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ABSTRACT Deep neural networks (DNNs) have surpassed other algorithms in analyzing today’s abundant
data. Due to the security and delay requirements of the given applications, analytical data extraction should
happen on edge devices. Edge devices, however, struggle to support the increasingly complex DNNs because
of the models’ high computational load and number of employed parameters. Thus, edge devices need
support by efficient accelerators to process DNNs. However, the design of DNN accelerators remains
challenging, as there is a lack of established design techniques directed towards a specific design point
in terms of energy budget, area, time-to-solution, and classification accuracy. This article fills this gap by
providing a quantitative, large-scale, state-of-the-art comparison of DNN accelerators building on published
data subjected to technology scaling and benchmark normalization. The leveled comparison stimulates
learning from previous designs by considering the impact of each technique on energy, area, and time-to-
solution. Furthermore, the key design techniques used in the DNN accelerators are classified according to
their influence on the classification accuracy. Finally, we provide a discussion of hardware accelerators to
support future designers in considering the trade-off between efficiency and accuracy in order to identify the
most suitable techniques for certain benchmarks.

INDEX TERMS Neural network hardware, artificial neural networks, multi-layer neural network, image
classification, integrated circuit technology, solid state circuits.

I. INTRODUCTION
The available amount of data that has to be analyzed is
steadily increasing. In many fields, the analytical information
extraction requires high security and low latency [1], [2].
Hence, the tasks should ideally be solved where the data
is generated, i. e. on edge devices. In many domains, deep
neural networks (DNNs) are a preferred choice because
of their excellent accuracy; however, they come at a high
price in terms of multiply-and-accumulate operations (MAC)
and memory footprint. With increasing capabilities of such
DNNs, edge devices lack resources to meet throughput
requirements at their available energy budget.

This shortcoming drives the quest for hardware solutions
which support the execution of advanced machine learning
algorithms on the edge. FPGAs are well-suited for related
design space exploration with their beneficial combination
of short design cycles and full flexibility in terms of the
emulated micro-architecture. Various surveys have addressed
this domain including the manifold software and hardware
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techniques focusing on performance [3]–[7]. Considering
dedicated ASIC implementations, one has to keep in mind
their significant differences compared to FPGAs [8], such
that key findings in one domain might not be applicable to
the other. However, studies that review ASICs are – to our
knowledge – scarce and limited in scope.

General algorithmic optimization as well as hardware tech-
niques for DNNs on ASICs were investigated in [9] and [10].
The sketched optimization methodology in [9] includes soft-
ware, hardware, and run-time optimization. Emphasis is put
on the understanding of the data flow that includes both
on-chip and off-chip memory access. Proper management of
the data movement is fundamental to designing an efficient
hardware architecture from a system perspective. This is
stressed by the energy for off-chip accesses, e. g. one DRAM
access is ∼200× higher than the computational energy for
a standard MAC [11]. A classification of the data flow and
its optimization are presented in [10], referring to systolic
principles [12], and further in-depth analyses of the cost of a
given hardware accelerator, i. e. energy and time-to-solution,
were performed using an automation tool [13]. This tool
aims at providing a fine-granular breakdown of the efficiency
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and performance of a given hardware architecture for a spe-
cific workload. These works either grouped and summa-
rized design techniques for hardware accelerators or provided
detailed analysis of selected references using complex tools.

In contrast, this article focuses on the question of how
much an individual design technique contributes to the final
energy efficiency and performance of hardware accelerators
for DNNs. Our work specifically assesses hardware architec-
tures and their key techniques on the basis of scaled figures of
the published raw data. Our main contributions include:
• specific cost functions to evaluate hardware accelerators
for DNNs (Sec. II-C),

• a methodology for quantitative comparison applying
scaling to a reference technology (Sec. III-A) as well
as normalizing the data points provided in the ana-
lyzed publications w. r. t. the complexity of used dataset,
word length, and DNN model (Sec. III-B), a quantita-
tive assessment and common trend of state-of-the-art
hardware solutions according to the cost functions for
hardware accelerators (Sec. III-C),

• a dissection of the convoluted use of design techniques,
analyzing their individual cost and benefits (Sec. IV-A
and (Sec. IV-B),

• a summary of applied techniques regarding the achieved
efficiency vs. accuracy trade-off (Sec. IV-C),

• and a design space exploration for the application of
incremental optimization steps of orthogonal techniques
to an already remarkable design (Sec. V).

