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ABSTRACT We propose an unmanned aerial vehicle (UAV) communications schemewith spectrum-sharing
mechanism to provide mission-critical services such as disaster recovery and public safety. Specifically,
the UAVs can serve as flying base stations to provide extended network coverage for the affected area under
spectrum-sharing cognitive radio networks (CRNs). To cope with the effects of network destruction in a
disaster, we propose a real-time optimisation framework for resource allocation (e.g., power and number
of UAVs) for CRNs assisted by UAV relays. The proposed optimisation scheme aims at optimising the
network throughput of primary and secondary networks under the stringent constraint of maximum tolerable
interference impinged on the primary users. We also propose a deep neural network (DNN) model to
significantly reduce the execution time under real-time solution ofmixed-integer UAVdeployment problems.
For both primary and secondary networks, our real-time optimisation algorithms impose low computational
complexity, hence, have a low execution time in solving throughput optimisation problems, which demon-
strates the benefit of our approached proposed for spectrum-sharing UAV-assisted mission-critical services.

INDEX TERMS Real-time optimisation, unmanned aerial vehicle (UAV), spectrum sharing, machine
learning, mission-critical communications.

I. INTRODUCTION
Future wireless networks, i.e., 5G and beyond, will not only
enhance mobile broadband but also provide mission-critical
communications with ultra-reliable and low latency com-
munications (URLLC). In the event of a natural disaster,
unmanned aerial vehicles (UAVs) play a significant role in
search and rescue (SAR) missions [2]. The UAVs have to
stay airborne above the affected area to aid first responders in
assessing the gravity of the disaster as promptly as possible.
Yet the UAVs’ airborne duration is limited by their battery
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capacity [2], whereas SAR missions require intensive assis-
tance from UAVs during the first hours of the disaster.

Additionally, the UAVs’ operation is conventionally
mandated in the unlicensed spectrum bands shared with
other wireless technologies including the IEEE S-Band,
IEEE L-Band, and ISM-Band. These bands are becom-
ing more crowded due to the escalating proliferation of
Internet-of-things devices and D2D communications. Hence,
supporting the UAVs’ operation in a cognitive radio net-
work (CRN) becomes a promising technique of increasing
the UAVs’ available radio resources in addition to the unli-
censed band. The integration of UAVs into spectrum-sharing
networks has attracted substantial interest from the research
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community [3]–[5]. In [3], the authors enhanced the spec-
trum sensing performance, by arranging for a UAV to per-
form spectrum sensing by circularly flying over the primary
user (PU) with the objective of accessing the idle spec-
trum. By contrast, the UAV can also operate concurrently
with the PU [4], where it acts as a relay to forward the
messages from both the PU and SU to the designated
receivers.

While combining a UAV with CRNs is capable of improv-
ing the spectral efficiency, there are several technical prob-
lems associated with UAV-aided communication. One of
the most important issues is the UAV’s energy consump-
tion, which represents the main drawback of UAVs’ appli-
cations [6], [7]. To address this, joint trajectory and power
allocation optimisation has been conceived for UAV-CRNs
in [6]. Given this transmission strategy, the average achiev-
able rate of the UAV to SU link can be optimised subject to
the UAV’s speed, location and transmit power. Although the
aforementioned contributions have shed light on the UAVs’
application, especially on their suitability in disaster relief
efforts, UAV-enabled communication is still facing limita-
tions that should be addressed for ensuring the success of
SAR missions. In particular, a prompt action is required
of network controllers in support of UAV communications
due to the dynamically changing environment [2], which
is one of the most critical constraints in UAV applications.
In all the UAV-aided optimisation scenarios found in the
open literature [3]–[7] and the references therein, solving a
convex optimisation problem can only be achieved after a
long period of time, which is not particularly suitable for
mission-critical services. Therefore, maximising the perfor-
mance of UAV communication networks is vital for such
applications.

In [8], the authors utilised UAVs as a solution to enhance
the average secrecy rate in the cognitive communication net-
works, by optimising UAVs’ robust trajectory and transmit
power allocation. In [9], considering the downlink trans-
mission of UAV-enabled networks in coexistence with D2D
communication, the authors proposed a joint design of
D2D assignment and resource allocation for maximising
ground terminals throughput. In addition, in [10], the authors
have formulated and solved the throughput maximisation
problem, by jointly combining optimal location and spec-
trum sensing duration of the UAVs. However, the cognitive
UAV network considered in [10] only consists of a single
(primary) receiver, which is generally different from our
model. Moreover, aiming at maximising a SU’s throughput,
the work in [11] studied the joint optimisation problem of
the UAV placement and power allocation. However, [11]
considered only a cognitive/secondary UAV transmitter com-
municating with the ground SU. Very recently, we have
investigated the energy efficiency of UAV-CRNs in disaster
recover scenarios in [1], [12], [13].

