
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received December 27, 2020, accepted January 6, 2021, date of publication January 11, 2021, date of current version January 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050566

Effective Filter for Common Injection Attacks
in Online Web Applications
SANTIAGO IBARRA-FIALLOS1, JAVIER BERMEJO HIGUERA 1,
MONSERRATE INTRIAGO-PAZMIÑO2, JUAN RAMÓN BERMEJO HIGUERA 1,
JUAN ANTONIO SICILIA MONTALVO 1, AND JAVIER CUBO1
1Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
2Departamento de Informática y Ciencias de la Computación, Escuela Politécnica Nacional, Quito 170450, Ecuador

Corresponding author: Javier Bermejo Higuera (javier.bermejo@unir.net)

ABSTRACT Injection attacks against web applications are still frequent, and organizations like OWASP
places them within the Top Ten of security risks to web applications. The main goal of this work is to
contribute to the community with the design of an effective protection of web applications against common
injection attacks. Our proposal is a validation filter of input fields that is based on OWASP Stinger, a set of
regular expressions, and a sanitization process. It validates both fundamental characters (letters, numbers,
dot, dash, question marks, and exclamation point) and complex statements (JSON and XML files) for each
field. The procedure of deploying the proposed filter is detailed, specifying the sections and contents of
the configuration file. In addition, the infrastructure for running the tests is described, including the setting
of an attack tool, and the implementation of a controller. The attack tool is used as a security scanner for
common injection attacks, and the controller is developed for routing the requests in two steps; first a request
is addressed to the filter, and if it is valid, it will redirect to the web application itself. The proposal filter
has been tested on three public as well as on a real private web application. An accuracy of 98,4% and an
average processing time of 50 ms are achieved, based on wich it is possible to conclude the proposed filter
is highly reliable and does not require additional computational resources.

INDEX TERMS Information security, input validation, software security, regular expression, sanitization.

I. INTRODUCTION
In general, software development is challenging when it
comes to creating secure and reliable software. As the pro-
grammer gains experience, he or she becomes aware of the
value of secure programming, best practices, as well as the
importance of protection against intrusions. For example,
data manipulations, among others, who depend on the sensi-
tivity of the information handled by an application, may have
a greater or lesser impact.

According to the OWASP Top Ten Web Application
Security Risks, the injection vulnerability is located at the
beginning of the list, and it could be executed by internal and
external users to an organization [1]. This establishes a point
of reference and an important warning to software developers.
While developing a web application programmers should
change the tendency to be more concerned with functional
validation and give less value to secure programming. It is

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

also known that there are web applications that are vulnerable
to the most common injection attacks. These applications can
not be rewritten. However, to stay online, these applications
should be protected.

The goal of this article is to contribute to reducing the
injection attacks through the design of a new filter based on
OWASP Stinger [2], and set as a module on a Jboss/Wildfly
application server [3]. Consequently, it can be invoked by all
the web applications deployed on the server.

The filter helps web applications to create at least one
layer of protection against common injection attacks (SQL
Injection (SQLi), Command Injection (CI), Cross Site Script-
ing (XSS), etc.), which occur when entries are not validated.
Therefore, this article focuses on the analysis of vulnera-
bilities that can be mitigated by the validation and sanitiza-
tion of input parameters in web applications. At the end of
this proposal the generic filter in combination with OWASP
framework could mitigate common injection attacks with
98.4% accuracy. Summing up, the main contribution of this
paper is to design a simple, fast, and highly reliable filter

10378 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3681-2572
https://orcid.org/0000-0002-0197-8663
https://orcid.org/0000-0002-5962-4147
https://orcid.org/0000-0001-7573-6272

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

for stopping common injection attacks in web applications
through a set of rules based on several regexes and other
decisive settings.

The remainder of the paper is organized as follows.
Section II presents an analysis of related proposals.
In Section III essential considerations about the filter design
are described. Section IV details filter development and
deployment. Section V provides testing, results, and discus-
sion of the filter performance. Finally, some conclusions and
future works are presented in Section VI.

II. RELATED WORKS
A. BACKGROUNG
Nowadays, web applications, given their exposure to the
Internet, are frequently targeted by attackers exploiting criti-
cal vulnerabilities. This has increased efforts to mitigate vul-
nerability attacks. The work in [5] presents the classification
of web applications attacks into six categories: command exe-
cution attack, information disclosure, logical attacks, authen-
tic based attack, authorization based, and client based attack.
Figure 1 shows the above-mentioned classification:

FIGURE 1. Classification of web attacks [5].

In the following, we present an analysis of related works.
At the end of the section, we includes some comparison tables
of our proposal as regards some of the analysed works.

According to Barabanov et al. [6], the most success-
ful attacks are: XSS, Cross-site request forgery (CSRF),
enhancement of privileges related to circumvention of secu-
rity functions, denial of service attacks, disclosure of critical
software information in error messages and SQLi.

In the reference document [7], an empirical study of more
than 7000 vulnerabilities related to input validation is carried
out depending on the programming language used for the
web application development. In this experiment, seventy
eight open source web application frameworks are analyzed
for several web programming languages, including: PHP,
Perl, Python, Ruby,.NET, and Java. The results show that
almost 20% of the frameworks do not provide any validation

functionality at all. In fact, only thirty seven studies provided
support for complex input data validation.

When it comes to the validation, sanitization of the param-
eters and verification of the headers of entry in the web
applications, guides that allow us to carry out this work in
an effective way are available.

In their research work, Scott and Richard [8] propose a
generic methodology for web application protection, com-
posed of a descriptor for each one of the parameters sent from
the client, whose control location must be between the client
and the protection application. The theory presented in that
work, is also applied as an additional protection guideline for
each application in our research work. The main difference is
in the proposal of a primary generic defense line not specific
to an application, so, it is not necessary to define each of the
parameters entered to achieve this.

Boyd and Keromytis [9], explain the concept of random
instructions included in a proxy located before a database
engine. This system, named SQLrand, has the functionality to
change the SQL instructions generated in a random way (for
instance, language), in standard SQL sentences for each one
of the database engines. This randomness in language makes
it impossible for attackers to clearly identify the attack vectors
against the database engine, which prevents SQL injection
problems. Using a randomized SQL query language it is
possible to detect and abort queries that include injected code.

Wassermann and Su [10], present an input parameter static
analyzer, which looks for attack patterns especially SQL
injection. It has not yet been tested in the field but the first
results have yielded good theoretical results.

Ismail et al. [11], propose having a local proxy on the client
side, which allows intercepting requests and responses that
are exchanged with the Web Server. This local proxy would
be in charge of stopping XSS attacks, with the particularity
that the load of this work would be assumed by the client
computer and by the server side.

The work of Buehrer et al. [12], presents a validation
option against SQL injection attacks. It consists of carrying
out a syntactic analysis tree of each of the SQL sentences
that are expected to be executed in a given application. Its
structure is stored and compared with the resulting sentence
after injecting the input parameters. In case the structure tree
does not coincide with the stored one it is almost certain that
an attack is being faced and therefore the query is rejected and
will never be executed. The authors assert that ‘‘it is more
effective to measure the results of the input than to attempt
to validate the input before inserting it into the proposed
query.’’

