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ABSTRACT Registration of multi-modal images is one of the challenging problems in image processing
nowadays. In this paper, two novel non-rigid registration models are proposed for multi-modality images.
In model 1, mutual information of the template and reference images is used as data fitting term with
Gaussian curvature regularization. This approach may not give satisfactory results in noisy images or images
having bias field. To overcome this drawback, model 2 is proposed which is based on normalized gradient
of both template and reference images as a data fitting term instead of mutual information. To get best
transformations, both the models are minimized by using Augmented Lagrangian Method. The proposed
models can register multi-modality images without effecting edges and other important fine details and are
also tested on various medical images like (T1-T2 MRI, PD weighted-T2 MRI) noisy and synthetic images.
The proposed models are also tested on a well known free available Brainweb dataset, where they produced
satisfactory results. From experimental results, it can be observed that normalized gradient field based model
gives better results thanmutual information basedmodel. Comparison is done qualitatively and quantitatively
through Jaccard Similarity Coefficient.

INDEX TERMS Image registration, multi-modality images, Gaussian curvature (GC), mutual information
(MI), normalized gradient field (NGF), T1-T2 MR images, PD weighted MRI, bias field, augmented
Lagrangian method (ALM), Jaccard similarity coefficient (JSC).

I. INTRODUCTION
Image registration is one of the most important and chal-
lenging task in medical imaging, which aims on finding
an optimal transformation for alignment of different images
data. Image registration is widely used in art, astronomy,
criminology, cartography, computer vision, biological imag-
ing, remote sensing and especially in medical imaging
for diagnosis,monitoring of tumor growth and for therapy
guidance [1]–[5].
General Frame Work: For given template image T and

reference image R, defined on � ⊆ Rd , d ∈ N is the dimen-
sionality of the data with smooth boundary ∂�. In this paper
d = 2 is used and can be generalized to other values of d .

The associate editor coordinating the review of this manuscript and
approving it for publication was Trivikram Rao Molugu.

The basic idea of image registration is to find a transformation
8(u)(·) : � → � such that 8(u(x)) = x + u(x). To find
this, it is enough to find a deformation or displacement field
u : �→ � such that the transformed template image

T (8(u(x))) = T (x + u(x)) = T (u). (1)

becomes similar to the reference image R. Finding u(x) =
(u1, u2) from (1) is an inverse problem, which is usually
modeled in the following way:

min
u

Jα(u) = D(T (u),R)+ αS(u), (2)

This model may be used for registration of both
mono-modality and multi-modality images. In (2), the first
term D(T (u),R) is a fidelity term which measure distance
or similarity between the transformed template image T (u)
and the reference image R. The second term S(u) is a
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regularization term which controls the smoothness of the
deformation field and imparts reasonable transformations
and α > 0 is a trade-off parameter. Regularization term
in inverse problem is always important and challenging and
can make a model more efficient. Some of the well known
regularization terms are diffusion based [6], [7], total varia-
tion based [8], [9], elastic based [10] (low order models) and
curvature based [11], non-linear mean curvature based [12],
linear curvature based [13] andGaussian curvature based [14]
(higher order models).

In mono-modality images, where the intensity ranges are
same and have similar features, either the L1-distance or
L2-distance (sum of square differences (SSD)) between
the transformed template and reference images i.e. D =∫
�
(T (u) − R)2 d� may be used as similarity mea-

sures. However SSD is widely used similarity measure for
mono-modality images. Whereas in multi-modality image
registration, the intensity ranges in the template image T
and the reference image R are not directly comparable i.e.
only the pattern of both images have some resemblance to
each other, not their intensities. That is why, intensities of the
same object in different images are not similar which makes
the registration of multi-modality images a much difficult
task, than the mono-modality case. Thus, the sum of squared
differences and many other models in [15] for mono-modal
images and the more effective technique of optimal transport
in [16] cannot be used for multi-modality images.

Many intensity based similarity measures have been pro-
posed in the field of multi-modality image registration. The
well known similarity measures are Renyi entropy [17],
Kullback-Leibler divergence [18], commutative residual
entropy [19], normalized mutual information [20], [21] and
mutual information [22]. Among all these similarity mea-
sures, mutual information (MI) is a frequently used similar-
ity measure for multi-modal image registration [23], [24].
Another similarity measure for multi-modality image reg-
istration is normalized gradient field (NGF) [15], [25]
which is based on the gradients of the transformed template
and reference images and are therefore essentially inten-
sity independent. NGF and MI as similarity measures com-
bined with fluid registration model are used for DCE-MRI
time series motion correction [26]. In [27], Chen et al.
proposed a cross-correlation similarity measure primarily
based on reproducing kernel Hilbert spaces and observed
its advantages over mutual information. In [28] Ibrahim and
Chen proposed a decomposition model for parametric and
non-parametric image registration using MI and NGF as
similarity measures and linear curvature as regularizer for
multi-modality image registration. In [29], the author used the
SqN distance measure for investigation on different singular
based measures of an image feature array for multi-modal
images. Recently, in [30], Theljani et al. proposed a varia-
tional model in which they combine the two measures i.e.
the normalized gradients of the images and the higher-order
derivatives of the displacement filed as the fidelity and the
regularizer terms respectively.

In this paper, two novel non-rigid image registration mod-
els are proposed based on Gaussian curvature of surface
induced by the displacement field as regularization, and
MI and NGF as similarity measures for the alignment of
multi-modality images. Gaussian curvature preserves impor-
tant structures such as edges and corners and also structures
with low gradients. To the best of our knowledge this is for
the first time that Gaussian curvature is used as regulariza-
tion term with MI and NGF similarity measure. The first
approach may not give satisfactory results in noisy images or
images having bias field. To circumvent this problem our sec-
ond model is proposed based on NGF which incorporates
co-aligned gradient vectors of the corresponding images and
is therefore essentially intensity independent, which leads
to good registration results over rest of the model. To get
best transformations, both proposedmodels areminimized by
using Augmented Lagrangian method (ALM). The proposed
models works better for large and smooth deformations with-
out mesh folding. Also they register multi-modality images
without effecting their edges and other important fine details.
Motivated by the notable advantages of the proposed models,
they are tested on various medical images like (T1-T2 MRI,
PD weighted-T2 MRI) noisy and synthetic images. The pro-
posed models are also tested on a well known free available
Brainweb data set, where they produced satisfactory results.
From the experimental results, it can be observed that NGF
based model 2 gives better results than MI based model. The
proposed models are also compared with two other state-of-
the-art models which produce better results than the existing
models (where the existing models uses linear curvature may
not produce better results for large deformations and may
produce mesh folding). Also the comparison between the
proposed models are done by adding the Gaussian noise
to MR image of TEST 1, which shows that the proposed
model using NGF can efficiently work. Comparison is done
qualitatively and quantitatively through Jaccard Similarity
Coefficient (JSC) and also evaluate the accuracy by correla-
tion coefficient between the reference and template images.