Against this background, we extend our previous work [1]
by conceiving advanced optimisation techniques and train-
ing deep neural networks (DNNs). We propose a practical

optimisation technique for enabling cognitive UAV com-
munications to restore reliable network coverage in
disaster-relief missions. Explicitly, joint execution time and
throughput optimisation is conceived, which involves the
deployment of UAVs under the control of mix-integer opti-
misation programming and robust resource allocation under
throughput maximisation. The numerical results demonstrate
the benefits of our approaches proposed for UAV-CRNs. The
main contributions of this paper are as follows:
• We consider CRNs assisted by UAVs acting as relays,
to cope with the network destruction in the event of
a natural disaster. We then propose optimal resource
allocation algorithms to maximise the throughput of
primary and secondary networks under the rapid UAVs’
deployment. Our model considers real-time optimisa-
tion in embedded UAV-CRN communication invoked
for recovering wireless communication services.

• For the UAV deployment, an amalgamated optimisa-
tion and machine learning method relying on a DNN
model is proposed for a significant reduction in the
execution time under real-time solution of mixed-integer
UAV deployment problems. This technique results in
a learning-based optimisation programming which is
associated with the connotation of ‘‘black box’’ optimi-
sation.

• For the throughput maximisation of primary and sec-
ondary networks, we propose real-time optimisation
algorithms tomaximise the total throughput or guarantee
the QoS fairness, i.e., maximise the worse-case scenario
(PU or UAV) in the networks.

• All proposed optimal resource allocation algorithms
have low-complexity for solving the non-convex
throughput maximisation problem with rapid UAV
deployment under both power budget and quality-
of-service (QoS) constraints for dealing with the chal-
lenges of limited spectral and power resources in UAV
systems. Our solutions become capable of supporting
real-time applications in disaster recovery scenarios
with low execution time in solving practical optimisation
problems.

II. UAV-CRN SYSTEM AND CHANNEL MODEL
A. SYSTEM MODEL
We consider relay-assisted UAV in CRNs, where a macro
base station (BS) is equipped with a massive multiple-input
multiple-output (MIMO) array. Here, the N transmit anten-
nas (TAs) at the BS are utilised to serve KP primary
users (PUs) located in the primary network (safety area).
Meanwhile, in the secondary network (disaster area),
the UAVs are deployed as small-cell flying base stations,
which can be connected to the cellular networks via the BS;
the aim is to restore reliable wireless network(s) operation in
the hazardous areas and to serve as many SUs in the disaster
region as possible. All SUs that are served are represented by
M groups given by the set of KS = {K1, . . . ,KM }, which
are supported by the set of UAVs M = {1, . . . ,M} required
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FIGURE 1. A model of UAV-enabled cognitive small cell network in
disaster relief.

for restoring reliable network operation. We set the number
of PUs and SUs toKP = {1, . . . ,KP} andKS = {1, . . . ,KS},
respectively. Both the PUs and SUs are randomly distributed
in the primary and secondary networks constituted by the set
of K = {KP,KS}. The deployment and trajectory design of
theUAVs is controlled by the terrestrial BS as shown in Fig. 1.
Apart from the BS, all other terminals are single-antenna
equipped.

B. CHANNEL MODEL
We define the 3D location of the BS, the UAVs and of
all the users (PUs and SUs) as (x0, y0,H0), (xm, ym,Hm),
m ∈ M and (xk , yk , 0), k ∈ K, respectively. The antenna
heights of the BS and the UAV are respectively denoted as
H0 and Hm. We assume a UAV’s antenna altitude is also
its altitude. These locations are determined by using the
Global Positioning System (GPS) and stored at the ground
station.

Due to the line-of-sight (LoS) propagation and the 3D
nature of UAV-enabled communications, we can exploit the
air-to-air (ATA) link to enhance the BS-UAV links explicitly
as LoS propagation is highly likely to occur in the ATA links.
Hence, the path loss between the BS and themth UAV follows
the free-space path loss model as [12], [14]

β0,m =
β0

d20,m + (H0 − Hm)2
, m = 0, 1, . . . ,M (1)

where β0 is the channel’s power gain at reference distance d0
and d0,m =

√
(x0 − xm)2 + (y0 − ym)2.