In their work, Liu and Tan [13] define the paths of the
data input in the code through evaluation states called nodes,
from which test cases can be generated, that can indicate if
any input data might alter the normal running of a program.
This research work is directed towards an early correction of
vulnerabilities in the input data (during the implementation
of the applications), to able to serve as a computer auditing
tool. However, their research does not provide data on the

VOLUME 9, 2021 10379

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

effectiveness of the proposed method for avoiding vulnera-
bilities in the input data.

In Park and Park [14], WAIDS (Web Application Intrusion
Detection System) is presented. That system analyzes user
entries, comparing them against predefined normal entry pro-
files and focusing on profiles different from those expected,
whereby which detecting possible attacks and stopping them.
The authors have managed to distinguish data entry pro-
files quite well to such an extent that false positives are
significantly reduced.

In Aljawarneh et al. [15], a semantic data validator is
created as a service for web applications, placing markers in
the fields of the forms that definemaximum length, minimum
length, accepted characters and data type. Those markers are
used as criteria to accept or reject the data entered in the form.
This semantic data validator consists of an RDF (Resource
Description Framework) for web page annotations, an HTTP
interceptor, a data extraction RDF, a text analysis RDF, and
a validator module. The results of this validator provide
detection and prevent most web application attacks, much
needed, according to the authors, to improve effectiveness
and performance.

The authors of Scholte et al. [16], present another alter-
native for input validation, through a prototype developed in
PHP, with principles of data type self-learning and known
validation vector application, rendering 83% effectiveness
against known SQL injection attacks and 65% in XSS
attacks. That development was named as IPAAS (Input
Parameter Analysis System). In order to fulfill its objective,
it consists of 3 phases that are: extraction of the input param-
eters, ascertainment of the type of data within the identi-
fied parameters, and finally, application of known vectors
against the 100 known vulnerabilities for SQL and XSS
injection.

An analysis of web filtering rules is performed in [17].
Authors propose an improved method to detect only XSS
vulnerabilities based on the attack vector designed and imple-
mented in the application layer. However, that is not a
protection filter.

A filtering API for XSS attacks based on white lists is
proposed in Dalai et al. [18]. It filters server responses rather
than user input, so it requires no modifications on the client
side. Since it is implemented on the server side, it will only
detect and block server side XSS attacks. It will not mitigate
DOM-based XSS attacks.

The OWASP project [1], in its description of injection
attacks, gives a general idea, and indicates that "injection pre-
vention requires keeping data separate from commands and
queries". This general idea encompasses the usage of Secure
APIs, whitelisting, and other length controls and SQL syntax.
Besides, there are tools on themarket that offer configurations
to create a filter, among them are:
• Datapower IBMSupport [19], [20]: IBMSOA integrator
hardware, which brings XML files with patterns against
SQL injection, XSS, as well as protection against denial
of service attacks. It can be worked with the default

XSL filter or create one to measure, reading the XML
patterns, as appropriate.

• PHP fllter_var Brady [21]: it uses a PHP filter_var
function which, under the security parameters for input
validation protection described above, allows web appli-
cations developed in PHP to have a means of protection
against injection and XSS attacks.

• Spring 3 Validation Johnson et al. [22]: it is one of
the most popular frameworks for developing Java lan-
guage applications. It allows the validation of each of
the parameters of a bean. These validations can be of
length, type of data, patterns, etc., allowing an option
for the validation of the input parameters for the created
web applications based on Spring.

B. SIMILAR WORK COMPARISON
Tirronen [23] presents a proposal based on the analysis of
structured data, in order to minimize attacks. The data is orga-
nized as an abstract syntax trees (ASTs). The performance of
this proposal is not discussed quantitatively.

In [24] a study based on various machine learning tech-
niques to identify SQL injections is presented. The study
trains and tests with PHP code files. Two scenarios are pro-
vided using two feature data sets for the machine learning
techniques. In terms of accuracy, the three best results are
when using: Support Vector Machines (SVM), Multilayer
Perceptron, and Convolutional Neural Network (CNN).

Aliero et al. in [25] proposes a method with the phases
crawling, attacking analysis and reporting to stop SQL injec-
tions. It is tested in three web applications. This proposal
obtains a precision equal to one.

At last, Venkatramulu and Guru [26] propose a Rule based
PAttern Discovery (RPAD) for input type validation vulnera-
bilities. They propose to use it as a network IDS that allows
the detection of vulnerabilities in the input validation. They
carried out an experimental study with a dataset composed
of 2,783 attack patterns extracted from NIST CVE entries
and 512 normal patterns extracted from 7 real-time web
applications. The precision obtained was 0.95.

Table 1 shows a comparison of the solutions described
above as regards our proposal.

As it can be observed, in the previous table, the results
obtained with the filter proposed in this article, based on
the metrics (Precision, Recall and F-measure) are better than
those obtained in the references [24] and [25] and similar to
those obtained in RPAD [26].

C. WAF COMPARISON
Another different device, that is also used to defend against
web applications attacks, is the Web Application Firewalls
(WAF) [27]. It consists of a web server module or plugin
that inspects HTTP/HTTPS traffic between a client and a
server. It is based on a set of rules that allow detecting
and blocking the most common attacks such as SQLi and
XSS, input parameter manipulation, cookie hijacking, etc.
It is indicated in this paper that the rule set of this type of

10380 VOLUME 9, 2021

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

TABLE 1. Comparison of our filter with other similar works.

device requires a high maintenance cost, which is not an
effective enough device to protect web applications and it
should be complemented by a signature-based system. Since
web applications are developed specifically for a particular
organization, traditional signatures that detect attacks on web
applications are not effective.

In the article by Razzaq et al. [28] a comparison of dif-
ferent WAF solutions, both commercial and open source,
is presented (F5, Barracuda,Web Sniper, i-Sentry, Secure IIS,
Easy Guard, Web Defend, Secure Sphere, Anchiva, Profanes,
Citrix, WebApp secure, eServer Secure, Server defender AI
and Mod Security). This comparison is made at the level of
their specifications and most important characteristics, not
providing real data on their effectiveness against different
types of web applications attacks. That does not allow a
precision1 comparison between their results and those of
ours.

The work of Holm and Ekstedt [29], present a study
with real data on the effectiveness of various WAF devices
(DenyAll rWeb, Imperva SecureSphere and Barracuda 660)
against injection attacks. It was conducted by professional
pentester using 16 different operational scenarios. The results
of that study were reviewed and validated by a group
of 49 experts, without using any objective metrics such as
false positives, false negatives, etc. An accuracy of 80% was
obtained with all this prevention countermeasures actives.
If we compare it with the accuracy obtained with the filter
implemented and described in this article, we observe that it
is 98,4% much higher than the one indicated above.

An improvement in the effectiveness of WAF devices is
the solution proposed in [30], called ANNbWA, based on
the implementation of an Artificial Neural Network (ANN)
to protect applications against SQLi and XSS attacks. The
solution has an accuracy of 100% for XSS attacks and 98,5%
for SQLi attacks. Compared with the filter proposed in this
article, the solution has an accuracy of 100% for XSS attacks
and 95% for SQLi attacks. The results are the same for XSS
attacks and slightly worse for SQli attacks.