II. BACKGROUND
The following section introduces the terminology used in the
context of DNNs and their hardware acceleration. Starting
with commonly addressed classification tasks and bench-
marks, a general introduction to DNNs is given, including
quantitative metrics for the assessment of neural network
models, hardware architectures, and DNN accelerators.

A. DATASETS
DNNs are currently applied to a multitude of classification
tasks in handling images and audio as well as other time series
as common in the medical domain. In order to base our work
on a larger pool of proposed solutions, we focus on the most
commonly used benchmarks to extract the trade-offs between
efficiency and accuracy of different design techniques. The
most commonly used benchmarks for hardware accelerators
are the following: the Modified National Institute of Stan-
dards and Technology database (MNIST) [14], the Canadian
Institute For Advanced Research (CIFAR10) dataset [15],
and the ImageNet Challenge [16].

MNIST is a low-complexity example, which contains
60 thousand black and white images with a size of
28 × 28 pixels. The images contain handwritten digits from
0 to 9. The CIFAR10 comprises 60 thousand RGB images
with 32 × 32 pixel. The ‘10’ in CIFAR10 signifies the
10 used classes. The ImageNet Challenge includes 1.2 M
images, which vary in size and are grouped into 1000 classes.

The error rate is classified either as a top-1 score when only
considering the dominant classification result, or as a top-
5 score, which checks the 5 labels with highest probability
against the expected label.

B. NEURAL NETWORK MODELS
In the literature, both, neural network model and neural
network architecture, are used to describe the structure and
applied operations. Here, we refer to (neural network) models
and (hardware) architectures. A model consists of several
layers. The input size of the first layer is identical to the
dimensions of the input data. Inputs to a layer l are called
activations. The classification layer is the last layer in a neural
network. Such neural network models can be differentiated in
terms of number, type, and connectivity of its layers. Preced-
ing the DNNs, amultilayer perceptron (MLP) consists of only
a few fully connected (FC) layers. All d l input activations of
an FC layer are multiplied with d l+1 weight vectors wil (dot
product) resulting in a vector of output activations with d l+1

elements. The costs for a FC layer are summarized in Table 1.

TABLE 1. Cost for CONV and FC layers.

Whereas FC layers utilize one dimensional vectors, convo-
lutional (CONV) layers follow the introduced principle, but
for three dimensional matrices. CONV layers form the basis
of so called convolutional neural networks (CNN), the most
commonly used DNNs for image classification. To extract
features anywhere in an image, d l+1 convolutional kernels
of width k lH, height k

l
W and depth d l are applied in the

CONV layers. Thereby, d l input channels are mapped to d l+1

output feature maps of height ml+1H and of width ml+1W . The
corresponding computational cost is detailed in Table 1.

The research in CNNs started with [17] but it took until
2012 for DNN to take off with the success of AlexNet in
the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) in 2012 [18]. It is the most commonly referred
model mapped to hardware accelerators to classify the Ima-
geNet dataset.

C. COST FUNCTIONS
DNNs are usually compared on the basis of their classifica-
tion performance, i. e. the achieved accuracy or error e, which
can be used interchangeably as in equation (1).

e = 100%− accuracy (1)

Models of comparable accuracy are further assessed w. r. t.
memory requirements and arithmetic complexity in terms of
MAC. The memory footprint is driven by the number and
word length of stored values such as weights and activations.
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FIGURE 1. Schematic of operations in a convolutional layer.

Typically, benchmarking of ASICs of similar functionality
lists throughput in terms of GOps / s, energy efficiency in
TOps / s /W and area efficiency in GOps / s /mm2. For an
apples-to-apples comparison, any such data should be nor-
malized to the same technology and supply voltage.