By contrast, the air-to-ground (ATG) channels are more
complex due to the effects of propagation blockage such as
shadowing, blockage geometry and disaster paraphernalia.
The path-loss expression between themth BS and the kth user
is denoted as [15]

βm,k = PLm,k + ηLoSPLoSm,k + ηNLoSP
NLoS
m,k (2)

where ηLoS and ηNLoS are the average additional losses for the
LoS and NLoS paths, respectively. Here, the distance-related

path loss is given by

PLm,k = 10 log
(
4π fcRm,k

c

)α
(3)

where fc is the carrier frequency (Hz), c is the speed of light
(m/s), and α ≥ 2 is the path loss exponent. The probability of
LoS is given by [16]

PLoSm,k =
1

1+ a exp
[
−b

(
arctan

(
Hm
dm,k

)
− a

)] (4)

where a and b are constants, depending on the environment.
Then, we have PNLoSm,k = 1−PLoSm,k . Finally, we can rewrite (2)
as

βm,k = 10α log(Rm,k )+ A× PLoSm,k + B (5)

where A = ηLoS − ηNLoS , B = PLm,k + ηNLoS , and Rm,k
denotes the distance between the mth BS and the kth user,
formulated as

Rm,k =
√
d2m,k + H

2
m, k ∈ K (6)

where dm,k =
√
(xm − xk )2 + (ym − yk )2 is the Euclidean

distance between the mth UAV and the kth user.

C. TRANSMISSION SCHEME
1) PRIMARY NETWORK
Let us consider the transmission in the primary network
where the BS transmits its signal to the PUs. Firstly, the signal
received at the kth PU (k ∈ KP) is given by

y0,k =
√
P0gT0,k f 0,ks0,k︸ ︷︷ ︸
desired signal

+

∑
k ′∈KP\{k}

√
P0gT0,k f 0,k ′s0,k ′︸ ︷︷ ︸

co-tier interference

+

M∑
l=1

gl,k
√
Plsl,0︸ ︷︷ ︸

inter-cell interference

+nk (7)

where P0 is the transmit power of the BS; g0,k ∈ CN is the
channel coefficients between the BS and kth PU; f 0,k ∈ CN

and s0,k ∈ C are the beamforming vector and the information
transmitted from the BS with ||s0,k ||2 ≤ 1. Here, we utilise
the structure of the ATA links by including both large-scale
and small-scale fading effects as g0,k =

√
β0,kh0,k , where

h0,k is the small-scale fading coefficients for channels from
BS to kth PU. Moreover, Pl is the transmit power of the lth
UAV; nk ∼ CN (0, σ 2

k ) is the additive white Gaussian noise
(AWGN). To elaborate the right-hand side of (7), the first
term is the desired signal designated for the kth PU, the sec-
ond term is the co-tier interference from the remaining PUs,
and the last term is the inter-cell interference from the UAVs
in the secondary network.

In this paper, for the massive MIMO BS, we employ effi-
cient maximal ratio transmission (MRT) criterion in beam-
forming design for the massive MIMO array at the BS, which
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is formulated as follows [17]:

f 0,k =
√
p0,k

g∗0,k
‖g0,k‖

(8)

where p0,k is the power control coefficient. Then, we intro-
duce ρ0,k,j = gT0,kg

∗

0,j/‖g0,j‖.
For the power control coefficients p0 = [p0,k ]k∈KP and

pM = [Pm]m∈M, the network interference imposed on the
primary network is characterised by the co-tier interference
formulated as

I intra
k (p0) = P0

∑
k ′∈KP\{k}

p0,k ′ |ρ0,k,k ′ |
2, k ∈ KP (9)

and the inter-cell interference inflicted by the secondary net-
work1

I inter
k (pM ) =

∑
m∈M Pm|β

atg
m,k |

2, k ∈ KP. (10)

The information throughput of the kth PU (in nats) is given
by

R0,k (p0, pM ) = ln

(
1+

P0 p0,k |ρ0,k,k |2

I intra
k (p0)+ σ

2
k

)
. (11)

To ensure the quality-of-service (QoS) of the primary net-
work, the QoS constraints have to be investigated in the face
of inter-cell interference

I inter
k (pM ) ≤ IPUth (12)

where IPUth is themaximum tolerable interference still capable
of ensuring the QoS of the PUs.

Thus, the total throughput of the primary network is
expressed as

Rpri(p0, pM ) =
∑
k∈KP

R0,k (p0, pM ). (13)

2) SECONDARY NETWORK
Simultaneously, we consider the transmission in the sec-
ondary network where the UAVs also forward the signals
from the SUs to the BS. The signal received at the BS from
the mth UAV is written as

ym,0 = gTm,0f m,0
√
Pmsm,0︸ ︷︷ ︸

desired signal

+

M∑
l=1,l 6=m

gTm,0f l,0
√
Plsl,0︸ ︷︷ ︸

inter-cell interference

+n0 (14)

where Pm is the transmit power of the mth UAV; gm,0 is the
channel coefficients between the mth UAV and BS; f m,0 is
transmit beamforming vector and sm,0 is information trans-
mitted by the mth UAV with ||sm,0||2 ≤ 1, n0 ∼ CN (0, σ 2

0 )
is the AWGN.

Similar to (8), we apply MRT for the transmission of
the secondary network and we also introduce ρm,0,l =
gTm,0g

∗

l,0/‖gl,0‖.