A similar work is carried out by Ito and Iyatomi [31],
in which a WAF device based on a Character Level

1Precision is defined by the ratio of true positives (The attack exists, and
the request is stopped) to total number of attacks per 100 (%)

Convolutional Neural Network (CLCNN) is presented. The
network was trained with a dataset that includes 36,000 nor-
mal traffic and over 25,000 malicious traffic. The accuracy
obtained in this training was 99,8% compared to 98,4% given
with the filter proposed in this article. However, that solu-
tion [31], has not been evaluated in a real situation unlike the
filter that as indicated below is working in a company in the
banking sector. The main drawback of that solution is that it
only detects the attack but does not block it. This could be the
cause of his low processing time.

In [32], a WAF is developed to detect new types of
attacks that do not require signature updates, using a
back-propagation neural network. That solution has an accu-
racy of 95%.

Last, Tekere and Bay [33] present a WAF that performs
signature-based detection and prevention of Web attacks
using a hybrid model that uses signature-based detection
and anomaly-based detection implemented by a neural net-
work. The results of accuracy against web application attacks
obtained were 96,5%.

Table 2 shows a comparison of the accuracy of the solutions
described above. It can be concluded that our filter presents
a greater accuracy than some commercial WAFs. The same
conclusion holds for similar to those of an experimental
nature including techniques of artificial intelligence.

Based on all the above, we deduce that a generic filter to
protect against injection attacks does not exist. This is due to
the little or no validation of the imputs in the Web applica-
tions. However, there are directives offered by organizations
dedicated to the defense of this type of application, as is the
case of the OWASP and its entry validation reference sheet.
Unlike the options that exist on the market, explained in this
section, our research work presents a generic filter for any
web application developed on any platform, with a generic
configuration against common injection attacks and whose
protection can be generalized (without depending on specific
web application conditions). This means having a first line of
defense that can be complemented with any of the solutions
described above, as well as with secure programming prac-
tices. Therefore, we consider that our proposal contributes to
the community in reducing injection attacks.

III. FILTER DESIGN CONSIDERATIONS
The objective of this research work is to develop a generic
filter, with effective protection (accuracy) of at least 98,4%
against common injection attacks. In order to get it, our
filter ues regular expression, sanitizing known words in injec-
tion attacks, whose combination used as described in this
work allows it to be integrated into web applications in a
transparent way to protect all their input fields and avoid
injection vulnerabilities. The following considerations are
taken into account for the fitler design and to fulfill our
objective:

1. The first consideration is what we are going to protect
within the web applications: wemust return to the basic
concept of security, essential for this research work

VOLUME 9, 2021 10381

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

TABLE 2. Comparison of our filter with WAFs works.

concerning web applications, which is ‘‘do not trust
any parameter sent from the client to the web server,
as it is susceptible to alteration’’. From this concept,
our proposed filter considers validating HTTP headers,
cookies, parameters (forms and query string), JSON
and XML. URL parameters are not included in our
generalization as their structure is unique to each web
application.

2. The second consideration is ‘‘?‘What can we gener-
alize?’’. This is a central question from the OWASP
directives mention Wichers [34]: validation of data
types, validation of length based on a minimum and
maximum dimension, the definition of valid known
strings, regular expressions to define allowed strings,
validation of JSON and XML requests with schemas,
among others. All the directives indicated in previous
paragraphs are valid and essential. However, for the
development of the filter there must be the validation
JSON, XML through schemas, allowance for the defi-
nition of characters, through the use of regular expres-
sions and sanitization of reserved words (commonly
used in injection attacks), the rest will depend on the
correct use of each application.

3. The third consideration is about Technologies: For the
filter, Java (a widespread language for web develop-
ment), for the framework for input protection, in this
case, OWASP Stinger and finally for the server to
mount the filter configured as a module, Jboss/Wildfy.

4. As a fourth consideration, all the data that comes in a
web request should be considered as input. In our filter
we detail the following ones:

a. HTTP headers: User-Agent, Content-Type, Host,
among others, each of them configured with the
regular expressions that are identified as expected
strings in each web application. A generic config-
uration is not placed in the filter, but support is
given to perform the suggested configuration.

b. Cookies: The Java object ServletRequest is where
the requests will be captured. This object has the
characteristic of omitting cookies whose values
have blank spaces. If the value of the cookie is
encrypted (encoded in base64 or hexadecimal,
or any other), every application should be respon-
sible for the verification of the expected values.

c. Parameters of an HTTP request: In an ideal sce-
nario, the information between client and server
is transmitted with alphanumeric characters and
basic punctuation marks. The permissibility of
the rest of the characters must be specified in the
fields of each application, and as well the valida-
tion about if the information is correct for one of
these fields is delegated to each application.

d. JSON/XML: Modern applications increasingly
tend to handle an exchange of JSONmessaging or
XML. To validate everything that is transmitted
with JSON/XML, we incorporate the schemes
validation in our filter.

IV. FILTER DEVELOPMENT AND DEPLOYMENT
In this section, first, we present the details of the development
and deployment of the proposed filter, and then, we show the
analysis, tests, and the results of our proposal.

For the development of our generic filter, we have worked
over the OWASP Stinger 2.x framework. Furthermore, as we
mentioned before, we have extended the functionality sup-
porting JSON and XML schemes’ validation.

The proposed filter has an external configuration file,
which is structured in six important sections: regex, cookie
rule, parameter rule, header rule, JSON rule, and XML
rule; and four concepts: SANITIZATION, FILTER SET-
TINGS, FILTER AS JBOSS/WILDFLY MODULE and
CONTROLLER. In the following, we describe these sections.

A. REGEX SECTION
In this section, the regular expressions to be used in the
validation of the entries in headers, parameters and cookies
are configured. We use the PERL syntax that is compati-
ble with Java package java:util:regex defining four general
expressions.

1) SECURE TEXT
Describe the minimum necessary characters to transfer infor-
mation between client and application web, covering english
and spanish. Here it is relevant to mention that it started only
with alphanumeric characters and spaces.

Regex 1.
^(|[a-zA-Z0-9ñÑáÁéÉíÍóÓúÚ._!?]+)$

10382 VOLUME 9, 2021

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

2) RESERVED WORDS
Reserved words commonly used in SQL and XSS injection
attacks are defined. Many of these words are also used in the
component IBM DATAPOWER to filter this type of attack.
These reserved words are: select, update, delete, insert, pro-
cedure, create, alter, analyze, call, commit, drop, grant, purge,
revoke, execute, union, exec, exec sp, exec xp, or, and, like,
javascript, and script. They are defined in Regex 2.

