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ABSTRACT The bathtub model has often been cited as a hazard rate profile that predicts not only human
mortality but also the hazard rate of manufactured products. This article examines the inapplicability of the
bathtub model to predict the hazard rate of electronic components, products, and systems. The article reviews
various literature and uses numerous experiments and field failure data to support its argument. The factors
affecting the hazard rate of electronics are then discussed, common hazard rate trends for electronics are
identified, and recommendations for the assessment of hazard rates are given. This article recommends that
a preconceived model of hazard rate over time should not be used.

INDEX TERMS Bathtub model, electronics, hazard rate, infant mortality, useful life, wear-out.

I. INTRODUCTION AND HISTORY
The hazard rate of products is the conditional probability
of product failure in a time interval, given that the products
survived until that time interval. It is also described as the
instantaneous failure rate of products. The shape of the hazard
rate curve depends on when the failures occur over time.
A hazard rate model in the form of a bathtub model has
been used as a simplifying assumption. However, this shape
(e.g., model) does not necessarily indicate any actual failures
that occur in the field for any given product [1].

The bathtub model was originally developed as a model of
the hazard rate for human life (mortality) over time [2], [3],
and it first appeared in an actuarial life-table analysis article
published in the late 17th century [4], [5]. The model’s name
is derived from its shape, which is similar to a bathtub,
as shown in Fig. 1. The initial period starts with high but
decreasing (over time) mortality, which is representative of
the high number of infant deaths (infant mortality or early
failures). A period of constant mortality (called the useful
life period) follows, where deaths occur from random inci-
dents such as accidents, homicides, cancer, and food poi-
soning [3], [6]. The third period, called the wear-out period,
occurs as the population approaches old age and the rate of
deaths increases [3].

Although the bathtub model was created to model human
mortality and assess life insurance risks, studies [7]–[9] have
noted that it no longer applies to the human population due to
advances in science.Meckel [9] reported that in less than 10%
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FIGURE 1. Bathtub model of hazard rate.

of the infants in underdeveloped countries, and less than 1%
of infants in developed countries die during their first year.
Furthermore, each country has its own humanmortality curve
with different rates [10].

At the same time that humanmortality scientists were start-
ing to reject the bathtub model, reliability engineers picked
up the notion and started using the bathtub model to describe
manufactured goods, including electronic components and
products. Educators also began using the bathtub model to
explain the simple concepts and effects of a decreasing,
constant, and increasing hazard rate.

Based on the review of experiments conducted at the Uni-
versity of Maryland and the existing literature, this article
addresses the question as to whether the bathtub model is
appropriate for electronic components, products, and sys-
tems. Section II explains the bathtub model and the related
terminologies. In Section III, individual regions of the ide-
alized bathtub model are assessed based on studies con-
ducted by the researchers at the Center for Advanced Life
Cycle Engineering, University of Maryland, along with the
examples from literature. Section IV assesses the bathtub
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model as a whole and discusses the hazard rates of electronic
products and systems. Section V presents the conclusions and
recommendations.

II. THE BATHTUB MODEL AND TERMINOLOGY
The reliability of an electronic product is defined as the
probability that the product will function for a required period
of time under the specified life-cycle conditions. For a pop-
ulation of products, n0, let nf (t) be the number that failed
at time t , and ns(t) be the number of products that are still
operating satisfactorily at time t . If we plot the percentage of
failures per the total population, we obtain a histogram of the
failure probability density function, f̂ ,

f̂ =
1
n0

1nf
1t

(1)

where 1nf is the number of failures that occurred in a time
interval, 1t .
If we plot the percentage of failures per the number of

products that are still operating, nbp, at time t; we obtain
a histogram of the hazard rate, often called the failure rate
function, ĥ,

ĥ =
1
nbp

1nf
1t

(2)

For an infinite population and in the limit as the time
interval goes to 0, the hazard rate can be given as a continuous
function, h (t), noting that nbp goes to ns(t) in the limit.

h (t) =
1

ns(t)

d
[
nf (t)

]
dt

=
−1
R(t)

d [R (t)]
dt

=
f (t)
R(t)

(3)

where R(t) is the reliability of the product at time t , expressed
as the ratio of the surviving products, ns(t), per the original
population size. Here, f (t) is the probability density function.
The ratio of the number of product failures in an interval to the
original population estimates the probability density function
corresponding to the interval.