The rest of the paper is organized as follows: The proposed
models are explained in section II-C. The numerical solution
of the proposed models by Augmented Lagrangian method
is given in section III. Section IV is dedicated to the imple-
mentation of numerical experiments to check the efficiency
and robustness of the models. Finally, the conclusion is given
in section V.

II. METHODOLOGIES
General framework of registration models is based on simi-
larity measures and regularization. Here a brief discussion is
given about similarity measures and regularization, which are
used in development of the proposed model for registration of
multi-modal images.

A. CHOICE OF SIMILARITY MEASURES
The image similarity measure plays an important role to
determine the correlation between two images in order to
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quantify the quality of image registration. The selection of the
image similarity measure requires a trade-off between speed
and performance. Registration of multi-modality images
requires similarity measures that can deal with complex and
unknown image intensity dependencies. Such measures have
to rely on statistics, and consequently, they require relatively
large image regions to operate. Here a brief discussion is
given about similarity measures, which are used in proposed
models.

1) MUTUAL INFORMATION (MI)
Intensities of two imagesmay be compared through similarity
measures which uses statistical or information theory [31].
Mutual information was introduced by Viola and
Wells III [24] for registration of multi-modality images,
which may be defined as:

MI(R,T ) = H (R)+ H (T )− H (R,T ), (3)

whereH (R),H (T ) denotes the marginal entropy andH (R,T )
is the joint entropy of random variables R, T respectively. The
analogous to the Kullback-Leibler measure [32], the mutual
information of random variables R and T is defined as:

MI(R,T ) =
∑
s,t

p(R,T )(s, t)log
p(R,T )(s, t)
p(R)(s)p(T )(t)

, (4)

where p(R,T )(s, t) and p(R)(s), p(T )(t) represents the joint
and marginal probability distributions of image R and
T respectively.
In [31], mutual information based on differential entropy is

used. Themutual information of two images is maximal when
they are geometrically aligned [33] and it measures how the
intensity distribution of two images fails to be independent.
The mutual information as similarity measure [34], [35] is
given as

DMI (T (u),R) = −
∫
R2
pT (u),R(t, s) log

pT (u),R(t, s)
pT (u)(t)pR(s)

dtds.

(5)

where the probability density function pT (t) can be estimated
by using Parzen window [37], [38] and is given by:

p(T )(t) =
1
N

N∑
j=1

gk ((t − tj)/σ )
σ

, (6)

where {tj} be a set of N samples of random variable T (given
image) with probability density function p(T )(t). Also gk is
the kernel function such that

∫
gk (t)dt = 1 and the parameter

σ is the width of the parzen window kernel. In [15], gk is used
as cubic spline kernel for estimating the joint pdf with σ = 1
and is given as:

gk (t) =



(t + 2)3, −2 ≤ t < −1
−t3 − 2(t + 1)3 + 6(t + 1), −1 ≤ t < 0
t3 + 2(t − 1)3 − 6(t − 1), 0 ≤ t < 1
(2− t)3, 1 ≤ t < 2
0, elsewhere.

For other possibilities of gk (t) see [39]. In next section, a brief
discussion is given about the other similarity measure.

2) NORMALIZED GRADIENT FIELD (NGF)
The sum of squared distance measure can be used for
images R and T (u) of same modalities, whereas mutual
information (MI) is an alternative similarity measure for
multi-modality images with assumption that R and T (u) are
statistically dependent. These measures may not produce
good results in aligning edges in the images. The normalized
gradient field (NGF), which uses gradient of the images. The
normalized gradient field (NGF) is used for the alignment
of the edges in the reference image R and transformed tem-
plate image T (u). Consider the following normalized gradient
field:

nT (u) =
∇T (u)√

‖∇T (u)‖22 + η
2
=
∇T (u)
‖∇ηT (u)‖

,

nR =
∇R√

‖∇R‖22 + η
2
=
∇R
‖∇ηR‖

, (7)

where η is the edge parameter that controls the influence of
image gradient, and here it controls the singularity problem,
which can be computed as [25], [40]:

η =
ξ

V

∫
�

|∇T (u)|d�, (8)

where ξ is the estimated noise level and V is the cardinal
number associated with domain. The parameter η can be
taken as threshold for identification of edges in an image.
When η is less than norm of the gradient of image, then the
feature will be considered as an edge and if η is greater than
norm of the gradient, the feature will be considered as noise.

The normalized gradient field distance measure for the
registration of images is as follows:

Dngf (T (u),R) =
∫
�

(
1−

((
nT (u)

)t
· nR

)2)
d�. (9)

As the proposed models are compared with two linear
curvature models [25], [45] for which the linear curvature
regularizer is given in section B.

B. FICHER AND MODERSITZKI’s LINEAR CURVATURE
Ficher and Modersitzki proposed the first second order regu-
larization term for image registration as follows:

SLC(u) =
∫
�

[
(1u1)2 + (1u2)2

]
d�. (10)

The Euler Lagrange equation for (2) with SLC as the regular-
isation term is given by:

α12u+ f (u) = 0 (11)

with the boundary conditions 1um = 0,∇1um · n̂ = 0,
m = 1, 2 and n̂ the unit outward normal vector. This model
consists of the second order derivative information of the
displacement field which results in smoother deformations as
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compared to first order models but this may not work in large
deformations. Due to the affine kernal, this model does not
require affine linear pre-registration step.

In the next section, a detailed discussion is given on our
novel proposed models for registration of multi-modality
images.

C. THE PROPOSED MULTI-MODALITY IMAGE
REGISTRATION MODELS
In this section, the first proposed model is based on mutual
information as similarity measure and Gaussian curvature as
regularization term, while the second model is based on nor-
malized gradient field as similarity measure combined with
Gaussian curvature as a regularization term. These models
are used for non-rigid registration of multi-modality images.
Let the displacement field between the reference image R
and the template image T be the surface map (x, y) :→
(x, y, um(x, y)) where m = 1, 2 and with u = (u1, u2).
We propose the following functionals for minimization to
register two multi-modality images:
Energy Functional 1: The energy functional for our first

new proposed model is based on mutual information (MI)
as similarity measure and Gaussian curvature as regulariza-
tion term. Mutual information can measure better similarity
between images having different modalities i.e having differ-
ent intensities at the same pixel positions. Gaussian curvature
is a well known regularizer used for well posdness of a model,
which preserve important structure in the process of registra-
tion of two images. The proposedmodel with Gaussian curva-
ture works better for the large and smooth deformations with-
out mesh folding while existing models with linear curvature
may not produce better results for large deformations andmay
produce mesh folding. Thus we propose the following energy
functional for registration of multi-modality images:

min
u

J (T ,R;u)=−
∫
�

pT (u),R(t, s) log
pT (u),R(t, s)
pT (u)(t)pR(s)

dtds

+α

2∑
m=1

∫
�

∣∣∣um,xyum,yx − um,xxum,yy
(u2m,x+u2m,y+1)2

∣∣∣d�,
(12)

where α > 0 is a trade off parameter. Minimization of the
proposed model in (12) with respect to um for m = 1, 2 leads
to the following Euler Lagrange equations:

α∇ ·
(4 | u1,xyu1,yx − u1,xxu1,yy |

M3
1

∇u1
)
+ α∇ · C1,1

+α∇ · C1,2 + F1 = 0,

α∇ ·
(4 | u2,xyu2,yx − u2,xxu2,yy |

M3
2

∇u2
)
+ α∇ · C2,1

+α∇ · C2,2 + F2 = 0,

(13)

where

Mm = u2m,x + u
2
m,y + 1,

Cm,1 =
((
−

Smum,yy
M2

m

)
x
,
(Smum,xy

M2
m

)
x

)
,

Cm,2 =
((Smum,yx

M2
m

)
y
,
(
−

Smum,xx
M2

m

)
y

)
,

Sm = sign(um,xyum,yx − um,xxum,yy), m = 1, 2.

The Gâteaux derivative of the mutual information distance
measure [36] is given as

F = (F1,F2)t =
1
|�|

[
K ∗

∂E(R,T (u)))
∂t

]
∇uT (u)),

it implies that

∂E(R,T (u)))
∂t

=
1

pR,T (u))(s, t)
∂pR,T (u))(s, t)

∂t

−
1

pT (u))(t)
∂pT (u)(t)
∂t

,

and

E = 1+ log
pT (u),R(t, s)
pR(s)pT (u)(t)

where |�| denotes the area of the image domain and K is the
smooth density kernel used to estimate the joint probability
density function of images T (u) and R given by pT (u),R(t, s).
∗ denotes the convolution operator. The boundary conditions
are: (Sm(um,y)y

M2
m

,
Sm(um,y)x

M2
m

)
· n̂ = 0,(Sm(um,x)y

M2
m

,
Sm(um,x)x

M2
m

)
· n̂ = 0,

for m = 1, 2 and n̂ denotes the normal vector at the
boundary ∂�. The Augmented Lagrangian method (ALM)
is used to solve the proposed model, where the detailed
explanation is given in section III.
Energy Functional 2: The energy functional for our second

proposed model is based on normalized gradient field (NGF)
as similarity measure combined with the Gaussian curvature
as regularizer work better for large and smooth deformations
without mesh folding. Normalized gradient field can align the
edges of different structures in the reference and the trans-
formed template images. The basic idea of the normalized
gradient field is to use image gradient norm. Through the gra-
dients of the reference and template images the features can
be identified by the intensity changes. The energy functional
is given as;

min
u

J (T ,R;u)=
∫
�

(
1−

(
(nT (u))t · nR

)2)
d�

+α

2∑
m=1

∫
�

∣∣∣um,xyum,yx − um,xxum,yy
(u2m,x + u2m,y + 1)2

∣∣∣d�,
(14)

where α is the positive trade off parameter. Minimizing
this functional with respect u1, u2 leads to the following
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Euler Lagrange equations:

α∇ ·
(4 | u1,xyu1,yx − u1,xxu1,yy |

M3
1

∇u1
)
+ α∇ · C1,1

+α∇ · C1,2 + F1 = 0,

α∇ ·
(4 | u2,xyu2,yx − u2,xxu2,yy |

M3
2

∇u2
)
+ α∇ · C2,1

+α∇ · C2,2 + F2 = 0,

(15)

where

Mm = u2m,x + u
2
m,y + 1,

Cm,1 =
((
−

Smum,yy
M2

m

)
x
,
(Smum,xy

M2
m

)
x

)
,

Cm,2 =
((Smum,yx

M2
m

)
y
,
(
−

Smum,xx
M2

m

)
y

)
,

Sm = sign(um,xyum,yx − um,xxum,yy), m = 1, 2,

and

F= (F1,F2)t=
2(nT (u)tnR)H (T (u))

||nT (u)||ε
[nR−(nT (u)tnR)nT (u)],

where Hij(T (u)) is the Hessian matrix of T (u) for i, j = 1, 2.
The boundary conditions are:(Sm(um,y)y

M2
m

,
Sm(um,y)x

M2
m

)
· n̂ = 0,(Sm(um,x)y

M2
m

,
Sm(um,x)x

M2
m

)
· n̂ = 0,

for m = 1, 2 and n̂ denotes the normal vector at the
boundary ∂�. This model can also be solved by Augmented
Lagrangian method. Here, we discuss the discretization ofMI
and NGF [15], [41].

1) DISCRETIZATION OF MUTUAL INFORMATION
The two images T and R are assumed within the range [t0, tm]
and [s0, sm] respectively, where t0 = s0 = 0 and tm = sm =
255. Here ht and hs are defined as ht =

tm−t0
mt

and hs =
sm−s0
ms

,
where mt and ms are pre-defined bin numbers and we need
to discretize the intensity values of T and R. We have ti =
t0 + (i − 0.5)ht and sj = s0 + (j − 0.5)hs, i = 0, . . . .,mt ,
j = 0, . . . .,ms.
IT and IR be the discrete set of intensity values in T and R

respectively. The joint discrete Parzen Window histogram is
defined as

h(t, s) =
1

mtms

N∑
x∈�υ

gkσT (t − ti(x))gkσR(s− sj(x)), (16)

and the joint probability distribution is defined as

p(t, s) = pT ,R(t, s) =
1∑

t∈IT

∑
s∈IR h(t, s)

h(t, s), (17)

A small tolerance ε is added to the argument of the logarithm
to deal with the case 0log0. The joint entropy of images T and
R can be written as

H (T ,R) = mtms
mt∑
i=1

ms∑
j=1

pi,jlog(pi,j + ε), (18)

where pi,j = p(ti, sj). Themarginal densities and the entropies
are given as

pT (tk )=ms
ms∑
j=1

pk,j, H (T )=mt
mt∑
k=1

pT (tk )log(pT (tk )+ε),

pR(sk )=mt
mt∑
i=1

pi,k , H (R)=ms
ms∑
k=1

pR(sk )log(pR(sk )+ε),

(19)

for the computation of MI.

2) DISCRETIZATION OF NGF
The distance measure NGF is basically an L2-norm of
residual r, where the residual measures the alignment of the
normalized gradients in two images at a pixel position x,

rh(x) = 1−
((
nT (x)

)t
nR(x)

)2
, (20)

by using finite difference method for discrete images R and
T of size M × M . Both images are discretized using cell
centered discretization on a uniform grid where xj,i shows the
pixel position. A non-uniform grid can also be usedwith finite
difference method. The gradient can be calculated by using

∂xT h(xj,i) =
T h(xj+1,i)− T h(xj−1,i)

2h
,

∂yT h(xj,i) =
T h(xj,i+1)− T h(xj,i−1)

2h
, (21)

where to approximate the first order derivatives, we use first
order central differences. To reorder R and T into a row vector
of sizeM2

×1 we use lexicographical ordering. Then we have
the matrices of orderM2

×M2

Gx =
1
2h2



−1 1 0 . . . . . .