Regex 2.
(\s+([Ss][Ee][Ll][Ee][Cc][Tt]|[Uu][Pp][Dd][Aa][Tt]
[Ee]|[Dd][Ee][Ll][Ee][Tt][Ee]|[Ii][Nn][Ss][Ee][Rr]
[Tt]|[Pp][Rr][Oo][Cc][Ee][Dd][Uu][Rr][Ee]|[Cc][Rr]
[Ee][Aa][Tt][Ee]|[Aa][Ll][Tt][Ee][Rr]|[Aa][Nn][Aa]
[Ll][Yy][Zz][Ee]|[Cc][Aa][Ll][Ll]|[Cc][Oo][Mm][Mm]
[Ii][Tt]|[Dd][Rr][Oo][Pp]|[Gg][Rr][Aa][Nn][Tt]|[Pp]
[Uu][Rr][Gg][Ee]|[Rr][Ee][Vv][Oo][Kk][Ee]|[Ee][Xx]
[Ee][Cc][Uu][Tt][Ee]|[Uu][Nn][Ii][Oo][Nn]|[Ee][Xx]
[Ee][Cc]|[Ee][Xx][Ee][Cc]\s[Ss][Pp]|[Ee][Xx][Ee]
[Cc]\s[Xx][Pp]|[Oo][Rr]|[Aa][Nn][Dd]|[Ll][Ii][Kk][Ee])
\s+|\s∗([Jj][Aa][Vv][Aa][Ss][Cc][Rr][Ii][Pp][Tt]|[Ss]
[Cc][Rr][Ii][Pp][Tt])\s∗))

3) USER AGENT
Regex 3 is a generalized regular expression for defining
user-agent header. It has been tested against a database
of 9219 user-agent headers and represents the most common
user-agent.

Regex 3.
^[a-zA-Z]+/[\d.]+()[a-zA-Z0-9.\-:_/\[\]\(\),;\+]∗$

4) COOKIE
All alphanumeric and encoding characters (base64, URL
encode, hexadecimal, and encryption) are supported. This is
represented in Regex 4.

Regex 4.
^[a-zA-Z0-9/\+ =._\-%]+$

B. COOKIE RULE SECTION
This section is built with a default validation called COOKIE
ALL, in which once the entry is validated, it goes through the
sanitization process based on the reserved words.

C. PARAMETER RULE SECTION
This section is modified by adding the flag sanitized, which
is set to TRUE value. Therefore, the input parameters are
sanitized after passing the regex validations.

D. HEADER RULE SECTION
This section has been created for the validation and san-
itization of the values of the different HTTP headers to
be used in web applications, under the same principle of
allowed values, associated by name and URI. Within the
XML configuration file for this section, the ‘‘Missing’’ and
‘‘Malformed’’ concepts of the Stinger implementation are
handled.

E. JSON RULE SECTION (NEW)
The best strategy to validate JSON messaging under the
OWASP security parameters (type, length, accepted string,
etc.) is the use of schemas, which is currently in draft-07. The
JSON Schema documentation mentions: "JSON Schema is a
vocabulary that allows annotations and validations of JSON
documents Wright and Andrews [35]. To use this feature in
the proposed filter, the following is done:

1) JSON TAG
Define the JSON tag in the configuration XML file with the
name JSON ALL.

2) CONTENT-TYPE HEADER
JSON messages arriving at the filter must contain the
Content-type header with the value application/JSON.

3) MISSING CONCEPT
The ‘‘Missing’’ concept (brought from Stinger implementa-
tion), serves to indicate what actions to take when a JSON is
expected in the body of the petition, but this arrives empty.

4) PROCESSED CONCEPT
This concept allows configuring JSON’s validation action
against a predefined scheme for messages, whose location is
fixed in a protected directory. The schema name is associated
with the service name key in the root of the same JSON mes-
sage. This parameter is also validated and sanitized before
being used.

F. XML RULE SECTION (NEW)
The OWASP, in its validation sheet, recommends that the val-
idation of XML messages should be done through schemas.
To use this feature in this experimental prototype, the follow-
ing is done:
• Define the XML tag in the configuration XML file with
the name XML ALL.

• The XML messages that arrive at the filter must contain
in the header Content-type with the pattern /XML.

• ConceptsMissing and Processed are handled in a similar
way for JSON Rule Section.

G. SANITIZATION
The process of sanitization of headers, cookies, and parame-
ters, consists of the removal of reserved words from strings
before passing them to the web application for processing.
The regular expression that represents the reserved words is
configurable according to the need if our proposal Regex 2 is
not used.

H. FILTER SETTING
The initial configuration of the filter is required and included
it within a web application. This configuration is done in the
WEB.xml file, where the filter and URLs to be protected
are defined. The filter definition accepts the following three
parameters:

VOLUME 9, 2021 10383

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

TABLE 3. Stinger module configuration modified as Jboss/Widlfy module.

1) CONFIG
Indicates the path and name of the XML file where the
validation rules are configured.

2) ERROR PAGE
Indicates the name of the web page that will be redirected in
case the filter detects an inconsistency.

3) RELOAD
It is a boolean parameter that indicates whether the XML
configuration file is read in each request or not.

The filter has a customization section that can be adjusted
to each product’s reality. A validator can be configured to
first allow decoding (either url encoding, base64, any type of
encryption, etc.) and then apply data type validation, regular
expression, and length. Therefore, it is not a problem for the
filter to have it encoded.

I. FILTER AS JBOSS/WILDFY MODULE
The installation of the modified Stinger library is done
in Jboss/Wildfy module mode. It can be available for an
entire domain/host controllers infrastructure. In this way, it is
avoided adding the library for each web application to be
protected. Besides, it will have a single point of update of
the library. To configure the Stinger library as a module in
Jboss/Wildfy the next steps described below were followed:

1. Create the directory
‘‘../module/com/<yourcompany>/configuration/
main/’’

2. Create module.xml file with the structure and informa-
tion shown in Table 3.

3. Paste the file S-Stinger.jar into the directory created in
the first step.

4. Finally, place the jboss-deploymentstructure.xml file
inside the WEB-INF folder, with the contents as
in Table 4.

J. CONTROLLER
The component controller is a reverse Proxy Servlet. It was
created for testing web applications programmed in any

TABLE 4. Content of jboss-deployment-structure.xml.

language. Its main function is to redirect the client’s requests
to the filter validator. If this request is valid, then it lets the
request pass to the web application.

The controller is configured between the client and web
applications. It receives all requests, and before passing them
to the application, validates the entries against the security
filter. If the filter detects an injection attempt, it rejects the
request with a 400 HTTP response code, and returns an error
message to the client. Show Figure 2.

All sections and concepts above described were the basis
for experimentation in protecting against common web appli-
cation injection attacks.

For a better understanding of the interaction between the
filter components and their flow in Jboss/Wildfy the diagrams
in Figures 3 and 4 are depicted.

V. RESULTS AND DISCUSSION
This section provides an evaluation of the implemented proto-
type of our filter, detailing the testing, results, and discussion
of the filter performance.

The proposed filter is evaluated from two points of view:

1. Capability to detect and stop common injection attacks.
The proposed filter has been tested in three public
applications created for this type of test, and in an
application of a private company in a real environment.

2. Performance in a concurrent environment. This point
is important because the filter is designed for any web
application, whether it is web banking, service, etc.
applications. Therefore it is important that it does not
degrade the response of customers using these applica-
tions even in times of high concurrence.

A. CAPABILITY TO DETECT AND STOP COMMON
INJECTION ATTACKS
The capability of our proposal to detect and stop common
injection attacks has been tested on three public and one
private web applications. All three public applications are
known to have these types of vulnerabilities. The private
application, on the other hand, has been developed using
good programming practices. To perform the tests on the
public web applications, the OWASP ZAP tool has been used
to automate hundreds of requests in a short period, and a
dynamic analysis has been performed to capture the results.
Meanwhile, the tests on the private web application have been
performed in a production environment and for one year.