A mixed-Weibull distribution can be used to determine
the various hazard rate distributions and determine whether
a bathtub-shaped hazard rate distribution exists, and what
is the appropriate hazard rate model [11]. There are var-
ious academic and commercial tools available to perform
hazard rate analysis. The equations are simple enough that
general-purpose mathematical tools like Excel [12], Mat-
lab [13], Mathcad [14], R [15], and Mathematica [16] can be
used to determine the best model for the hazard rate data.

The bathtub model is often inappropriately used to rep-
resent the hazard rate curves of electronic components and
products. As shown in Fig. 1, the bathtub model consists of
three regions – infant mortality, useful life, and wear-out. For
any given bathtub model, as in Fig. 1, the reliability decreases
throughout the time period. That is, products continue to fail
over time.

The first region of the bathtub model, known as the infant
mortality region, burn-in region, debugging region, or the
break-in region, is characterized by a decreasing hazard
rate [2]. Traditionally, it is assumed to represent the fail-
ures occurring due to immature design and manufacturing

processes, quality issues, substandard materials, inadequate
debugging, and human errors [17]–[19].

The second region of the bathtub model, the useful life
period, is depicted by a constant hazard rate. This region is
assumed to represent failures caused due to random events
such as random environmental loads, human error, abuse, and
‘acts of God’ [17].

Many reliability prediction handbooks [20], [21] and reli-
ability allocation methods [22] have incorrectly assumed that
this region dominates the hazard rate trends of electronics;
however, this assumption has also been proven to be incorrect
[23]–[25].

The third region of the bathtub model is called the wear-
out period, and it is characterized by an increasing hazard
rate. The bathtub model assumes that the failures due to
wear-out mechanisms occur only during this region. Exam-
ples of wear-out mechanisms include fatigue [26], corro-
sion [26], electromigration [27], time-dependent dielectric
breakdown [27], hot carrier injection [27], and negative bias
temperature instability [27] and aging [17].

III. WHY THE BATHTUB MODEL IS NOT AN
APPROPRIATE ASSUMPTION FOR ELECTRONIC
COMPONENTS AND PRODUCTS
The usage of the bathtub model to characterize the hazard
rate of electrical products started with the reliability practices
used in the U.S. military. Smith [28] noted that the bathtub
curve was formulated in the 1940s and 1950s to characterize
the failure rates of electronic components such as vacuum
tubes and early semiconductor technologies. Wasson [29]
noted that when military systems became more complex, the
reliability engineers started applying the Bathtub model to
systems. However, the model was rarely used in its entirety
because it was generally considered that electronics only
followed the constant hazard (failure) rate during their oper-
ational life [21], [30]. In this section, each period of the
bathtub model is assessed in terms of actual hazard rate
trends gathered from experimental and field data of electronic
components, products, and systems.

A. INFANT MORTALITY PERIOD
Infant mortality failures describe a decreasing hazard rate
during the initial phase of a component’s or product’s
life [2]. In electronic components and products, the compe-
tent manufacturers have worked on design deficiencies and
the elimination of poorly managed manufacturing processes,
lack of standardization in quality control, use of defective
materials, and improper assembly, storage, and transporta-
tion [17], [31], [32] thereby reducing the occurrence of such
failures. In well-designed and high-quality hardware, stresses
should cause only uniform accumulation of wear-out dam-
age [33]. In addition, any remaining causes of infant mortality
failures are being eliminated by identifying the parts with
potential defects and removing them from the population of
products via screening and burn-in methods [34], [35].