−1 0 1 0 . . .
...

. . .
. . .

. . .
...

...
. . . −1 0 1

...
. . . 0 −1 1


,

Gy =
1
2h2



−1 −1 0 . . . . . .

1 0 −1 0 . . .
...

. . .
. . .

. . .
...

...
. . . 1 0 −1

...
. . . 0 1 1


,

which shows the discrete gradient operators in x and y respec-
tively. We can also calculate

ET ,j =
√
(GxT h)j + (GyT h)j + ε2T ,

ER,j =
√
(GxRh)j + (GyRh)j + ε2R, j = 1, 2, . . . ,M2. (22)

where

rj =
( (GxT h)j

ET j

)( (GxRh)j
ERj

)
+

( (GyT h)j
ET j

)( (GyRh)j
ERj

)
(23)
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and

Dngf (T h,Rh) = h2
N 2∑
j=1

1− (rj)2. (24)

III. NUMERICAL METHOD
In order to solve the Euler Lagrange equations given
in (13) and (15) which are non-linear, we use a fast numer-
ical Augmented Lagrangian method (ALM). In literature,
the Augmented Lagrangian method is successfully used in
image de-noising and image registration for mono-modality
images [14], [42].

A. AUGMENTED LAGRANGIAN METHOD
Here, it will be shown that how to implement the Augmented
Lagrangian Method (ALM) for both the Gaussian curvature
based image registration models for multi-modality images.
This important method has a property of solving constrained
optimization problems using unconstrained problems. When
the constraints are included in the objective functional this
method become similar to the penalty method and the prob-
lem is solved by using the alternating minimization of every
sub-problems. The additional terms arises in ALM known as
lagrange multipliers, when the constraints are incorporated in
the objective functional.

First, the model in (12) is solved by using Augmented
Lagrangian method. Two new dual variables z1 and z2 are
introduced where z1 = ∇u1(x) and z2 = ∇u2(x). As a result
a system of second order PDEs are obtained which are more
feasible to the effective solution. First, the problem is refor-
mulated as the following constrained optimization problem
for Gaussian curvature image registration for multi-modality
images using MI as similarity measure,

min
u1,u2,z1,z2

J (u1, u2, z1, z2) = D(T ,R;u(x))+ αS(gc)(z1)

+αS(gc)(z2), (25)

such that z1 = ∇u1(x) and z2 = ∇u2(x) and further reformu-
late the above problem to obtain the Augmented Lagrangian
functional

L(gc)(u1, u2, z1, z2; λ1, λ2)

= −

∫
R2
pT (u),R(t, s) log

pT (u),R(t, s)
pT (u)(t)pR(s)

dtdr + αS(gc)(z1)

+αS(gc)(z2)+ 〈λ1, z1 −∇u1〉 + 〈λ2, z2 −∇u2〉
+
r
2
‖z1 −∇u1‖22 +

r
2
‖z2 −∇u2‖22, (26)

where λ1, λ2 are the Lagrange multipliers and r is a positive
constant. To find the optimal values of the u1, u2, z1, z2 and
λ1, λ2 an alternating minimization procedure is used and two
main steps are involved in this process.
First Step: In this step we need to update z1, z2 for any

given u1, u2, λ1, λ2. The objective functional can be written
in the form

min
z1,z2

αS(gc)(z1)+ αS(gc)(z2)+ 〈λ1, z1〉 + 〈λ2, z2〉

+
r
2
‖z1 −∇u1‖2 +

r
2
‖z2 −∇u2‖2. (27)

The following Euler Lagrange equations are used to solve this
sub problem:

−α
(( (−z1,1)y

02
1

)
x
+

( (−z1,1)x
02
1

)
y

)
− α

4S1D1z1,2
03
1

+ λ1,2 + r(z1,2 − (u1)y) = 0

−α
(( (z1,2)y

02
1

)
x
+

( (−z1,2)x
02
1

)
y

)
− α

4S1D1z1,1
03
1

+ λ1,2

+r(z1,1 − (u1)x) = 0,
(28)

where

D1 = det(∇z1) = (z1,1)x(z1,2)y − (z1,1)y(z1,2)x ,

01 = 1+ u21,x + u
2
1,y,

and

S1 = sign
( D1

(‖∇u1‖2 + 1)2

)
.

If solving alternatively, there is a closed form solution for
this first step, where

z1,1=
03
1

(
− α

((
(z1,2)y
02
1

)
x
+

(
(−z1,2)y
02
1

)
y

))
+ λ1,1 + r(u1)x)

−r03
1 + α4S1D1

.

z1,2=
03
1

(
− α

((
(z1,1)y
02
1

)
x
+

(
(−z1,1)x
02
1

)
y

))
+ λ1,2 + r(u1)y)

−r03
1 + α4S1D1

.

Similarly, we solve z2,1, z2,2 from the Euler lagrange
equations:

−α
(( (−z2,1)y

02
2

)
x
+

( (−z2,1)x
02
2

)
y

)
− α

4S2D2z2,2
03
2

+ λ2,2

+r(z2,2 − (u2)y) = 0

−α
(( (z2,2)y

02
2

)
x
+

( (−z2,2)x
02
2

)
y

)
− α

4S2D2z2,1
03
2

+ λ2,1

+r(z2,1 − (u2)x) = 0,
(29)

where

D2 = det(∇z2) = (z2,1)x(z2,2)y − (z2,1)y(z2,2)x ,

02 = 1+ u21,x + u
2
1,y,

and

S2 = sign
( D2

(‖∇u2‖2 + 1)2

)
.

Second Step: Here we need to update u1, u2 for any given
variables z1, z2 and λ1, λ2 with the new functional

min
u1,u2
−

∫
R2
pT (u),R(t, s) log

pT (u),R(t, s)
pT (u)(t)pR(s)

dtdr − 〈λ1,∇u1〉

−〈λ2,∇u2〉 +
r
2
‖z1 −∇u1‖2 +

r
2
‖z2 −∇u2‖2.

So the following Euler Lagrange equations are obtained,{
−r1u1 + F1 +∇ · λ1 + r∇ · z1 = 0
−r1u2 + F2 +∇ · λ2 + r∇ · z2 = 0

(30)
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with Neumann boundary conditions ∇um · n = 0,
m = 1, 2. Before solving (30), we first linearize F using
Taylor’s expansion

Fm(u
(n+1)
1 , u(n+1)2 ) = Fm(u

(n)
1 , u

(n)
2 )+ ∂u1Fm(u

(n)
1 , u

(n)
2 )δu(n)1

+ ∂u2Fm(u
(n)
1 , u

(n)
2 )δu(n)2 + . . .