The process for testing the three public web applications
was:

10384 VOLUME 9, 2021

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

FIGURE 2. Component diagram – interaction controller.

FIGURE 3. Diagram of sequence – interaction between client, filter and web application.

FIGURE 4. Diagram of sequence – ‘‘first request’’ square in Fig. 2.

1. Choose three web applications that are vulnerable to
injection attacks.

2. Configure the OWASP ZAP tool [36], setting the con-
text (allows automating the scanning of the internal
pages after login), and policy scan (it’s a set of real and

common injection attacks with the default threshold,
strength and quality).

3. Register the dynamic analysis (DAST) of these appli-
cations without the protection filter. Then, configure
the filter like a jboss/wildfy module in each web

VOLUME 9, 2021 10385

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

application, as it was described in the prior section, and
register DAST with the protection filter.

1) WEB APPLICATIONS FOR TESTING
Three web applications for testing were selected, considering
to be applications that have injection vulnerabilities, and
they are chosen at random. The selected applications were:
Webgoat OWASP [37], Badstore Roemer [38], and bWap
Mesellem [39].

2) CONTEXTS IN ZAP TOOL OWASP
Use the OWASP ZAP tool for security tests [36]. The steps
for the tests to be performed with this tool are the following:
• Configure the ZAP tool as a proxy on a free port (for
example 9191).

• The default scan policies are used in ZAP tool, since they
include all injection types.
– Threshold equal to Default: the default value is

‘‘medium’’. It is acceptable because if we set a low
level, we could have many false positives, and a
high level could cause many vulnerabilities not to
be reported.

– Strength equal to Default: this setting determines
the number of attacks that the ZAP tool must per-
form to

– determine vulnerability. The default value is the
mean value (approximately 12).

– Quality equal to Release: this parameter indicates
how mature the rule for determining a vulnerability
is. The release represents the rules that have been
extensively tested and mature, which are precisely
the ones that fit the purpose of our experiment.

• Activate proxy through browser settings.
• Configure Servlet Reverse Proxy (with/without activat-
ing filter).

• Place the Servlet Reverse Proxy URL and start captur-
ing the authentication process in each of the selected
applications. The authentication of each application con-
sists of a login form URL, a validation request, and a
final page once authenticated. With the authentication
requests, a context for each web application is defined.

• Explore applications for all pages that are known to have
injection vulnerabilities beforehand so that the ZAP tool
can save it and then target attacks and exploit these
vulnerabilities.Select the context and startup request for
each application and start the attacks: Spider, AJAX Spi-
der, Active Scan and in some cases fuzz (under analysis).

• The previous step is performed, for each applicationwith
and without filter activated in our Reverse Proxy Servlet.

3) DYNAMIC ANALYSIS WITH/WITHOUT THE FILTER
PROTECTION
A success attack tested without using the filter is considered
an existing attack. Therefore, the vulnerabilities are known,
and the attacks tested with the filter can be classified accord-
ing to a confusion matrix [40]:

TABLE 5. WebGoat application results.

a) True Positive (TP): Right. The attack exists, and the
request is stopped.

b) True Negative (TN): Successful. The attack does not
exist, and the request is not stopped.

c) False Positive (FP): Leftover. The attack does not
exist, but, the request is stopped.

d) False Negative (FN): Fault. The attack exists, but the
request is not stopped.

Tables 5, 6, and 7 show the evaluation of the three selected
applications:Webgoat, Badstore, and bWap, respectively. It is
reported: the number of successful attacks when the web
application is configured without the filter protection (With-
out filter); the number of successful attacks when the web
application is configured with the filter protection (With fil-
ter); the number of discarded successful attacks (Discarded);
False-Negative (FN); and True-Positive (TP) taking off dis-
carded cases.

Successful attacks using the filter are discarded with the
following criteria:
• The initial filter settings include User-Agent header
protection, form parameters, query string parameters,
cookies, JSON andXMLmessages. All other cases (e.g.,
URL parameters), require criteria of each application.
Therefore, all attacks that could not be stopped, but do
not enter inside the scope of the filter, will be discarded.

• Attacks that included blank spaces in the cookie values
are also discarded, as these values are omitted by the
javax.servlet.ServletRequest object, which handles the
requests in this prototype. In other words, the web appli-
cation simply did not receive the manipulated cookie as
described at this point. If this cookie is not used in the
web application, it returns a valid response, and ZAP
takes it as a successful attack.

Concerning the results when testing the WebGoat web
application, as shown in Table 5, there were 313 successful
attacks without the filter activated, 300 rejected by the filter,
and 13 successful; 10 discarded, and only 3 false negatives.

10386 VOLUME 9, 2021

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

TABLE 6. bWAPP application results.

TABLE 7. Badstore application results.

Table 6. shows the results when testing with the bWAPP
web application. A total of 229 successful attacks to
the bWAPP web application without the filter activated,
215 rejected by the filter, 14 successful; 6 discards and 8 false
negatives.

Table 7. shows the results when testing with the Badstore
web application. The vulnerability found without the filter
is registered. A total of 54 successful attacks were recorded
without the filter protection, and all the events were rejected
by the filter.

To assess the effectiveness of the filter against injection
attacks in the input of a web application, we also apply the
metrics Precision [40], AcurRecall [40], F-measure [40] and
Defensive Efficiency [41].

The recall is the hit rate for filtering vulnerabilities. It is
given by the ratio of correctly detected attacks and the total
number of known attacks. It is also known like True Positive
Rate (TPR) or Sensitivity. This relationship is represented by
the mathematical formula in (1).

Recall =
TP

TP+ FN
(1)

Accuracy is given by the relationship in the proportion
of correct detected attacks (both true positives and true

negatives) among the total number of attacks. This relation-
ship is represented by the following mathematical formula
in (2).

Accuracy= (TP+TN)/(TP+FN+TN+FP)×100 (2)

The value of 1 in accuracy indicates that we do not have
false positives, but there exists the risk of passing many
vulnerabilities undiscovered.

Precision is the rate of correct detection of attacks. It is
given by the relationship between correctly detected attacks
and the number of total attacks and the number of total
attacks detected. It is also known like Positive Predictive
Value (PPV). This relationship is represented by the follow-
ing mathematical formula in (3).

Precision =
TP

TP+ FP
(3)

In work [37], F-measure is defined as ‘‘a harmonic
measurement of precision and recall values.’’ The harmonic
average is more intuitive than the arithmetic average when
calculating an average of ratios. This relationship is repre-
sented by the mathematical formula in (4).

F = 2 ·
precision · recall
precision+ recall

(4)

Defensive Efficiency is the rate with which the filter man-
aged to stop common injection [38]. It is calculated with the
formula in (5).

DE =
attacks− successattacks

defensive
× 100%, (5)

where: ‘‘attacks’’ denotes the total of observed attacks, ‘‘suc-
cessattacks’’ refers to the total of observed successful attacks,
and ‘‘defensive’’ means the total of successful defensive
actions.

When all attacks are successful, the defensive efficiency
is zero. For priority defenses, efficiency ranges from 0% to
100%. For preventive defenses, the efficiency tends to be
equal or greater than 100% (the minimum occurs when the
probability of attack prevention is 100%).