Considering a specific application, these metrics provide
unsatisfactory results as there can exist a significant gap
between actual throughput and theoretical peak performance.
Hence, for the assessed references, we compared the metrics
energy E in µJ / image, area A in mm2 and time-to-solution
T in s / image. The latter indicates the time from applying
a pattern to the hardware accelerator to the moment the
classification result is computed. The product of area A and
time-to-solution T is called AT complexity.

III. PRESENTATION OF REFERENCE DATA
As stated above, the following benchmarking will rely on
normalized data points. For this purpose, we scale reference
data to the same technology and normalize to the anticipated
baseline complexity.

A. TECHNOLOGY SCALING
The manufacturing technology has a decisive impact on key
performance metrics of an ASIC design. To evaluate the
benefit of the various design techniques in a manufacturing
technology agnostic fashion, the reported area, power and
speed has to be normalized accordingly. To bound the intro-
duced inaccuracy in such a step, we used the extracted raw
data of [19] to fit to each technology node a second order
model to estimate energy per operation (cf. equation (2))
and an alpha-power-law based model of propagation delay
(cf. equation (3)) as function of supply voltage.

Spower = ap2 · V 2
DD + ap1 · VDD + ap0 (2)

Sdelay =
Ceff · VDD

I · (VDD − Vth)α
(3)

Sarea =
λ265 nm

λ2ref

(4)

xscaled to 65 nm = xref ·
S65 nm
Sref

(5)

Both models fit the raw data well as highlighted in Fig. 2.
Because there is no raw data given in the reference for 40 nm

FIGURE 2. Scaling of (a) power and (b) delay with supply voltage VDD
using model equation (2) and respectively equation (3) (both are fitted to
raw data of [19]).

and 28 nm, the corresponding fitting factors were derived
by interpolation from the raw data of the high-k technology
nodes as used in [19]. The area scaling factor Sarea simply
follows the square of the technology node. The scaling of
power, delay, and area is done according to equation (5),
where the baseline is a 65 nm technology operating at 1.1V
nominal voltage (cf. [19]).

B. BASELINE COMPLEXITY
The number of MAC per classification is a function of DNN
model with a higher MAC number loosely correlating with
better accuracy. Despite the dominant use of MAC as quan-
titative metric in comparisons, the actual movement of a
single word can feature a 200× higher energy usage [11].
Therefore, our benchmarking accounts for the number of off-
chip memory accesses required by the hardware architecture.
If the total number of off-chip accesses are not specified in
the publication, we assume a minimum number of off-chip
accesses, equal to the count of weights and elements of the
input image.

At the end, the quantitative comparison should be agnostic
concerning the complexity of the neural network model as
we intend to assess the efficiency of the hardware realization.
Hence, we normalized AT complexity and energy E with
respect to the baseline complexity of the underlying model
to a single MAC. This requires an estimate of the energy
and AT complexity as functions of the adopted word length
for weights and activations. For this purpose, we refer to a
vector multiplication described in HDL and synthesized in
a commercial 22 nm FDSOI technology at 0.8V with word
length varying from 1 to 32 bit [20]. Related technology
scaling is applied as described above. In summary, we cal-
culated normalization factors specific to each design point as
a function of applied DNN model and word length.

C. PARETO PLOT
The Pareto plot in Fig. 3 shows the correspondingly normal-
ized metrics of all considered references. The normalized AT
complexity on the x-axis is shown vs. normalized E on the
y-axis. Hence, the location in the 2D plot reflects the ATE
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FIGURE 3. Energy and AT complexity per MAC for all benchmarks. The
black circle indicates the spiking hardware with huge DNN, the dotted
circle indicates the bit-serial processing designs, the dashed circle
indicates the analog and CIM designs, and the dash-dotted circle
indicates the MNIST MLP designs with added off-chip access.

complexity with efficiency increasing towards the origin. For
better comparison, colors differentiate between the datasets
MNIST, CIFAR10, and ImageNet.