≈ Fm(u
(n)
1 , u

(n)
2 )+ σ (n)

m,1δu
(n)
1 + σ

(n)
m,2δu

(n)
2 ,

where

σ
(n)
m,1 = ∂u1Fm(u

(n)
1 , u

(n)
2 ), σ (n)

m,2 = ∂u2Fm(u
(n)
1 , u

(n)
2 ),

δu(m)1 = u(n+1)1 − u(n)1 , δu
(m)
2 = u(n+1)2 − u(n)2 .

Next, we approximate σ nm,1 and σ
n
m,2 by using

σ
(n)
m,1=

(
∂u1

( 1
|�|

(
K∗

∂E(R,T (x+u(n)))
∂t

)))(
∂umT (x+u(n))

)
σ
(n)
m,2=

(
∂u2

( 1
|�|

(
K∗

∂E(R,T (x+u(n)))
∂t

)))(
∂umT (x+u(n))

)
.

The discretization of (30) can be written as

Ah(uh,(n))uh,(n+1) = Bh(uh,(n)), (31)

where

Ah(u(n)) =
[
−rL+ σ h11(u

h,(n)) σ h12(u
h,(n))

σ h21(u
h,(n)) −rL+ σ h22(u

h,(n))

]
,

Bh(u(n)) =


−gh1 + F

h
1 (u

(n)
1 , u

(n)
2 )+ σ h11(u

(n))uh,(n)1 +

σ h12(u
h,(n))uh,(n)2

−gh2 + F
h
2 (u

(n)
1 , u

(n)
2 )+ σ h21(u

(n))uh,(n)1 +

σ h22(u
h,(n))uh,(n)2

 .
where L is the discrete version of Laplace operator
1 and ghm is the discrete version of

∇ · λm + r∇ · zm, m = 1, 2.

In the last, the system of equations is solved in (31) by using
weighted point wise Gauss Siedel method

uh,(n+1) = (1− ω)uh,(n) + ω(Ah(u(n)))−1Bh(u(n)),

where ω ∈ (0, 1) and we take ω = 0.9725.
Similarly, we can reformulate the problem for model 2 by

replacing NGF as similarity measure.
Various steps of the proposed models are shown in block

diagram in Fig. 1.

IV. EXPERIMENTAL RESULTS
In this section, the performance of the proposed models is
assessed by using numerical experiments to examine the
robustness and efficiency of the algorithm for multi-modality
images. The minimum value of the determinant of the jaco-
bian matrix J of the transformation is calculated, to judge
the quality of the alignment of the images and to observe
the folding and cracking of the deformed grid. The value is
denoted by E

J =
[
1+ u1,x u1,y
u2,x 1+ u2,y

]
, E = min(det(J )),

FIGURE 1. Block diagram of the proposed models.

where u1,x and u1,y denotes the gradient of u1 whereas
u2,x and u2,y denotes the gradient of u2. Experimentally,
we observed that r = 0.001 and 0.01 works well for several
types of images. As for stoping criteria tol = 0.001 is used.
Experiments were carried out by Matlab2015a with Intel
core i7, 7th generation and INTEL Xeon 2640 with cores 40,
RAM 128GB.

A. TEST 1: TEST ON PAIR OF PHOTON DENSITY (PD)
WEIGHTED MRI AND T2-MRI
Medical images for this test are taken from [28] where the
reference image is from photon density weighted MRI and
the template image represents T2-MRI. Both of the images
are of the size 128×128. The results of the proposedGaussian
curvature model 1 in (12) using MI as similarity measure
for this test are shown in Fig.2. It Can be observed that the
proposed model 1 in (12) is able to register real medical
images very accurately. We show the results of the proposed
model 2 in (14) using NGF as similarity measure for this
test in Fig. 3. In both the models (12) and (14), different
regularization parameters are tested. Here the optimal choices
of parameters are considered as α = 8 for model in (12) and
α = 5 for model in (14) respectively. These parameters are
chosen as optimal choices such as the transformed template
images are very similar to the reference images and also
the transformations do not suffer from mesh folding. For
Gaussian curvature model 2 in (14) using NGF as similarity
measure there is essentially one parameter to tune i.e. the edge
parameter (η). In our experiments η ranges in [3:10]. For the
proposed model 2 in (14), the transformed template image is
shown in Fig. 3 (b). We can see that the transformed template
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FIGURE 2. The results of the proposed Gaussian curvature model 1 in (12) using MI as
similarity measure for multi-modality image registration. The initial reference image R,
the template image T with with MI(T ,R) = −0.51393, the transformed template image
T (u) with MI(T (u),R) = −0.88925, the displacement field, the transformations and the
differences between the transformed template image and reference image are shown in
(a-f) respectively. Here the value of E = −1.8653 < 0. From (c) we can see that the
proposed Gaussian Curvature model 1 in (12) using MI as similarity measure indicates a
good alignment between the transformed template image T (u) in (c) and the reference
image R in (a). The transformed template image in (c) appears to be very similar to the
reference image in (a).

FIGURE 3. The results of the proposed Gaussian curvature model 2
in (14) using NGF as similarity measure for multi modality images. The
resulting transformed template image in (b) with MI(T (u),R) = −0.9296
is perfectly aligned with the reference image. The smaller value of
MI(T (u),R) = −0.9296 in (b) than in Fig. 2 (c) i.e. MI(T (u),R) = −0.88925,
shows a higher similarity between the transformed template and the
reference images.

in Fig. 3 (b) and the reference images in Fig. 2 (a) have
an acceptable level of alignment and give quite satisfactory
results. From the experimental tests we can observed that for
this test both the proposed models in (12) and (14) performs
very well.

For this test by Gaussian curvature model 1 in (12) using
MI as similarity measure, we need k = 6 outer iterations and
E < 0 for better alignment of the transformed template image
and reference image as shown in Fig. 2. In Fig. 3 (a) the trans-
formation graph can be observed for the proposed model 2
in (14) and Fig. 3 (b) shows the registered image using the
proposed model in (14). Here we need two outer iterations to
get the value MI (T (u),R) = −0.9296 in Fig. 3 (b) which
is smaller than the value of MI (T (u),R) = −0.88925
in Fig. 2 (c) which indicates higher similarity between the

reference and the transformed template images. For solving
the proposed models, we use the Augmented Lagrangian
Method which has four dual variables and four Lagrange
multipliers terms therefore they requires more computational
time. In Fig. 4 (a) and (b) shows the effect on the values
of E for various values of k and α, where E < 0 for better
registration results. We obtain this figure using r = 0.01 for
this test and it confirms that α controls the smoothness of the
deformation field. In Fig. 4 (c) the energy vs. iterations graph
is shown. Since the energy functional is increasing, which
confirms the convergence of the proposed model in (12).