As we mentioned, the proposed filter has been tested on a
private web application that provides banking transaction ser-
vices, for a year. The web application has a high transaction-
ality, 213,989,225 requests have been registered from 2016 to
2020, during this period 245 injection attacks were detected
and stopped by the filter. Therefore, the high transaction rate
was composed of valid requests that the filter recognized as
such, without causing a denial of service. In terms of true and
false positive cases (TP, FP, respectively), we had TP= 1, and
FP= 0. Based on which, the filter performance in the private
application is also computed.

Table 8 presents the filter performance according to each
web application and average. It should be clarified that due
to the minimal number of attempted attacks on the private
application, the performance of the private application has
not been considered for the calculation of the average filter
performance.

VOLUME 9, 2021 10387

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

TABLE 8. Filter performance. Average does not take account private rate.

Finally, we include a series of limitations regarding the
solution implemented and presented in this article:
• Filtering using regular white list expressions can pro-
hibit benign strings if they have not been included in
the list. This problem can be solved by observing false
positives and debugging the corresponding expressions.

• The inclusion of validation of XML and JSON objects
through their schemasmay be insufficient if the schemas
themselves do not include proper validation of the
data with regular expressions. Another limitation is
that a schema may or may not include blacklisted or
white-listed regular expressions for input and output
data validation.

B. FILTER LOAD TESTS
In order to complete this experimental prototype, it is impor-
tant to perform load tests to analyze the supported concur-
rency. The load tests help to determine the maximum number
of concurrent requests supported by the filter. The results can
help in making infrastructure decisions (have one or more
customer service lines) depending on each web application.

In our case, we will test load for requests with parameters,
JSON, and XML content, under the following computer con-
figurations: Processor Intel(R) Core(TM) i7-6700HQ CPU
@ 2.60GHz, 16 GB of RAM, 512 GB of solid-state disk,
Windows 10 Pro 64-bit, and Jboss/Wildfy with 2GB of allo-
cated memory. A Jmeter apache script is created, with three
requests (with parameters, with JSON content and the last one
with XML content).

1) TEST 1
In the first test, 1000 concurrent threads were uploaded in
5 seconds (200 per second), and the scheduler was set to
300 seconds (5 minutes), to maintain the concurrency of the
1000 threads. The response time is plotted in Figure 5. The
aggregate report is given in Table 9.

2) TEST 2
In the second test configuration, 500 concurrent threads were
uploaded in a period of 5 seconds (100 per second), and the
scheduler was set 300 seconds (5 minutes), to maintain the
concurrency of the 500 threads. The response time is plotted
in Figure 6. The aggregate report is given in Table 10.

3) TEST 3
In the third test configuration, 250 concurrent threads were
uploaded in 5 seconds (50 per second), and the scheduler was

FIGURE 5. Response time, test with 1000 concurrent threads. The Y-axis
unit is milliseconds. The X-axis is a timeline. Blue line: request of
http-form. Red line: request of HTTP-JSON. Green line: request of
HTP-XML.

TABLE 9. Aggregate report with 1000 concurrent threads.

TABLE 10. Aggregate report with 500 concurrent threads.

set 300 seconds (5 minutes), to maintain the concurrency of
the 250 threads. The response time is plotted in Figure 7. The
aggregate report is given in Table 11.

10388 VOLUME 9, 2021

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

FIGURE 6. Response time, test with 500 concurrent threads. The Y-axis
unit is milliseconds. The X-axis is a timeline. Blue line: request of
http-form. Red line: request of HTTP-JSON. Green line: request of
HTP-XML.

FIGURE 7. Response time, test with 250 concurrent threads. The Y-axis
unit is milliseconds. The X-axis is a timeline. Blue line: request of
http-form. Red line: request of HTTP-JSON. Green line: request of
HTP-XML.

TABLE 11. Aggregate report with 250 concurrent threads.

The following should be noted:
a. All three tests have 0% error, which means that the web

server never stopped responding

b. From the analysis of tests 1 to 3 we can say that we
can use our filter with 500 concurrent requests without
passing the half second increase in processing.

c. The processing of each request in a sample of 100 indi-
vidual non-concurrent requests takes an average
of 50 ms.

VI. CONCLUSION AND FUTURE WORKS
This section concludes the paper and list some future
works.

A. CONCLUSION
Considering the objective of this wok, we have achieved a
relevant contribution, the design of a filter for stopping injec-
tion attacks in web applications through a set of rules based
on regexes and other decisive settings. Thus, by analyzing the
results of this work we can conclude:

• It is possible to create a filter that is effective (98,4%
accuracy) against common injection attacks in web
applications. It has been done through the strategy of
validating all the data that comes in an HTTP request
(headers, parameters), with fair regular expressions for
each field (only what is expected) and sanitizing com-
mon words used in injection attacks. Most of the related
studies are focused on protecting a specific type of
attack, while in our work we have shown that with our
strategy we can effectively prevent most of the common
injection attacks.

• On the one hand, the proposed filter presents a bet-
ter accuracy than some commercial WAFs and similar
accuracy those of experimental character that include
techniques of artificial intelligence. On the other hand,
the proposed filter, compared to other filter-based solu-
tions, shows better results than those obtained in the ref-
erences [24] and [25] and close results to those obtained
in [26].

• The average filter processing time is less than half a
second, allowing web applications to improve security
without affecting response times to end-users. This has
been another important advantage to using it in a pri-
vate high transactionality web application of banking
services.

• Simple solutions applied in the appropriate way can
allow correcting big security problems on web appli-
cations. The basic strategy proposed in this work can
lead to getting anapplication on-line with the confidence
that they will be effectively protected against common
injection attacks.

B. FUTURE WORKS
This section proposes improvements to the present work, with
regards to the initial results of which are quite promising.
Among what is expected to advance, the following points are
being considered:

VOLUME 9, 2021 10389

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

• The advance of the Web applications, as now it includes
URL parameters, and with the time it is necessary to
complement the development of the filter to protect this
type of parameters under the methodology raised in the
present work.

• Compute the size of the sample of web applications
to be tested, in order to generalize the basic configu-
ration of protection against injection attacks (starting
point).

REFERENCES
[1] OWASP. (2017). Top 10-2017 A1-injection. 2017. [Online]. Available:

https://www.owasp.org/index.php/Top_10-2017_A1-Injection
[2] OWASP. OWASP Stinger Version 2. Accessed: Jan. 10, 2021. [Online].

Available: https://www.owasp.org/640index.php/OWASP_Stinger_
Version_2

[3] N. Salnikov-Tarnovski. (2017). Most Popular Java Application Servers:
2017 Edition. [Online]. Available: https://dzone.com/articles/most-
popular-java-application-servers-2017-edition

[4] J. D. V. Mohino, B. Higuera, B. Higuera, and S. Montalvo, ‘‘The appli-
cation of a new secure software development life cycle (S-SDLC) with
agile methodologies,’’ Electronics, vol. 8, no. 11, p. 1218, Oct. 2019,
doi: 10.3390/electronics8111218.

[5] H. Homaei and H. R. Shahriari, ‘‘Seven years of software vulnerabilities:
The Ebb and flow,’’ IEEE Secur. Privacy, vol. 15, no. 1, pp. 58–65,
Jan. 2017.