The symbols highlight the applied design style differentiat-
ing between digital and analog and mixed-signal (MS). The
analog (and MS designs) are not scaled [21]. Furthermore,
a box indicates that the implementation adopts a computing-
in-memory (CIM) architecture. Lastly, the designs are clas-
sified by whether they require off-chip access, as the set
of weights do not fit into on-chip storage. If in such cases
the energy of reloading is not accounted for, we indicate its
estimate with an ‘×’, whereas we use for all designs DDR3 as
off-chip memory technology. Thereby AT complexity stays
constant.

If the weights for the biggest CONV layer cannot be kept
on-chip, tiling would be necessary. Tiling means that only
a part of the input feature map and / or of the filter can be
kept on chip to process a partial sum of the output pixel.
Thus, it is necessary to reload elements, which leads to an
increased number of off-chip accesses. Because the tiling
concept is often not explicitly stated, only data points are
considered which either can store all weights of the biggest
CONV layer simultaneously or state their total number of
off-chip accesses. Consequently no tiling is applicable.

Guided by the location in this design space, the designs
are analyzed in the following section with the objective
of extracting essential design techniques, pointing towards
highly efficient design techniques.

IV. ANALYSIS OF DESIGN TECHNIQUES
The following sub-sections describe the various design
techniques found in literature. The presentation includes
a discussion of their impact on energy E , area A, and

time-to-solution T . The discussion is split into techniques
with impact on accuracy (Sec. IV-A) and those without
impact on accuracy (Sec. IV-B). As reference, all techniques
are summarized in Table 3.

A. TECHNIQUES WITH IMPACT ON
CLASSIFICATION ACCURACY
1) CHOICE OF DNN MODEL
In a top-down fashion, the choice of the neural network
model is a fundamental design parameter to trade accuracy
for efficiency. In a first rush, network complexity followed
the trend of hardware providing ever increasing performance.
Today, research derives more efficient models that achieve
high accuracy, while requiring less operations.

Fig. 4a, Fig. 4b, and Fig. 4d depict accelerator designs for
the most commonly used benchmarks MNIST, CIFAR10,
and ImageNet. These figures contain a diverse portfolio
of DNNs. Unfortunately, the number of publications on
lightweight DNNs, like MobileNet or EfficientNet, is too
limited for a quantitative comparison. Therefore, Fig. 4c con-
solidates accelerator designs for AlexNet. The individual data
points are labeled according to their corresponding reference.
Each data point is appended with additional information.
Starting from left to right, firstly, the plots highlight whether
a datapoint includes all necessary layers ‘A’, or is limited to
either the fully-connected ‘FC’ or convolutional ‘C’ layers,
only. This differentiation is necessary, because an accelerator
design which is capable of processing efficiently all layers
in a DNN is more flexible than a highly specialized acceler-
ator for only a few DNN layers. The index ‘M’ is relevant
for MLPs, because here all layers is equivalent to all fully
connected layers, due to the structure of MLPs. Secondly,
the label includes the resulting error in percent. The sub-
graph (c) lacks this metric as the references did not refine to
the individual classification accuracies. Thirdly, the symbols
highlight the applied design style and benchmark as in Fig. 3.
For each group, the Pareto optimal front, with regards to the
ATE complexity, is limited to data points including the total
system energy.

CONV layer have the potential of much higher computa-
tional intensity than FC layer, as the former can reuse the
filter kernels many times. An example for this effect is the
MNIST benchmark: here especially MLPs suffer extensively
from off-chip access, because they use each weight once and
have a reduced number of MAC. Normalized according to
the computational complexity, Fig. 3, this effect is even more
prominent. Because of these limitations, MLPs are in practice
not applied for more complex benchmarks.

Fig. 4a-d shows an increase for AT complexity and energy
E for increasingly complex benchmarks. This is correlated by
the increase in DNN size, which causes an increase in mem-
ory footprint and especially for CNNs, an increase in MAC,
cf. Table 1. Reduced number of operations should propor-
tionally decrease processing time and computational energy
to the first-order, while classification error is increased.
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FIGURE 4. Pareto plot for hardware accelerators for four different benchmarks, (a) MNIST, (b) CIFAR 10, (c) AlexNet, and (d) ImageNet.