Screening is the process of separating products with
defects from those without defects. Burn-in is a screen
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FIGURE 2. The shape of the hazard rate curve from the effective
implementation of ESS (lower curve) compared to the bathtub model
(upper curve) [45].

performed to precipitate defects by exposing the parts to
accelerated stress levels [2], [36]. The goal of burn-in is
to prevent failures from occurring in the field. The U.S.
Food and Drug Administration (FDA) [37]1 states that the
defective, weak, and out of specification components can be
removed by means of functional testing, stress testing, and
the use of burn-in. The FDA defines burn-in as the process of
holding an electrical device (often electrically biased and con-
nected to a load) at elevated temperatures. The FDA further
cites the MIL-STD-883, Method 1015, to mention that burn-
in eliminates marginal devices that would otherwise lead to
infant mortality [38].

Any product that has undergone a successful burn-in will
not have an infant mortality portion of the bathtubmodel [39].
The studies presented on board-mounted electronic compo-
nents [40], microelectronic components [41], and integrated
circuits [42] have shown that these electronic components and
products do not have an infant mortality period and the burn-
in, and the environmental stress screening (ESS) methods are
widely developed and used to eliminate weak components
and products [38], [43].

ESS has been so effective that most of today’s products
do not exhibit infant mortality trends. For example, Ryu
and Chang [44] discussed how the infant mortality failures
surface by non-destructive and destructive testing for short
periods and thus, can be analyzed and eliminated by a com-
bination of ESS and designmodification. The result is that the
hazard rate curve shows an increasing trend and not a bathtub
shape, as shown in Fig. 2 [45].

Hester et al. [46] assessed the value of screening
components by original equipment manufacturers (OEMs)
by comparing the failure data of screened and unscreened
components in commercial aerospace applications. The
data encompassed 181 part numbers represented by around
638,000 components. The study concluded that additional
screening of high-quality components beyond that already
done by the componentmanufacturers does not add any value.
This implies that after screening performed by component
manufacturers, the component population no longer consists
of defective products and thus, would not result in infant
mortality. Similarly, Jordan and Pecht [47], in their study of
Honeywell’s ring laser gyro, observed that the unscreened

1‘‘for a reliable product, defective, weak or out of specification compo-
nents must be weeded out. This is done by functional testing, stress testing
and by burn-in.’’

FIGURE 3. The probability density function for a population with early
failures (adapted from [5]).

commercial parts had accumulated over 200 million piece
part hours without any failure and thus, did not have an infant
mortality period.

Furthermore, in the presence of more than one failure
mechanism, which is the case for most electronic products,
the population probability density function, shown in Fig. 3,
cannot have a convex shape. English et al. [48] addressed
this issue of the bathtub model and showed that the hazard
rate function during the early life interval and the idealized
bathtub model does not accommodate this characterization
of early failures.

B. USEFUL LIFE PERIOD
The bathtub model predicts that electronics will have a period
in which the hazard rate is constant, and this will occur after
an infant mortality period and before a wear-out period. This
prediction of the hazard rate is based on the assumption
that the only failures during this period are random and that
there is no wear-out, two assumptions that are rarely true for
electronics.

Wong [25] gave a historical perspective to the hazard
rate for electronics, noting that ‘‘in the 1950s many people,
after observing available data, which as we know now was
erroneous, concluded that the failure rates of electronics are
constant during the useful lifetime of the equipment. Now
we know that the data was tainted by equipment accidents,
repair blunders, inadequate failure reporting, reporting of
mixed-age equipment, defective records of equipment operat-
ing times, mixed operational environmental conditions, com-
plete neglect of thermal cycling data, and many additional
undesirable factors.’’ He also stated that the influence of so
many incidental factors led the data to appear random and
effectively led to the erroneous observation of a constant fail-
ure rate. Further, McLeish [49] states that overstress failures2

are rare and random, and if these occur frequently, it means
that the device is not suitable for the application.3

2Overstress mechanisms in electronics are typically due to electrical
overstress, electrostatic discharge, and damage due to dropping, events that
can occur anytime in the life of a product [58] and thus increase the whole
hazard rate distribution.

3‘‘In items that are well designed for the loads in their application,
overstress failures are rare and random. They occur only under conditions
that are beyond the design intent of the device. . . . If overstress failures occur
frequently, then the device may not be not [sic] suited for the application or
the range of application stresses were underestimated.’’ [49]

10284 VOLUME 9, 2021



A. Gaonkar et al.: Assessment of Validity of the Bathtub Model Hazard Rate Trends in Electronics

FIGURE 4. The hazard rate curve of electronic systems used in the CNC
machine tool (based on data from references [51], [52]).