[6] A. Barabanov, A. Markov, and V. Tsirlov, ‘‘Statistics of software vulner-
ability detection in certification testing,’’ in Proc. Int. Conf. Inf. Technol.
Bus. Ind., Tomsk, Russia, 2018, vol. 1015, no. 4, pp. 1–9.

[7] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, ‘‘An empirical
analysis of input validation mechanisms in Web applications and
languages,’’ in Proc. 27th Annu. ACM Symp. Appl. Comput. (SAC).
New York, NY, USA: Association Computing Machinery, 2012,
pp. 1419–1426, doi: 10.1145/2245276.2232004.

[8] D. Scott and R. Sharp, ‘‘Abstracting application-level Web security,’’ in
Proc. 11th Int. Conf. World Wide Web (WWW), New York, NY, USA, 2002,
pp. 396–407, doi: 10.1145/511446.511498.

[9] S. W. Boyd and A. D. Keromytis, ‘‘Sqlrand: Preventing SQL injection
attacks,’’ in Applied Cryptography and Network Security, M. Jakobsson,
M. Yung, and J. Zhou, Eds. Berlin, Germany: Springer, 2004, pp. 292–302,
doi: 10.1007/978-3-540-24852-1_21.

[10] G. Wassermann and Z. Su, ‘‘Sound and precise analysis of Web applica-
tions for injection vulnerabilities,’’ in Proc. ACM SIGPLAN Conf. Pro-
gram. Lang. Design Implement. (PLDI). New York, NY, USA: Association
Computing Machinery, 2007, pp. 32–41, doi: 10.1145/1250734.1250739.

[11] O. Ismail, M. Etoh, and Y. Kadobayashi, ‘‘A proposal and implementation
of automatic detection/collection system for cross-site scripting vulnera-
bility,’’ in Proc. 18th Int. Conf. Adv. Inf. Netw. Appl. (AINA), vol. 1, 2004,
pp. 145–151, doi: 10.1109/AINA.2004.1283902.

[12] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, ‘‘Using parse tree vali-
dation to prevent SQL injection attacks,’’ in Proc. 5th Int. Workshop Softw.
Eng. Middleware (SEM). New York, NY, USA: ACM, 2005, pp. 106–113,
doi: 10.1145/1108473.1108496.

[13] H. Liu and H. B. K. Tan, ‘‘Automated verification and test case generation
for input validation,’’ in Proc. Int. Workshop Autom. Softw. Test (AST).
New York, NY, USA: ACM, 2006, pp. 29–35, doi: 10.1145/1138929.
1138936.

[14] Y. Park and J. Park, ‘‘Web application intrusion detection system for input
validation attack,’’ in Proc. 3rd Int. Conf. Converg. Hybrid Inf. Technol.,
vol. 2, Nov. 2008, pp. 498–504, doi: 10.1109/ICCIT.2008.338.

[15] S. Aljawarneh, F. Alkhateeb, and E. Al Maghayreh, ‘‘A semantic data
validation service for Web applications,’’ J. Theor. Appl. Electron. Com-
merce Res., vol. 5, no. 1, pp. 39–55, Apr. 2010, doi: 10.4067/S0718-
18762010000100005.

[16] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, ‘‘Preventing input
validation vulnerabilities in Web applications through automated type
analysis,’’ in Proc. IEEE 36th Annu. Comput. Softw. Appl. Conf., Jul. 2012,
pp. 233–243, doi: 10.1109/COMPSAC.2012.34.

[17] J. Liu and Y. Ou, ‘‘An improved XSS vulnerability detection method based
on attack vector,’’ in Proc. Int. Conf. Modeling, Simulation Anal. (ICMSA),
2018, doi: 10.12783/dtcse/icmsa2018/23251.

[18] A. K. Dalai, S. D. Ankusha, and S. K. Jena, ‘‘XSS attack prevention using
DOM-based filter,’’ in Progress in Intelligent Computing Techniques:
Theory, Practice, and Applications (Advances in Intelligent Systems and
Computing), vol. 719, P. Sa, M. Sahoo, M. Murugappan, Y. Wu, and
B. Majhi, Eds. Singapore: Springer, 2018, pp. 227–234, doi: 10.1007/978-
981-10-3376-6_25.

[19] IBM Support. (2019). Configuring the Cross-Site Scripting (XSS) Fllter
on the IBM Websphere Datapower SOA Appliance. [Online]. Available:
http://www01.ibm.com/support/docview.wss?uid=swg21456694

[20] IBM Support. (2019). Customizing Default SQL Injection Protection
on the IBM Websphere Datapower SOA Appliance. [Online]. Available:
http://www-01.ibm.com/support/docview.wss?uid=swg21444739

[21] P. Brady. (2017). Input Validation. [Online]. Available: https://phpsecurity.
readthedocs.io/en/latest/Input-Validation.html

[22] R. Johnson et al. (2009). Spring 3 Validation. [Online]. Available:
https://docs.spring.io/spring/docs/3.0.0.RC2/reference/html/ch05s07.html

[23] V. Tirronen, ‘‘Stopping injection attacks with code and structured data,’’
in Cyber Security: Power and Technology (Intelligent Systems, Con-
trol and Automation: Science and Engineering), vol. 93, M. Lehto and
P. Neittaanmäki, Eds. Cham, Switzerland: Springer, vol. 93, 2018,
pp. 219–231, doi: 10.1007/978-3-319-75307-2_13.

[24] K. Zhang, ‘‘A machine learning based approach to identify SQL injection
vulnerabilities,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), San Diego, CA, USA, Nov. 2019, pp. 1286–1288, doi: 10.1109/
ASE.2019.00164.

[25] M. S. Aliero, I. Ghani, K. N. Qureshi, and M. F. Rohani, ‘‘An algo-
rithm for detecting SQL injection vulnerability using black-box testing,’’
J. Ambient Intell. Humanized Comput., vol. 11, no. 1, pp. 249–266,
Jan. 2020, doi: 10.1007/s12652-019-01235-z.

[26] S. Venkatramulu and R. Guru, ‘‘RPAD: Rule based pattern discovery
for input type validation vulnerabilities detection & prevention of HTTP
requests,’’ Int. J. Appl. Eng. Res., vol. 12, no. 24, pp. 14033–14039, 2017.

[27] S. Khandelwal, P. Shah, M. K. Bhavsar, and D. S. Gandhi, ‘‘Frontline
techniques to prevent Web application vulnerability,’’ Int. J. Adv. Res.
Comput. Sci. Electron. Eng., vol. 2, no. 2, p. 208, 2013.

[28] A. Razzaq, A. Hur, S. Shahbaz, M. Masood, and H. F. Ahmad, ‘‘Critical
analysis on Web application firewall solutions,’’ in Proc. IEEE 11th Int.
Symp. Auto. Decentralized Syst. (ISADS), Mexico City,Mexico,Mar. 2013,
pp. 1–6, doi: 10.1109/ISADS.2013.6513431.

[29] H. Holm and M. Ekstedt, ‘‘Estimates on the effectiveness of Web appli-
cation firewalls against targeted attacks,’’ Inf. Manage. Comput. Secur.,
vol. 21, no. 4, p. 250, 2013, doi 10.1108/IMCS-11-2012-0064.

[30] A. Moosa, ‘‘Artificial neural network based Web application firewall for
SQL injection,’’ Int. J. Comput., Elect., Automat., Control Inf. Eng., vol. 4,
no. 4, pp. 610–619, 2010.