1It is very hard to estimate theATG channel betweenUAVs and PUs, so the
inter-cell interference from the secondary network can only be estimated by
the UAVs and determined as in (10).

The information throughput of the BS (in nats) received by
the mth UAV can be written as

Rm,0(pM ) = ln
(
1+ Pm|ρm,0,m|2

IBS
m (pM )+σ 20

)
(15)

where IBS
m (pM ) =

∑
l∈M,l 6=m Pl |ρm,0,l |

2 represents the
inter-cell interference imposed on the BS.

Thus, the total throughput of the secondary network is
expressed as the total throughput of all UAVs

Rsec(pM ) =
∑
m∈M

Rm,0(pM ). (16)

D. PROBLEM FORMULATION
In this paper, our main target is to maximise the network
throughput of either the primary or secondary network by
using BS association and power allocation optimisation for
CRNs assisted by UAVs. Hence, we define two optimisation
problems: the maximisation of the primary network through-
put (MaxPRI) and the maximisation of the secondary net-
work throughput (MaxSEC). The corresponding optimisation
problems are respectively formulated as

Problem I : max
p0,pM ,(m,k)

Rpri(p0, pM ) (17a)

s.t.
∑
k∈KP

p0,k ≤ 1,Pm ≤ Pmax
m ,m ∈M,

(17b)

Rm,0(pM ) ≥ r̄m,0, m ∈M, (17c)

R0,k (p0, pM ) ≥ r̄0,k , k ∈ KP, (17d)

(m, k) ∈ Km,m ∈M, k ∈ Km, (17e)

Problem II : max
p0,pM ,(m,k)

Rsec(pM ) (18a)

s.t. (17b)− (17e), (18b)

where the constraint (17b) represents the power requirements
at the UAVs and the BS, while the constraints (17c) and (17d)
formulate the QoS requirement of the UAV-BS and BS-PU
links, respectively. The constraint (17e) corresponds to the
deployment of the UAVs at the beginning. We set Km =

{1, . . . ,Km} and
∑

m∈M Km = KS .
Obviously, the problems (17)-(18) are non-convex prob-

lems with the non-convex functions of (17a), (17c)-(17e),
and (18a). Moreover, when large-scale scenarios are consid-
ered, the problems become very complex due to the large
number of UAVs (M ) and users in the deployment area.
For efficiently solving the non-convex problems (17)-(18),
we separate the two problems into two subproblems. Firstly,
the user associationwithUAVclusteringwill be proposed that
will satisfy constraint (17e) under the deployment of UAVs.
Then, a DNN is applied for constructing the optimisation
strategy of UAV deployment for the real-time context consid-
ered. Finally, the optimal power is assigned for maximising
the network throughput given QoS requirements.
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III. LEARNING OPTIMISATION FOR A REAL-TIME
SCENARIO OF UAV DEPLOYMENT
A. CONVENTIONAL OPTIMISATION APPROACH FOR UAV
DEPLOYMENT
In order to guarantee the QoS of ATG links between UAVs
and users, we consider the coverage region by defining a
circular disc of radius Dcov. The radius Dm,cov is related to
the altitude of UAV m as follows:

Hm = Dm,cov tan(θ),∀m, (19)

where θ is set to 42.44◦ [18]. Therefore, a SU can be served
by a UAV in its coverage area (m, k) ∈ Km if the Euclidean
distance between the UAV and the SU is less than the cover-
age distance Dm,cov, which is formulated as

dm,k ≤ Dmaxm,cov k ∈ KS , (20)

where Dmaxm,cov = Hmax
m / tan(θ).

Given the limited operational range of the UAV, we for-
mulate a UAV positioning optimisation problem to provide a
best-effort transmission service for the secondary network in
each group

max
qm,um,k

M∑
m=1

Km∑
k=1

um,k (21a)

s.t. d2m,k ≤ (Dmaxm,cov)
2
+ λm(1− um,k ), (21b)

qm ∈ [qmin
m , qmaxm ], (21c)

um,k ∈ {0, 1}, (21d)

m ∈M, k ∈ Km,

where qm = [xm, ym,Hmax
m ]T , λm is chosen as a specific

value corresponding to the maximum network coverage area
of the mth UAV (i.e., λm > (Dmaxm,cov)

2), while (xmin, xmax)
and (ymin, ymax) represent the lower and upper bounds of
the horizontal and vertical range of UAVs, respectively.
Note that the problem in (21) is a mixed-integer (binary)
quadratic programming, which is non-convex problem. Solv-
ing the above problem, which belongs to combinatorial (or
discrete) optimisation, is often very difficult. Fortunately,
the Python-embedded optimisation program CVXPY [19]
by using an appropriate solver is capable of solving prob-
lem (21).