B. TEST 2: TEST ON SYNTHETIC IMAGES
In this test, our aim is to investigate capabilities of both the
proposed Gaussian curvature models in (12) and (14) for reg-
istration of synthetic images of size 128×128. Here, we illus-
trate the type of images where the proposedGCmodel 2 using
NGF as similarity measure delivers good registration results
than GC model 1 using MI as similarity measure. Here,
the template image is chosen as a synthetic noisy image with
Gaussian noise. From Fig. 5 it can be observed that the result
of the GC model 1 using MI as similarity measure in (12) for
multi modality images fails to deform the inner part of the
image. Here, the GC model having MI as similarity measure
is tested for different values of regularization parameter and
the optimal choice of the parameter α = 9 is considered.
Also, from Fig. 5 we can see that for k = 3 the value of
MI = −0.51882 and the value of E = −0.012703 < 0
is decreasing which indicates the similarity between the
transformed template image and reference image except the
middle part of the image.
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FIGURE 4. The iterations (k) and mindetjac (E) history is shown in (a). The effect of values of mindetjac (E)
and α are shown in (b) and the energy graph is shown in (c).

FIGURE 5. The results of the proposed Gaussian curvature model 1 in (12) using MI as
similarity measure for multi-modality image registration. The initial reference image R,
the template image T with MI(T ,R) = −0.48668, the transformed template image T (u) with
MI(T (u),R) = −0.51882, the displacement field, the transformations and the differences
between the transformed template image and reference image are shown in (a-f)
respectively. Here the value of E = −0.012703 < 0. We can see that the transformed template
image is similar to the reference image except the inner white part of the image.

In Fig. 6 the result for the proposed Gaussian curvature
model 2 is shown in (14) using NGF as similarity measure.
The resulting transformed template image for the normal-
ized gradient field is indicated in Fig. 6 (b) which shows
a good alignment with the reference image in Fig. 5 (a).
Here, an acceptable level of transformed template image is
obtained where it appears to be similar to the reference
image. Smaller value ofMI (T (u),R) = −0.5504 in Fig. 6 (b)
than in Fig. 5 (c) indicates higher similarity between the
reference and transformed template images. From this test,
it can be figured out that the Gaussian curvature model 2
in (14) using NGF as similarity measure out performs the
Gaussian curvature model 1 in (12) using MI as similarity
measure, in the registration of noisy images.

In Fig. 7(a) the mindetjac vs. iterations is displayed where
for k = 3 the value of mindetjac < 0 and r = 0.01.
The effect on the values of E < 0 for various values of α
are shown in Fig. 7(b), which confirms that α controls the
smoothness of the deformation field. The energy vs. iterations
of ALM to the final solution is shown in Fig. 7(c). Based
on this experiment from the energy graph in Fig. 7 (c),
we can see that there should be 3 maximum outer iterations
as r = 0.01.

FIGURE 6. Results of the proposed Gaussian curvature model 2 in (14)
using NGF as similarity measure for multi modality images. The resulting
transformed template image in (b) with MI(T (u),R) = −0.5504 is
perfectly aligned with the reference image. Smaller value of
MI(T (u),R) = −0.5504 in (b) than in Fig. (5) (c) i.e.
MI(T (u),R) = −0.51882 shows a higher similarity between the
transformed image and the reference image.

C. TEST 3: TEST ON BIAS FIELD IMAGES
Bias field or intensity inhomogeneity (IIH) or intensity
non-uniformity (INU) in magnetic resonance imaging (MRI)
is an artifact that is mainly produced by improper image
acquisition process. It affects the intensities of the homoge-
neous tissue regions (for example, gray matter (GM), white
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FIGURE 7. The effect of values of mindetjac (E) vs. iterations and α vs. mindetjac (E) are shown in (a)-(b).
The energy vs. iteration graph is shown in (c).

FIGURE 8. The results of the Gaussian curvature model 1 in (12) using MI as similarity
measure for multi-modality image registration. The initial reference image R, the template
image T with MI(T ,R) = −0.57587, the transformed template image T (u) with
MI(T (u),R) = −0.77705, the displacement field, the transformations and the differences
between the transformed template and reference images are shown in (a-f) respectively.
Here the value of E = −0.13075 < 0. We can observe that due to strong bias field in
(b) the model is unable to register the template image with the reference image.

FIGURE 9. Results of the Gaussian curvature model 2 in (14) using NGF as
similarity measure for multi modality images. The less value of
MI(T (u),R) = −0.7787 in (b) than in Fig.(8) (c) shows high similarity
between the transformed template and reference images. The outer part
of the transformed template image in Fig.(9) (c), having strong bias field
has a good aligned with the reference image in Fig.8(a).

matter (WM) and cerebrospinal fluid (CSF) in MRI brain
images). In bias field images some part of the same object
appears to become darker than the rest of the object. We have
run the experiments for brain MR images having strong bias
field. For this test the images from [43] are considered where
both the images are of size 128 × 128. It can be observed
that for the proposed model 1 in (12) using MI as similarity

measure the deformed grid is ruined for the third iteration i.e.
at k = 3. The best result we have found for the problem is to
fix r = 0.001 and varies α when α = 15 and k = 2.
Based on these experiments it is found out that when k = 1

the values of E = 0.36602 and MI = −0.75984. Next
we need to observe that how to stop the iteration before
the deformed grid is ruined. For this, the value of E after
2nd iteration which is E = −0.13075 < 0. So the Gaussian
curvature model 1 in (12) using MI works well for E < 0.
Also, we have figured out that the value of MI = −0.77705
in the 2nd iteration is decreasing, which indicates the higher
similarity between the reference and transformed template
image having strong bias field.

From the energy graph in Fig. 10(a) it can be analyzed
that there should be 2 maximum iterations because for the
third iteration the deformed grid is ruined therefore, we stop
at k = 2. Here, the value of r = 0.001 is fixed.

D. TEST 4: TEST ON DATABASE
Brainweb [44] is a simulated brain database (SBD) con-
tains a set of realistic MRI data volumes produced by an
MRI simulator. The SBD contains simulated brain MRI
data based on two anatomical models: normal and multiple
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FIGURE 10. The iterations vs. mindetjac (E) graph is shown in (a). The effect of values of mindetjac (E) and
α are shown in (b) and the energy graph is shown in (c).

