., vol. 50,
no. 4, pp. 450-457, Aug. 2006.

S. Zhou, N. Liu, C. Shen, L. Zhang, T. He, B. Yu, and J. Li, “An adap-
tive Kalman filtering algorithm based on back-propagation (BP) neural
network applied for simultaneously detection of exhaled CO and N20,”
Spectrochim. Acta A, Mol. Biomolecular Spectrosc., vol. 223, Dec. 2019,
Art. no. 117332.

10709


http://dx.doi.org/10.1088/1361-6560/ab99e5

IEEE Access

L. Chen et al.: Time-Series Prediction of Iron and Silicon Content in Aluminium Electrolysis Based on Machine Learning

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Petkovié, N. T. Pavlovi¢, and Z. Cojbasic, “Wind farm efficiency by
adaptive neuro-fuzzy strategy,” Int. J. Electr. Power Energy Syst., vol. 81,
pp. 215-221, Oct. 2016.

S. Poddar and A. Kumar, “Scale-free PSO for in-run and infield inertial
sensor calibration,” Measurement, vol. 147, Dec. 2019, Art. no. 106849.
G. Qiu, Y. Gu, and J. Chen, “Selective health indicator for bearings
ensemble remaining useful life prediction with genetic algorithm and
weibull proportional hazards model,” Measurement, vol. 150, Jan. 2020,
Art. no. 107097.

A. G. Ivakhnenko, ‘“‘Polynomial theory of complex systems,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-1, no. 4, pp. 364-378, Oct. 1971.

M. Ahmadi, M.-A. Ahmadi, M. Mehrpooya, and M. Rosen, “Using
GMDH neural networks to model the power and torque of a stirling
engine,” Sustainability, vol. 7, no. 2, pp. 2243-2255, Feb. 2015.

B. Fritzke, A Growing Neural Gas Network Learns Topologies. Cambridge,
MA, USA: MIT Press, 1995.

R. Talavera-Llames, R. Pérez-Chacén, A. Troncoso, and
F. Martinez-Alvarez, “Big data time series forecasting based on nearest
neighbours distributed computing with spark,” Knowl.-Based Syst.,
vol. 161, pp. 12-25, Dec. 2018.

X. Yang, Y. Zou, J. Tang, J. Liang, and M. Ijaz, “‘Evaluation of short-term
freeway speed prediction based on periodic analysis using statistical mod-
els and machine learning models,” J. Adv. Transp., vol. 2020, pp. 1-16,
Jan. 2020.

L. J. Cao and F. E. H. Tay, “Support vector machine with adaptive
parameters in financial time series forecasting,” IEEE Trans. Neural Netw.,
vol. 14, no. 6, pp. 1506-1518, Nov. 2003.

H. Wang, Y. Liu, B. Zhou, C. Li, G. Cao, N. Voropai, and E. Barakhtenko,
“Taxonomy research of artificial intelligence for deterministic solar
power forecasting,” Energy Convers. Manage., vol. 214, Jun. 2020,
Art. no. 112909.

J. Chen, K. Li, H. Rong, K. Bilal, K. Li, and P. S. Yu, “A periodicity-
based parallel time series prediction algorithm in cloud computing envi-
ronments,” Inf. Sci., vol. 496, pp. 506-537, Sep. 2019.

L. Qu, W. Li, W. Li, D. Ma, and Y. Wang, “Daily long-term traffic flow
forecasting based on a deep neural network,” Expert Syst. Appl., vol. 121,
pp. 304-312, May 2019.

Z. Hou and X. Li, “Repeatability and similarity of freeway traffic flow
and long-term prediction under big data,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 6, pp. 1786—1796, Jun. 2016.

M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the
class imbalance problem in convolutional neural networks,” Neural Netw.,
vol. 106, pp. 249-259, Oct. 2018.

V. Lépez, A. Fernandez, S. Garcfa, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and cur-
rent trends on using data intrinsic characteristics,” Inf. Sci., vol. 250,
pp. 113-141, Nov. 2013.

G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing,
“Learning from class-imbalanced data: Review of methods and applica-
tions,” Expert Syst. Appl., vol. 73, pp. 220-239, May 2017.

Q. Li, B. Yang, Y. Li, N. Deng, and L. Jing, “Constructing support vector
machine ensemble with segmentation for imbalanced datasets,” Neural
Comput. Appl., vol. 22, no. S1, pp. 249-256, May 2013.

Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, ““A novel ensemble
method for classifying imbalanced data,” Pattern Recognit., vol. 48, no. 5,
pp. 1623-1637, May 2015.

LINSHENG CHEN received the B.S. degree in
mechanical engineering from Xihua University,
Chengdu, China, in 2018. He is currently pur-
suing the M.S. degree with the Key Laboratory
of Advanced Manufacturing Technology, Ministry
of Education, Guizhou University, China. His
research interests include machinery condition
monitoring and data analysis for industry.

10710

YONGMING WU received the Ph.D. degree in
mechanical engineering from Xiamen University,
Xiamen, China, in 2014. He has been a Professor
with the Key Laboratory of Advanced Manufac-
turing Technology, Ministry of Education. He has
published more than 40 papers in major journals
and international conferences. His current research
interests include big data of manufacturing and
intelligent manufacturing.

YINGBO LIU received the B.S. degree in automa-

tion and the M.S. degree in computer science and

application from the Kunming University of Sci-

. ence and Technology, in 2008 and 2011, respec-

tively, and the Ph.D. degree from the University

of Chinese Academy of Sciences, in 2015. He

was a Postdoctoral Researcher with the Yunnan

Academy of Scientific and Technical Information,

from 2015 to 2018, and a Research Fellow with

SCSE of NTU, Singapore, from 2018 to 2019. He

is currently an Assistant Researcher with the Yunnan University of Finance

and Economics. He is also the Director of the Cloud Computing Center of

Big Data Research Institute of Yunnan Economy and Society. His research
interests include big data, cloud computing, and distributed systems.

TIANSONG LIU received the B.S. degree
in mechanical from Zaozhuang University,
Shandong, China, in 2019. He is currently pur-
! suing the M.S. degree with the Key Laboratory
— of Advanced Manufacturing Technology, Min-
istry of Education, Guizhou University, China.
His research interest includes data analysis for
industry.

XIAOJING SHENG received the B.S. degree
in computer science and technology from
the Zhengzhou Normal University, Zhengzhou,
China, in 2019. She is currently pursuing the M..S.
degree with the Key Laboratory of Advanced Man-
ufacturing Technology, Ministry of Education,
Guizhou University, China. Her research interest
includes data analysis for industry.

VOLUME 9, 2021