Yang et al. [50], using field data of machining centers,
showed the shape parameter to be 1.17 for the electrical
system, 1.77 for the CNC system, and 2 for the servo
system (implying that their hazard rates were increasing
throughout the life). The studies byWaghmode and Patil [51],
Patil et al. [52], Keller et al. [53], and Dai et al. [54] on
computerized numerical control machine tools show that the
hazard rates of their electronic components are not constant.
Figure 4 shows the hazard rate curve of the electronic system
of a CNC machine tool. The shape parameter (β) of the
Weibull distribution is 3.34, with its contour limits ranging
from 1.6 to 6.5, depicting an increasing hazard rate through-
out its life (that is, there is no infant mortality or useful life
period).

The literature shows that some proponents [21], [55], [56]
of the constant hazard rate assumption believe that although
most individual mechanisms may not be represented by a
constant hazard rate, their superposition leads to an apparent
constant hazard rate for the system. However, the resultant
of the superposition of hazard rates is dependent on the
distribution of dominant failure mechanisms over time. For
example, Shah and Elerath [57], based on their study of disk
drives, concluded that the resultant hazard rate is dependent
on which failure mechanism is dominant at what time.

The distribution of failure mechanisms is dependent on the
distribution of the usage and environmental stresses acting
on a system. This distribution causes the hazard rate to vary
over time. For example, the National Research Council’s
report, ‘Reliability growth: Enhancing defense system relia-
bility’ [23], states that a device degrades inmultiple ways, and
its lifetime is thus a function of different failure mechanisms
and modes. The report infers that the failure rate of a product
varies throughout its life and cannot be represented by a
constant failure rate model.

For a system composed of electronic components, the bath-
tub model is often inappropriate. Mortin et al. [58] mod-
eled the hazard rate for a system having three identical
electronic devices using the constant hazard rate assumption
and a distribution representing the actual failure mechanism.
Their study demonstrated that as the number of compo-

nents increases, the difference between the instantaneous
hazard rate calculated using the constant failure rate distri-
bution and actual hazard rate distribution also increases.4

Yuan et al. [59] observed that the fault data of an aero-engine,
a complex electro-mechanical system, has a Weibull shape
parameter greater than 1 (showing that the system’s failure
rate is increasing, not constant). Pascale et al. [60] showed
that the electronic railway signaling systems do not have a
constant hazard rate. Verma et al. [61] observed the failures in
the electro-mechanical system of an automated hematology
analyzer (used in medical laboratories) and found the system
to have an increasing failure rate throughout its lifetime.
Similarly, Rastayesh et al. [62] predicted the reliability of a
power stage of wind-fuel cell hybrid energy systems assum-
ingWeibull and exponential distributions. They found that the
Weibull distribution (with increasing hazard rate) predicted
the reliability more accurately.

Similarly, Chiodo and Lauria [63] stated that the hazard
rate of a redundant system is a function of time and can never
be constant. They proved that even for a system consisting of
components with constant hazard rates, the resultant hazard
rate of the system varies with time. That is, for a parallel
system with two independent components, the reliability R(t)
is given by

R(t) = R1(t)+ R2(t)− R1(t)R2(t) (4)

For two components, both having a constant failure rate λ,

R(t) = 2R1(t)− R21(t) = 2e−λt − e−2λt (5)

It is observed that the two exponential functions of (5) can-
not be combined to express as a single exponential function.
Thus, the hazard rate of the system will not be constant over
time, as opposed to the useful life period of the bathtubmodel.

C. WEAR-OUT PERIOD
The wear-out period describes an increasing hazard rate,
which occurs after the constant failure period of the bathtub
model. This period of the bathtub curve is based on the
assumption that failures due to wear-out mechanisms only
occur towards the end of the bathtub model, which is not true.