TABLE 1. Gaussian Curvature model 1 using MI with best α.

sclerosis (MS) of 20 subjects. For both of these, full
3-dimensional data volumes have been simulated using three
sequences (T1, T2, and photon-density (PD) weighted) MRI
and a variety of slice thicknesses, noise levels, and levels of
intensity non-uniformity. In this test the implementation of
the proposed models in (12) and (14) having MI and NGF
as similarity measures are demonstrated on normal brain
MRI images taken from Brainweb. Here two pairs of MRI
brain images of randomly selected subject 04 from 20 avail-
able subjects of normal brain are used. We have taken MRI
sequence T1 as template image and normal phantom with
MRI sequence T2 and PD as reference images. The resolution
of reference and template images are 181 × 217 × 181 and
256× 256× 181 respectively. The central slice (slice no. 91)
from both reference and template images is considered and
is re-sized to same scale of 128 × 128 resolution. T1 is
taken as template image for both cases of reference images
(T2 and PD). Here, we have fixed the value of r = 0.01. The
Table 1 shows the Gaussian Curvature model 1 in (12) using
MI as similarity measure with best α and Table 2 shows the

Gaussian Curvature model 2 in (14) using NGF with best α
and edge parameter η.

Fig. 11 shows the graph of Gaussian Curvature model 1
in (12) using MI as similarity measure for data set
T1-T2 images. In Fig. 11 (a), (b), (c), the minimum values of
MI are−0.7928 at iteration 3 and α = 5,−0.839 at iteration 4
and α = 10 and −0.834 at iteration 5 and α = 13, for
α ranges [1 : 5], [6 : 10] and [11 : 15] respectively. The
overall minimum MI value for α range [1 : 15] is −0.839 at
iteration 4 and α = 10.

Fig. 12 shows the graph of Gaussian Curvature model 1
in (12) using MI as similarity measure for data set T1-PD
images. In Fig. 12(a), (b), (c), the minimum values of MI are
−0.8635 at iteration 2 and α = 5, −0.9177 at iteration 2
and α = 10 and −0.95214 at iteration 2 and α = 15, for
α ranges [1 : 5], [6 : 10] and [11 : 15] respectively. The
overall minimum MI value for α range [1 : 15] is −0.95214
at iteration 2 and α = 15.

Fig. 13 shows the graph of Gaussian curvature model 2
in (14) using NGF as similarity measure for data set
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TABLE 2. Gaussian Curvature model 2 using NGF with best Edge (η) and Alpha (α).

FIGURE 11. Gaussian Curvature model 1 using MI as similarity measure graph
for T1-T2.

T1-T2 images. In Fig. 13 (a), (b), (c), the minimum values of
NGF are 15.27 at iteration 2 and α = 3, 15.23 at iteration 2,
η = 3 and α = 6 and 17.14 at iteration 10 and α = 12, for
α ranges [1 : 5], [6 : 10] and [11 : 15] respectively. The
overall minimum NGF value for α range [1 : 15] is 15.23 at
iteration 2, α = 6 and η = 3.
Fig. 14 shows the graph of Gaussian Curvature model 2

in (14) using NGF as similarity measure for data set T1-PD
images. In Fig. 14 (a), (b), (c), the minimum values of NGF
are 3.5462 at iteration 2 and α = 5, 2.842 at iteration 2 and
α = 10 and 2.777 at iteration 2 and α = 11, for α ranges
[1 : 5], [6 : 10] and [11 : 15] respectively. We have
analyzed our Gaussian curvature model using NGF as sim-
ilarity measure, for edge ranges [3 : 10] and found that
η = 3 gives best results. The overall minimumNGF value for

α ranges [1 : 15] with η = 5 is 2.777 at iteration 2 and
α = 11.

From Table 3 it can be observed that Gaussian Curvature
model 1 in (12) using MI for T1-T2 for best value of α =
10 and at k = 4 iteration the value of MI = −0.83896
and Gaussian Curvature model 2 in (14) using NGF for
T1-T2 for best value of α = 6 and at k = 2 iteration
the value of MI = −0.84566. Fig. 15 shows that the value
of MI = −0.84566 for Gaussian curvature model 2 is less
than the value of MI = −0.83896 for Gaussian curvature
model 1 for T1-T2 images, which shows a higher similarity
between the template image T1 and reference image T2.
Here, the value of the mindetjac (E) < 0. Also from Fig.16,
for Gaussian Curvature model in (14) using NGF for T1-PD
for the best value of α = 11 at k = 2 iterations, the value
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FIGURE 12. Gaussian Curvature model 1 using MI as similarity measure for T1-PD.

FIGURE 13. Gaussian Curvature model 2 using NGF as similarity measure for T1-T2.

FIGURE 14. Gaussian Curvature model 2 using NGF as similarity measure for T1-PD.

TABLE 3. Comparison of the proposed Gaussian Curvature models using MI and NGF as similarity measures.

of MI = −0.95244 which is less than the value of
MI = −0.95214 for Gaussian Curvature model in (12) using

MI for α = 15 and k = 2 with the value of mindetjac
(E) < 0. Which indicates a good registration result between
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FIGURE 15. Comparison graph for T1-T2 of the proposed Gaussian
Curvature models using MI and NGF as similarity measures.

FIGURE 16. Comparison graph for T1-PD of the proposed Gaussian
Curvature models using MI and NGF as similarity measures.

the template image T1 and reference image PD. From Fig. 15
and Fig. 16 we can see that the overall performance of the
Gaussian curvature model 2 in (14) using NGF as similarity
measure is better than the Gaussian curvature model 1 in (12)
using MI as similarity measure.

E. TEST 5: JACCARD SIMILARITY COEFFICIENT (JSC)
The value of JSC lies between 0 (no over lapping) and
1 (perfect alignment). The value closer to 1 shows that the
transformed template image is very similar to the reference
image and the value closer to 0 indicates a lower similarity.
In this example, a synthetic image from [30] is considered
to illustrate the type of images where a good result for nor-
malized gradient field than mutual information is obtained.
Fig.17 shows the comparison of the proposedGaussian curva-
ture models in (12) and (14) using MI and NGF as similarity
measures, respectively. Here, the Gaussian curvature mod-
els using mutual information (MI ) and normalized gradient
field (NGF) are tested for different regularization parameters.
The optimal choices for the parameters are considered by
making different tests, where we set α = 2, r = 0.01, β = 1
and the iterations k = 5 for Gaussian curvature model 1
in (12) and α = 6, r = 0.01, β = 1 and the iterations k = 6
for Gaussian curvature model 2 in (14). These optimal param-
eters are chosen such that the transformed template image is
very similar to the reference image and the transformations
do not suffer with mesh folding. For quantitative compari-
son, the Jaccard similarity coefficient (JSC) is used and is
defined as:

JSC =
| ST (u)

⋂
SR |

| ST (u)
⋃
SR |

, (32)

FIGURE 17. Comparison of the Gaussian curvature model 1 in (12) using
MI as similarity measure and Gaussian curvature model 2 in (14) using
NGF as similarity measure for multi-modality images. From Left: The
initial reference image R (A white circle), the Template image T (A gray
ellipse), the transformed template image of Gaussian curvature model 1
in (12) using MI as similarity measure with JSC = 0.41333 and the
transformed template image of the Gaussian curvature model 2 in (14)
using NGF as similarity measure with JSC = 0.8591, respectively. Clearly
the Gaussian curvature model 2 using NGF as similarity measure works
well while the Gaussian curvature model 1 using MI as similarity measure
fails to register.

where ST (u) and SR represents the region of interest in the
transformed template image (after registration) and reference
image respectively. Fig. 17 shows that the JSC for Gaussian
curvature model 1 in (12) is 0.41333 and JSC for Gaussian
curvature model 2 in (14) is 0.8591 which is closer to 1
and indicates the accuracy and efficiency of the Gaussian
curvature model 2 in (14) over the Gaussian curvature
model 1 in (12).