Although conventional optimisation for UAV deployment
relying on the CVXPY platform for example can solve prob-
lem (21), the execution time imposed by solving the related
mixed-integer program in excessive, when the networking
scenario becomes more complex and when the number of
integer variables (um,k ) increases. The problem (21) is one of
the most complex problemwith the worst-case complexity up
to O(2mk ) where m and k are the number of UAVs and SUs,
respectively. There are approaches to reducing the compu-
tational complexity of combinatorial algorithms for solving
this kind of problems such as exhaustive search, evolution
algorithm or genetic algorithms. As a result, we will propose
a new optimisation algorithm for UAVs deployment using a
DNN for learning optimisation in the next sub-section.

FIGURE 2. A model of learning-based optimisation algorithm by using
DNN.

B. DEEP NEURAL NETWORK FOR LEARNING
OPTIMISATION OF UAV DEPLOYMENT
Where existing optimisation algorithms might be infeasi-
ble, the collaboration of machine learning and optimisa-
tion offers simple and efficient techniques in dealing with
NP-problems [20]–[22], and complex and large-scale opti-
misation problems in real-time applications. In this regard,
DNN [23], [24] is an efficient machine learning approach that
can be applied in real-time optimisation methods.

In particular, to tackle the aforementioned problem,
we apply a new optimisation technique eminently suitable
for real-time applications by amalgamating DNN and opti-
misation algorithms. This technique results in learning-based
optimisation programming [21], as presented in Fig. 2. Deep
learning is a technique from computational procedure over
successive iterations. It is used to build an approximation of
the objective function and guide the good choice made in
the next iteration. DNN models can estimate the outcome of
a series of sub-problems all at once, attempt to reduce the
complexity of a constrained continuous optimisation prob-
lem by shrinking the solution space using a feature selec-
tion technique, and adjust metaheuristic solution methods
for multi-objective optimisation, e.g, choosing appropriate
heuristic methods or finding initial solutions. In fact, DNN
stands for the development of algorithms or techniques that
learn from observed data by assembling mathematical mod-
els. A fully connected DNN model consists of three types
of layers including one input layer, one (or multiple) hidden
layer(s) and one output layer.

In this context, a learning-based approach is proposed for
the optimisation of wireless networks in [21]. Following the
system setup in [21], we configure the network structure for
our DNN model as follows:

• The input of the network is the location of the UAVs and
SUs (qm, q

SU
k ), while the output of the network is the

optimal value of q∗m. In all the layers, we use ‘‘sigmoid’’
f (x) = 1

1+e−x as the activation function.
• Activation functions are an important feature of DNN.
They decide whether a node in the layer, which is receiv-
ing information relevant to the given information, should
be activated or not:
Y = activation(

∑
(weight ∗ input)+ bias)

• In the testing stage, we use a large training data set
(qm, q

SU
k ) for optimising and learning the weights of
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FIGURE 3. A DNN-based approach to learn optimisation algorithm via
minimising the error of solution between conventional algorithm and
DNN model.

the DNN model. The cost function (CF) is the mean
squared error (MSE) and the mini-batch stochastic gra-
dient descent (SGD) optimisation algorithm is used [21].

• In the testing stage, we also generate the structure based
on the same distribution during the training stage. Each
distributed location experiment is passed through the
trained network and then we collect the resultant optimal
location of the UAVs.

Explicitly, the optimisation algorithms will be trained for
learning the input/output relationship by using a DNN model
during the training stage. Several network layers will approx-
imate a training set of resource management algorithms by
using a DNN model, which requires simple operations to
implement a finite training sample set. With the aid of suffi-
cient training data set, their optimisation technique is capable
of completely replacing the conventional optimisation pro-
cesses during the testing stage.

As shown in Fig. 3, if the learning-based optimisation
algorithm learns the updated formula, it can learn a new
algorithm that is modelled as a neural network. Learning the
weights of the neural network and parameterising the updated
formula of the algorithm can provide useful function approx-
imators, model any updated formula with sufficient capacity,
allow for efficient search and easily perform training process
with backpropagation. Therefore, the appropriate optimiser
would simply memorise the optimum, and after learning with
sufficient training set, the optimiser then converges to the
optimum within a few steps regardless of initialisation in the
future.

IV. MAXIMISING NETWORK THROUGHPUT VIA ROBUST
POWER ALLOCATION
After solving the UAV deployment problem, in this section,
we conceive efficient resource allocation for solving the
network throughput maximisation problems (17)-(18) in the
absence of non-convex user association constraints (um,k ).
On the other hand, the problems (17)-(18) are still non-convex
ones since the objective functions are non-concave. Hence,
we consider the modified problems as

Problem I− B : max
p0,pM

Rpri(p0, pM ) (22a)

Algorithm 1 : Power Allocation Procedure for Solving Prob-
lem (24)
Input:
Set M , Km, Kp, P0, Pm
Set the tolerance ε = 10−2 or the maximum number of

iterations Imax = 20 to stop the algorithm.
Set i = 0 and a feasible point.