The mechanisms causing failures in electronics are pre-
dominantly of a wear-out nature [17], [64]. These failure
mechanisms start as soon as the product is put into opera-
tion [30] and not after a period of random failures, as implied
by the bathtub model. Dasgupta et al. [26] state that most
failures in electronics are caused due to mechanical failure
mechanisms like fatigue, corrosion, and fracture. As these
mechanisms are primarily wear-out mechanisms, they cannot
be represented by constant failure rates.

Modern electronics are observed to undergo wear-out fail-
ures earlier in life as opposed to the belief that the wear-out
takes place only after the end of usage. Harms [30] stated,

4‘‘Increasing the number of components further increases the difference
between the lognormal and the constant failure rate distributions. . . . For
a typical component with many competing failure mechanisms and sites,
the difference between the constant failure rate and the actual instantaneous
hazard rate can be even large.’’ [58]
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‘‘the commercial industry has been driven largely by con-
sumer electronics to produce parts that no longer compare
to the parts produced prior to 1995. The parts being used
currently have a shorter service life, often in the three to five
year time frame. This essentially pulls in the right hand of
the bathtub curve to the point where it is now necessary to
pay attention to wear-out as part of the reliability prediction
process.’’

One of the reasons for the early wear-out of the electronics
is the reduction in the feature size of components. Customer
expectations are continuously forcing electronics manufac-
turers to reduce the size of the components and products with
enhanced processing capacity. Blome et al. [27] explained,
‘‘as CMOS [complementarymetal-oxide semiconductor] fea-
ture size scales to smaller dimensions, voltage is expected
to scale at a much slower rate, increasing on chip power
densities. Areas of high power density increase local tem-
peratures leading to ‘‘hot spots’’ on the die.’’ They further
stated that as temperature and power density are the stress
factors for many wear-out mechanisms in electronics such as
time-dependent dielectric breakdown, hot carrier injection,
electromigration, and negative bias temperature instability,
the future technologies will encounter wear-out mechanisms
more commonly.

The literature and the studies conducted at the Univer-
sity of Maryland provide numerous examples of reliability
studies on electronics where the population exhibited ‘‘only’’
wear-out failures. In 1990, Pecht [65] showed that micro-
electronic packages under corrosive environments followed
a Weibull distribution, with a shape factor close to 2, which
corresponds to a wear-out failure mechanism. Pecht and
Nash [66], in their case study conducted on light-emitting
diode (LED) lasers, observed that the devices exhibited a
gradually occurring wear-out failure mechanism. Similarly,
Wang et al. [67] evaluated LED packages and found only
wear-out failures for packages with various encapsulation
materials. Mattila et al. [68], in their study on the reliability of
electronic component boards, observed onlywear-out failures
at all testing temperatures. Mei et al. [69] showed that solder
joints, when exposed to self-heating, lead to wear-out failures
with a shape factor above 1, indicating wear-out.

Similarly, Athamneh et al. [70] performed reliability
modeling of aged SAC305 solder joints and found the
hazard rate to have shape parameters greater than 2.
Liu et al. [71] showed that the interconnects undergowear-out
when subjected to vibrations, both at fixed and random
frequencies. Virkki and Tuukkanen [73] studied tantalum
capacitors under various temperature ranges and observed
only increasing failure rates. Hoffman et al. [74] showed
that insulated-gate bipolar transistors (IGBTs) failed by
wear-out when exposed to combined thermo-mechanical and
electro-chemical stresses. White et al. [75] found the main
failure distribution in DRAMs has an increasing hazard rate.
Quintero et al. [76] conducted reliability and life studies
on semiconductor die-substrate assemblies of different sizes
under different temperatures. They observed that the Weibull

TABLE 1. Studies Showing That the Hazard Rate of Electronics is
Dominated Only by Wear-Out Mechanisms

shape parameter was always greater than 1, showing an
increasing hazard rate existed rather than a constant hazard
rate. Table 1 provides additional case studies of electronics
where Weibull distribution was used to fit the data, and
the observed shape parameter values were greater than 1,
indicating that only wear-out was observed.

IV. DOES THE BATHTUB MODEL EXIST?
Sections III-A, III-B, and III-C of this article assessed the
different sections of the bathtub model and examined various
case studies. This section examines the bathtub model as a
whole.
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FIGURE 5. Visualization of roller-coaster curve of the hazard rate.