F. QUANTITATIVE COMPARISON OF THE PROPOSED
MODELS WITH LCMI MODEL AND LCNGF MODEL IN
TERMS OF JSC
In this section the quantitative comparison of the proposed
models with two other state-of-the-art models in terms of
the Jaccard Similarity Coefficient is given. For comparison,
two state-of-the-art models are used: Linear Curvature model
using MI as similarity measure (LCMI) [45] and Linear
Curvature model using NGF as similarity measure (LCNGF)
[25], [45] by taking their Jaccard Similarity Coefficients
(JSC). The experiments investigate the capabilities of the
proposed models for image registration over the state-of-the-
art models, of variousMRI and synthetic noisy images of size
128×128. In Table 4 the proposed models are compared with
the existing models and has produce better JSC in almost all
the cases which indicates better performance of the proposed
models over the existing models.

G. APPLICATION OF THE PROPOSED MODELS ON NOISY
IMAGE
We have tested our proposed models on real noisy
image from TEST 1 with different noise means i.e.
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TABLE 4. Quantitative Comparison of LCMI model, LCNGF model and the proposed models in terms of JSC.

FIGURE 18. Comparison of the proposed models with state-of-the-art models by using Jaccard Similarity
Coefficient. (a) R, (b) T , (c) T (u) by LCMI model, (d) T (u) by the LCNGF model, (e) T (u) by the proposed
Gaussian curvature model 1 using MI as similarity measure, (f) T (u) by the proposed Gaussian curvature
model 2 using NGF as similarity measure. The red square boxes and arrows on the transformed template
images of the proposed models shows good registration results in all the cases.

0.03, 0.05, 0.07, 0.15, 0.2, 0.4 and variance 0.01. Fig. 19
illustrates the final registration results of the proposed mod-
els. Fig. 19 (a) shows the original reference image, 19(b)
shows the original template image, from (c)-(h) shows the
registered images by model in (12) using MI as similarity
measure and (i)-(n) shows the registered images by model
2 in (14) using NGF as similarity measure, which are cor-
rupted with different noise means and variance 0.01. The
final registration results shows that in both the proposed
models, the model 2 in (14) using NGF as similarity measure
efficiently register in all images in the presence of Gaussian
noise. Even for the presence of 0.4 Gaussian noise mean the
model 2 using NGF is able to perform well to register, while
the proposed model 1 in (12) using MI as similarity measure
is efficient up to mean 0.20 and variance 0.01.

To quantitatively evaluate the accuracy of the registration
algorithms, the correlation coefficients between the reference
and transformed template images are compared. The correla-
tion coefficient ρ(T (u),R) between the transformed template

image T (u) and reference image R is given by:

ρ(T (u),R) =

∑
m
∑

n
(
T (u)mn − ¯T (u)

) (
Rmn − R̄

)√∑
m
∑

n
(
T (u)mn − ¯T (u)

)2 (
Rmn − R̄

)2 ,
(33)

where T (u) and R are m× n are two-dimensional images and
¯T (u) and R̄ represent the mean value of the elements of T (u)

and R, respectively. A correlation coefficient of zero indicates
a low degree of matching between the images, and a Cor-
relation Coefficient of 1 indicates exact similarity between
the images. Correlation Coefficients are a commonly used
representation of similarity between images for the evaluation
of deformable registration techniques.

The statistical analysis of the noise added image is done
in Table 5, which shows that the proposed model using NGF
can efficiently work upto mean 0.04 and variance 0.01, while
the proposed model using MI as similarity measure is effi-
cient uptomean 0.20 and variance 0.01. Also to quantitatively
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FIGURE 19. Final registration results of real noisy medical image by the proposed models (a) Original
Reference image (b) Original Template image and (c-h) transformed template images with Gaussian noise
by proposed model 1 using MI as similarity measure and (i-n) transformed template images with Gaussian
noise by proposed model 2 using NGF as similarity measure of different means 0.03, 0.05, 0.07, 0.15, 0.2,
0.4 and variance 0.01, respectively.

TABLE 5. Comparison of the proposed models using MI and NGF as similarity measures using coefficient of correlation by adding Gaussian noise with
different Means and Variance = 0.01.

evaluate the accuracy of the proposed models the correla-
tion coefficient between the reference and template images
are compared. The results produced in Table 5 and Fig. 19
demonstrate that the proposed Gaussian curvature model 2
in (14) using NGF as similarity measure is a significant
improvement over the Gaussian curvature model 1 in (12)
using MI as similarity measure.

V. CONCLUSION
In this paper, we proposed two non-rigid image registration
models for the alignment of multi-modality images. In these
models, we have shown that the Gaussian curvature is incor-
porated as regularization term with mutual information and
normalized gradient field, which are used as the data terms
to measure the similarity of the multi-modality images to be
registered. In order to solve the proposed registration models
efficiently, we used Augmented Lagrangian method for its
numerical implementation. The proposed models can regis-
ter multi-modality images without effecting edges and other
important fine details. The proposed models produce good
registration results in multi-modality images such as medical
and synthetic images as compared to the existing state of
the art models quantitatively. Experimental results of the pro-
posed registration models shows that the registered template
images are very similar to the reference images and exhibits
an excellent registration performance with better values of the

Jaccard similarity coefficient. Moreover, they are tested on
MR images taken from the free available database Brainweb
in order to get better registration results. To quantitatively
evaluate the accuracy of the proposed models the correlation
coefficient between the reference and template images are
compared. The results demonstrate that the proposed Gaus-
sian curvature model 2 using NGF as similarity measure has a
significant improvement over the proposed model 1 using MI
as similarity measure. The proposed models with Gaussian
curvature works better for the large and smooth deformations
without mesh folding while existing models with linear cur-
vature may not produce better results for large deformations
and may produce mesh folding. The only limitation of the
proposed models is that they are computationally costly and
needs high processors systems. Future work could investigate
options for further improvements. It can be expected that the
models can be applied to the real data sets of multi-modality
images. Also, the proposed models can be apply to high
resolution multi-modality images.
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