Repeat
Solve problem (24) for the optimal solution

(p(i+1)0 , p(i+1)M )
Set i := i+ 1

Until Convergence of the objective function in (24) or i >
Imax .
Output: Optimal power control coefficients (p0, pM )

s.t. (17b)− (17d). (22b)

Problem II− B : max
p0,pM

Rsec(pM ) (23a)

s.t. (17b)− (17d). (23b)

To solve problems (22)-(23), we use some efficient approx-
imation and logarithm inequalities [25] (see Appendix A for
detailed proofs).

Hence, at the ith iteration, the following convex programs
are solved to generate the feasible points:

Problem I− C : max
p0,pM

R̂(i)pri(p0, pM ) (24a)

s.t.
∑
k∈KP

p0,k ≤ 1,Pm ≤ Pmax
m ,m ∈M,

(24b)

R̂(i)m,0(pM ) ≥ r̄m,0, m ∈M, (24c)

R̂(i)0,k (p0, pM ) ≥ r̄0,k , k ∈ KP,

(24d)

Problem II− C : max
p0,pM

R̂(i)sec(pM ) (25a)

s.t. (24b)− (24d), (25b)

where R̂(i)pri(p0, pM ) =
∑

k∈KP
R̂(i)0,k (p0, pM ) and R̂(i)sec(pM ) =∑

m∈M R̂(i)m,0(pM ), the form of R̂(i)m,0(pM ) and R̂(i)0,k (p0, pM ) are
defined by (31) and (29), respectively.

We now proceed by proposing an algorithm to solve
the proposed throughput maximisation problems. In Algo-
rithm 1, we propose a power allocation procedure for solv-
ing problem (24). The initial point (p(0)0 , p

(0)
M ) for (24) may

be found by random search for a point satisfying the con-
straints (24b)-(24d). The power allocation procedure for solv-
ing problem (25) is similar to Algorithm 1.

V. SIMULATION RESULTS
In this section, the performance of the considered
system is evaluated by using embedded optimisation pro-
gramming, such as for example the CVXPY version 1.0.21 in
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Python [19]. The computational platform includes a PC
having a AMD Ryzen 7 2700X, CPU @3.7GHz and 32GB
memory. Our DNN model was implemented in Python
3.6 associated with Keras 2.2.4 using TensorFlow 1.13.1.

A. SIMULATION SETTINGS
We set the system parameters for our simulations as follows:

• The safety area is a circle coverage with a radius of
500m,

• The disaster area is extended from the safety area with a
radius up to 2000m,

• The location of the BS is assumed at (0, 0, 30) while PUs
and SUs are randomly distributed in the primary network
and secondary network, respectively,

• The path loss from BS to PUs is as βatg0,k = 148.1 +
37.6 log10 R [dB], R in km,

• The number of UAVs is provided as M = {4, 8}. The
number of PUs is set to KP = {10, 20, 30, 60} while the
number of SUs in each group is set to Km = {20, 30},

• The limited altitude of the UAVs (Hmin,Hmax) is
(50, 150)m,

• The tolerance and maximum number of iterations for
convergence of algorithms are ε = 10−3 and Imax = 10,

• The carrier frequency / bandwidth is fc = 2 GHz / B =
10 MHz,

• The QoS thresholds are set to r̄m,0 = 40 Mbps and
r̄0,k = 1 Mbps,

• The maximum transmit power is set to 40W and 5W for
BS and UAVs, respectively,

• The white power spectral density is σ 2
=

−130 dBm/Hz.

The parameters of the channel model are set as in [14],
[18], [25].

B. NUMERICAL RESULTS
The numerical results are conducted from our proposed
approaches, i.e., MaxPRI in (22) and MaxSEC in (23) and
the two conventional methods to guarantee the QoS fairness
among the primary and secondary networks. More particu-
larly, four different cases are generated from the following
algorithms:

• Primary network throughput maximisation (MaxPRI):
maximising the throughput of primary network as
in (22).

• Secondary network throughput maximisation
(MaxSEC): maximising the throughput of secondary
network as in (23).

• Maximisation of minimum primary network through-
put(MaxMinPRI): maximising the worst-case PU
throughput, i.e., max

p0,pM ,(m,k)
min
k∈KP

R0,k (p0, pM ), under the

same constraints as Problem I-A. Here, the worst-case
PU throughput is defined as the average throughput (in
nats) of the PUwith the lowest throughput in the primary
network.

FIGURE 4. The convergence of Algorithm 1 for solving Problem I-C
(MaxPRI) at M = 4, Km = 20, Pm = 35 dBm.