Reliability engineers have observed over time that the
hazard rates of electronic components do not follow a bath-
tub model. For example, as early as 1968, United Airlines
released a report [99] stating that 96 percent of its items did
not follow the bathtub curve.5 Similarly, Moltoft [100] noted,
‘‘There is a sound basis for rejection of the hitherto used back-
ground model for the ‘bathtub’ curve. This model based on
statistical independence between early, random, and wear-out
failures is seldom (if ever) seen demonstrated with results
from practical experience.’’ Pascoe [101] also noted, ‘‘The
author has not, in 40 years’ experience, seen system whole
life reliability data which matches the ‘bathtub’ prediction.’’

Since the early 1980s, researchers such asWong [102] have
raised questions on the applicability of the bathtub model
for electronic components and products. A series of article
s [25], [103]–[105] showed that the bathtub model was not
appropriate to predict the shape of the hazard rate. Jensen
and Petersen [106] analyzed the shape of the hazard rate
curve for electronic devices and noted that spikes, which they
called latent failures, are often observed in the hazard rate
curve, and they are typically observed at an excessive rate
throughout the life of a product. English et al. [48] noted that
the latent failures are non-predictable and unavoidable. Wong
and Lindstorm [104] noted that latent failures and multiple
failure mechanisms in electronic components and products
cause the shape of the hazard rate to resemble more of a
roller-coaster shape often, as shown in Fig. 5.

The hazard rate, being dependent on a range of variables,
such as the loading conditions, dominant failure mechanisms,
and parts quality, can take different shapes [107]. Kapur
and Pecht [2] noted, ‘‘The failure of a population of fielded
products can arise from inherent design weaknesses, manu-
facturing and quality control-related problems, variability due
to customer usage, the maintenance policies of the customer,
and improper use or abuse of the product.’’ The resultant
hazard rate is dependent on how these factors react with each
other. Due to this uncertainty, it is not possible to assign a
‘fixed shape’ to the hazard rate curve. This is also noted based
on the large variability in the Weibull beta factors, as shown
in Table 1.

V. CONCLUSION
The bathtub curve was developed as a predictive hazard rate
model for human mortality and later applied to numerous

5 ‘‘Although it is often assumed that the bathtub curve is representative of
most items, note that just 4 percent of the items fell into this pattern.’’

other things, including mechanical, civil, and electrical items.
However, in actuality, the hazard data rarely follows such a
bathtub model, especially for electronic components, prod-
ucts, and systems, as is evident from the literature review and
the over 55 case studies cited in this article.

Assumptions of hazard rate trends for electronics, whether
based on a bathtub model, or any other preconceived model,
can result in inaccurate and misleading reliability predic-
tions, poor mission and warranty planning, and inadequate
maintenance scheduling. The hazard rate of electronics is
dependent on the design, materials, manufacturing processes,
inherent defects, and screening methods used. The actual
hazard rate, and the formulation of a specific model, can only
be constructed with actual data.

When electronics failure data is evaluated, it is observed
that infant mortality is rarely seen for today’s electronics due
to improvements in the designs, manufacturing processes,
quality control, screening, burn-in testing, storage, trans-
portation, and packaging. Furthermore, as noted in the case
studies, failures that occur in early life are generally not infant
mortality failures but rather early wear-out failures. In addi-
tion, failure mechanisms such as time-dependent dielectric
breakdown, corrosion, negative bias temperature instability,
fatigue, electromigration, and hot carrier injection in modern
electronics are found to be wear-out mechanisms that start
the degradation process as soon as the electronics are put
into operation. Finally, data from the case studies showed
the Weibull shape parameters to be greater than 1, denoting
wear-out failure characteristics throughout the product’s life.

This article recommends that the electronics industry stop
using the bathtub model for predicting the hazard rate curve
unless the data proves otherwise. The failure data and the
associated failure mechanism will determine the hazard rate
distribution. As the failure of a product is dependent on
multiple variables and their interactions, the hazard rate for
a product should be determined using the failure data, rather
than assuming a hazard rate model.
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