[31] M. Ito and H. Iyatomi, ‘‘Web application firewall using character-level
convolutional neural network,’’ in Proc. IEEE 14th Int. Colloq. Signal
Process. Appl. (CSPA), Batu Feringghi, Malaysia, Mar. 2018, pp. 103–106,
doi: 10.1109/CSPA.2018.8368694.

[32] J. J. Stephan, S. D. Mohammed, and M. K. Abbas, ‘‘Neural network
approach to Web application protection,’’ Int. J. Inf. Edu. Technol., vol. 5,
no. 2, p. 150, 2015.

[33] A. Tekerek and O. F. Bay, ‘‘Design and implementation of an artificial
intelligence-based Web application firewall model,’’ Neural Netw. World,
vol. 29, no. 4, pp. 189–206, 2019, doi: 10.14311/NNW.2019.29.013.

[34] D. Wichers. (2019). Input Validation Cheat Sheet. [Online]. Available:
https://github.com/OWASP/CheatSheetSeries

[35] A. Wright and H. Andrews. (2019). JSON Schema. Accessed:
Mar. 20, 2020. [Online]. Available: http://json-schema.org/

[36] OWASP. (2019). OWASP Zed Attack Proxy Project. [Online]. Available:
https://owasp.org/www-project-zap/

[37] OWASP. (2018). OWASP WebGoat Project. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

[38] K. R. Roemer. (2018). BadStore. [Online]. Available: https://download.
vulnhub.com/badstore/

[39] C. M. Mesellem. BWAPP an Extremely Buggy Web App.
Accessed: Jan. 10, 2021. [Online]. Available: http://www.itsecgames.com/

[40] G. Díaz and J. R. Bermejo, ‘‘Static analysis of source code security:
Assessment of tools against SAMATE tests,’’ Inf. Softw. Technol., vol. 55,
no. 8, pp. 1462–1476, Aug. 2013, doi: 10.1016/j.infsof.2013.02.005.

[41] J. E. Sandoval and S. P. Hassell, ‘‘Measurement, identification and cal-
culation of cyber defense metrics,’’ in Proc. MILCOM Mil. Commun.
Conf., San Jose, CA, USA, Oct. 2010, pp. 2174–2179, doi: 10.1109/
MILCOM.2010.5680489.

10390 VOLUME 9, 2021

http://dx.doi.org/10.3390/electronics8111218
http://dx.doi.org/10.1145/2245276.2232004
http://dx.doi.org/10.1145/511446.511498
http://dx.doi.org/10.1007/978-3-540-24852-1_21
http://dx.doi.org/10.1145/1250734.1250739
http://dx.doi.org/10.1109/AINA.2004.1283902
http://dx.doi.org/10.1145/1108473.1108496
http://dx.doi.org/10.1145/1138929.1138936
http://dx.doi.org/10.1145/1138929.1138936
http://dx.doi.org/10.1109/ICCIT.2008.338
http://dx.doi.org/10.4067/S0718-18762010000100005
http://dx.doi.org/10.4067/S0718-18762010000100005
http://dx.doi.org/10.1109/COMPSAC.2012.34
http://dx.doi.org/10.12783/dtcse/icmsa2018/23251
http://dx.doi.org/10.1007/978-981-10-3376-6_25
http://dx.doi.org/10.1007/978-981-10-3376-6_25
http://dx.doi.org/10.1007/978-3-319-75307-2_13
http://dx.doi.org/10.1109/ASE.2019.00164
http://dx.doi.org/10.1109/ASE.2019.00164
http://dx.doi.org/10.1007/s12652-019-01235-z
http://dx.doi.org/10.1109/ISADS.2013.6513431
http://dx.doi.org/10.1108/IMCS-11-2012-0064
http://dx.doi.org/10.1109/CSPA.2018.8368694
http://dx.doi.org/10.14311/NNW.2019.29.013
http://dx.doi.org/10.1016/j.infsof.2013.02.005
http://dx.doi.org/10.1109/MILCOM.2010.5680489
http://dx.doi.org/10.1109/MILCOM.2010.5680489

S. Ibarra-Fiallos et al.: Effective Filter for Common Injection Attacks in Online Web Applications

SANTIAGO IBARRA-FIALLOS received the B.S.
degree from the National Polytechnic School,
Quito, Ecuador, in 2007, and the master’s
degree from the International University of Rioja,
La Rioja, Spain, in 2018. He is currently a
Researcher and a Senior Software Developer of
Web and mobile bank applications. His interests
include the fields of software security.

JAVIER BERMEJO HIGUERA received the B.S.
degree from Alcala University and the Ph.D.
degree from the Army Polytechnic School. He is
currently a Professor with the Escuela Superior
de Ingeniería y Tecnología, Universidad Interna-
cional de La Rioja. He has authored several pub-
lications. His research interests include the fields
of software security, cybersecurity, and malware
analysis.

MONSERRATE INTRIAGO-PAZMIÑO received
the B.S. degree in computer science engineer-
ing from the National Polytechnic School, Quito,
Ecuador, in 2007, and theM.S. degree in computer
science from the Technical University of Madrid,
Madrid, Spain, in 2012. She is currently pursuing
the Ph.D. degree in computer science with the
Technical University of Madrid. She is currently
an Associate Professor with the Department of
Informatics and Computer Science, National Poly-

technic School. Her research interests include software quality and machine
learning.

JUAN RAMÓN BERMEJO HIGUERA received
the M.Sc. degree in computer engineering and
the Ph.D. degree from the Distance Educa-
tion National University, Spain, in 1998 and
2014, respectively. He is currently the Chief
of the Cybersecurity Unit, National Institute of
Aerospace Techniques, Spain. He is also a Pro-
fessor of applications security in the International
University of La Rioja and also an Associate Pro-
fessor of the Ciberdefence Master Science degree

with the Alcala de Henares University. He has authored several publications.
His research interests include cybersecurity and cyber defense.

JUAN ANTONIO SICILIA MONTALVO received
the B.S. and Ph.D. degrees from the Universidad
de Zaragoza. He is currently a Professor
with the Escuela Superior de Ingeniería y
Tecnología, Universidad Internacional de La
Rioja. His research interests include combina-
torial optimization, computer security, software
development based on mathematical algorithms,
numerical methods, and heuristic techniques for
solving engineering problems.

JAVIER CUBO received the B.S. and Ph.D.
degrees in computer science with the Universidad
de Málaga. He has worked both in academia and
industry. He is currently an Academic Coordi-
nator and the Head of the Software Engineering
and Security Research Group, Escuela Superior
de Ingeniería y Tecnología, Universidad Interna-
cional de La Rioja. He received two scholar-
ships as a Visiting Research Ph.D. Student with
the University College London, and a Postdoctoral

Researcher with the University of Pisa. He has participated in numerous
research projects and conferences. He has authored or coauthored in journals
and international workshops and conferences. His research is focused on
the development of models, methodologies, architectures in software engi-
neering, in the paradigms of service-oriented computing, cloud computing,
big data, the Internet of Things and services, smart cities technologies,
and marketing digital aspects. He is a member of organizing and program
committees and a reviewer of journals over the last years.

VOLUME 9, 2021 10391