• Maximisation of minimum secondary network through-
put (MaxMinSEC): maximising the worst-case UAV
throughput, i.e., max

p0,pM ,(m,k)
min
m∈M

Rm,0(pM ), under the

same constraints as Problem II-A. Here, the worst-case
UAV throughput is defined as the average throughput
(in nats) of the UAV with the lowest throughput in the
secondary network.

For the sake of fairness, in all the four algorithms, we evaluate
the average total throughput (in nats) of all the PUs and UAVs
in the system, i.e., Rpri(p0, pM ) + Rsec(pM ). More specifi-
cally, in each figure, four different curves are generated as
follows:
• MaxPRI: the total throughput of both primary and sec-
ond networks are plotted where we only optimise the
throughput of the primary network as in (22) and the
throughput of the secondary network are set not to fall
below its QoS constraint.

• MaxSEC: the total throughput of both primary and sec-
ond networks are plotted where we only optimise the
throughput of the secondary network as in (23) and
the throughput of the primary network are set not to
fall below its QoS constraint. In addition, while we
optimise the secondary network, the maximum tolerable
interference impinged on the PUs is also satisfied as
in (12).

• MaxMinPRI: the total throughput of both the primary
and second networks are plotted where we only max-
imise the worst-case PU throughput.

• MaxMinSEC: the total throughput of both the primary
and second networks are plotted where we only max-
imise the worst-case UAV throughput.

1) CONVERGENCE OF ALGORITHMS
Figure 4 illustrates the convergence of Algorithm 1 for solv-
ing Problem I-C (MaxRatePri) at M = 4, Km = 20, Pm =
35 dBm. It is observed that after a few iterations, the objective
function (24a) converges to its maximum value.
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FIGURE 5. Average total network throughput versus the power of UAVs (Pm) with Kp = 60.

FIGURE 6. Average total network throughput versus number of PUs (Kp) with Pm = 35 dBm.

2) OPTIMAL TOTAL THROUGHPUT VERSUS THE POWER OF
UAVs
In Figure 5, we show the average total network throughput
as a function of the UAV’s power (Pm) for the proposed
throughput maximisation problems. Our major findings are
as follows:
• As expected, the total network throughput with MaxPRI
outperforms the others, demonstrating the efficiency of
the power allocation with primary network throughput
maximisation. Moreover, while MaxPRI and MaxSEC
find optimal solutions to maximise the sum of network
throughput, MaxMinPRI and MaxMinSEC only opti-
mise either the PU or UAV with the worst throughput.
Therefore, MaxPRI and MaxSEC obviously provide a
better total throughput than those of MaxMinPRI and
MaxMinSEC.

• For the considered schemes taking into account the sec-
ondary network throughput maximisation, the total net-
work throughput increases with the power of UAVs until
reaching a threshold (e.g., approximately Pm = 25 dBm

and Pm = 20 dBm in the case of M = 4, Km = 20
and M = 8, Km = 30, respectively). As observed
from Figures 5a and 5b, the higher the number of UAVs,
the lower the Pm threshold above which the network
throughput does not increase anymore. This is because
the inter-cell interference caused by the UAVs increases
significantly with a large number of UAVs.

3) OPTIMAL THROUGHPUT VERSUS THE NUMBER OF PUs
Figure 6 plots the average total throughput versus different
number of PUs in the primary network considering different
number of UAVs. We can observe from the figure that

• The average total network throughput goes up when the
number of PUs is sufficiently small e.g., KP ≤ 30.
However, the total throughput would reduce with larger
number of PUs due to the co-tier interference in the
primary network.

• As expected, given a particular UAV power, more UAVs
are associated with higher the average total throughput
of the network.

VOLUME 9, 2021 11629



M.-H. T. Nguyen et al.: Spectrum-Sharing UAV-Assisted Mission-Critical Communication: Learning-Aided Real-Time Optimisation

FIGURE 7. Worst-case UAV throughput versus UAV power at M = 8,
Km = 30, Kp = 60.

FIGURE 8. Worst-case PU throughput versus the number of PUs at M = 8,
Km = 30, Pm = 35 dBm.

4) THE WORST-CASE UAV AND PU THROUGHPUT
Figure 7 denotes the worst-case UAV throughput versus a
range of UAV power at M = 8, Km = 30, Kp = 60 for
different power allocation schemes. We can see that
• By maximising the throughput of the UAV with the
worst performance, MaxMinSEC outperforms the other
schemes in terms of the worst-case UAV throughput.
On the other hand, MaxSEC obtains lowest performance
due to the fact that it only focuses on maximising the
total throughput of the secondary network.

• Moreover, as mentioned above, the worst-case UAV
throughput is limited by the inter-cell interference when
the power of the UAVs, Pm, is large enough, especially
in the case of MaxSEC.

In Figure 8, we evaluate the worst-case PU throughput for
a range of different number of PUs.
• MaxMinPRI provides the highest worst-case PU
throughput in comparison to the others because its objec-
tive function is tomaximise throughput of the worst-case
PU.

• Moreover, the larger the number of PUs, the higher the
co-tier interference which reduces the PU throughput.

TABLE 1. The execution time of our UAV deployment algorithm both
under conventional optimisation (Conv_UAV_Dep) and learning-aided
optimisation using DNN model (DNN_UAV_Dep).

TABLE 2. The execution time of proposed optimisation algorithms for
optimising network throughput performance.

5) AVERAGE EXECUTION TIME FOR SOLVING OPTIMISATION
PROBLEMS
In Table 1, we provide the average execution time for solving
the UAV deployment problem via two proposed methods,
i.e., conventional UAV deployment (Conv_UAV_Dep) and
deep learning UAV deployment (DNN_UAV_Dep) schemes.
The accuracy metric is defined by the difference from the
values achieved in Conv_UAV_Dep and DNN_UAV_Dep
to optimise the UAV deployment. The figures demonstrate
the potential of learning-based optimisation algorithm by
using the DNN model. As seen from Table 1, our pro-
posed learning-aided UAV deployment procedure exhibits a
low complexity and high accuracy, even upon dealing with
large-scale scenarios.

As shown in Table 2, the average execution time for
solving optimisation problems under sum rate maximisation
and maximin worst-case rate in both primary and secondary
networks is provided. All simulation results are consumed
within milliseconds for up to 100 devices considered in the
system.

VI. CONCLUSION
In this paper, a spectrum-sharing UAV communication
scheme was conceived for establishing network coverage
for mission-critical services, e.g., in the event of a natural
disaster recovery. We proposed a novel learning-aided opti-
misation scheme for optimal radio resource allocation of the
considered networks under the stringent constraint of maxi-
mum tolerable interference. By employing the deep learning
approach, the UAVs deployment, i.e., the number of UAVs
to serve the secondary users, can be quickly established.
We then developed the real-time optimisation algorithms
to optimise the throughput for both primary and secondary
networks. Our low-complexity algorithms lend themselves
to real-time deployment in the context of cognitive radio
networks relying on UAVs. The numerical results demon-
strated that our UAV deployment can be promptly optimised
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in a large-scale scenario. The proposed schemes revealed a
compelling installation of real-time optimisation in wireless
communication systems that have been destroyed by natural
disasters. Through the numerical results, we have demon-
strated the feasibility of the propose real-time optimisation
which is computationally applicable with just a small amount
of time needed for solving on a millisecond time-scale.

APPENDIX
APPROXIMATION APPROACHES AND INEQUALITIES
USED TO SOLVE THE OPTIMISATION PROBLEMS (22)
AND (23)
To solve problems (22) and (23), we exploit the logarithmic
inequality of [25], [26], which follows from the convexity of
the function f (x, y) = ln

(
1+ 1/xy

)
, yielding

f (x, y) = ln(1+
1
xy

) ≥ f̂ (x, y), (26)

where we have

f̂ (x, y) = ln
(
1+

1
x̄ȳ

)
+

2
(x̄ȳ+ 1)

−
x

x̄(x̄ȳ+ 1)
−

y
ȳ(x̄ȳ+ 1)

, (27)

∀x > 0, x̄ > 0, y > 0, ȳ > 0.
Let i denote the ith iteration and exploit

x1 =
1

P0 p0,k |ρ0,k,k |2
, y1 = I intra

k (p0)+ σ
2
k ,

x̄1 = x(i)1 =
1

P0 p
(i)
0,k |ρ0,k,k |

2
, ȳ1 = y(i)1 = I intra

k (p(i)0 )+ σ 2
k ,

for the approximation of the kth PU’s throughput in (11) as

R0,k (p0, pM ) ≥ R̂(i)0,k (p0, pM ),∀k ∈ KP (28)

where

R̂(i)0,k (p0, pM ) = ln
(
1+

1
x̄1ȳ1

)
+

2
(x̄1ȳ1 + 1)

−
x1

x̄1(x̄1ȳ1 + 1)
−

y1
ȳ1(x̄1ȳ1 + 1)

. (29)

Similarly, we can invoke

x2 =
1

Pm|ρm,0,m|2
, y2 = IMBS

m (pM )+ σ 2
0 ,

x̄2 = x(i)2 =
1

P(i)m |ρm,0,m|2
, ȳ2 = y(i)2 = IBS

m (p(i)M )+ σ 2
0 ,

for the approximation of BS’s throughput function in (15) as

Rm,0(pM ) ≥ R̂(i)m,0(pM ),m ∈M (30)

where

R̂(i)m,0(pM ) = ln
(
1+

1
x̄2ȳ2

)
+

2
(x̄2ȳ2 + 1)

−
x2

x̄2(x̄2ȳ2 + 1)
−

y2
ȳ2(x̄2ȳ2 + 1)

. (31)
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