However, this hypothesis is contradicted by [58], with
11× less MAC than [53]. The former design uses MobileNet,
whereas the latter uses VGG16. Hence, the efficiency and
accuracy benefit of the use of more recent DNN models.

2) QUANTIZATION
The development of models is typically done by using high
precision numerics to achieve best accuracy, excluding side
effects related to limited precision. A variety of half preci-
sion floating point formats has been introduced to optimize
training and improve efficiency of software oriented imple-
mentations. In the case of efficient ASIC implementations,
the floating point numbers, as used during training, are typi-
cally converted in a first step to a fixed point representation.

Many studies have shown that reduction of word length
can be done to a certain degree without impacting accuracy.
The proportional savings in required memory bandwidth and
memory footprint, as well as the significant savings in the
computation of the MAC, have led to many works pushing
word length reductions even further. In the end, the combi-
nation of reduced word length and fixed point representa-
tion induces a major reduction in dynamic range and preci-
sion as compared to the floating point values. Furthermore,
the choice of a word length and selection of radix point fixes
the trade-off between precision and range.

In the extreme case, quantization results in binary rep-
resentation that uses a single bit to differentiate between
+1 and−1. Two major benefits of this technique are the min-
imal memory requirement per weight and activation, and the
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mapping of the multiplication to a binary XNOR operation.
The latter resulted in highly optimized datapaths dedicated
to binary DNNs [23]. The former benefit is proportional to
the word length reduction. It is exploited for ImageNet and
AlexNet in [23]–[25], for CIFAR10 in [26]–[31] and for
MNIST in [26], [27], [31]–[35].

In general, uniform word length reduction leads to reduced
classification accuracy. Better results are achieved by inde-
pendently tuned representation of weights and activations.
For the case of AlexNet, there are approx. 65×more weights
than activations. Thus, word length reduction for weights has
a higher impact on the memory footprint. At the same time,
a loss in accuracy can be mitigated by preserving higher
word lengths for activations as they convey the contained
information between layers. Using a relatively larger word
length for activations than for weights has the potential to
provide either lower cost at same accuracy or better accuracy
at same cost, when compared to a design with uniform word
length. This technique was applied for AlexNet in [36]–[38],
for CIFAR10 in [22], [31] and for MNIST in [22], [39], [40].
It is worth noting that for MNIST this technique improves
classification accuracy compared to equal word length for
weights and activations, cf. [22].

FIGURE 5. Reduction of word length on energy E , time-to-solution T and
memory footprint is shown on the primary y-axis. Ideal scaling
assumption is indicated with ‘∗’. Normalization refers here to the
corresponding 16 bit × 16 bit design point for each reference. Word
lengths of weights w , in bit, and activations a, in bit, of the references are
indicated as w × a. The impact on error is shown for CIFAR 10 [22]
(no data for the case of AlexNet in [38]).

The correlation between energy, time-to-solution, and
memory footprint depends also on the application and under-
lying hardware. Fig. 5 illustrates the trade-off for energy and
time-to-solution for both quantization methods: identical and
different word lengths for activations and weights. The work
of [22] indicates that reductions in word lengths causes an
increase in classification error, as 16 bit × 16 bit achieves an
error of 18.14%, 8 bit × 8 bit achieves an error of 21.3%,
and 1 bit × 16 bit achieves an error of 22.1% for CIFAR10.
The examples in Fig. 5 were chosen because they follow the
‘ceteris paribus’ principle of an ablation study varying only
one parameter at a time. Thus, any efficiency gain can directly
by related to the chosen quantization. If the word length is
fixed prior to designing the chip, the memory footprint can
be reduced significantly. Hence, the necessary total area of
the chip can be reduced.

A classic solution with moderate effort and efficiency
is adapting a fixed precision multiplier to support multi-
ple parallel multiplications of sub-divided word lengths. For
example a 16 bit × 16 bit multiplier could be used for two
8 bit × 8 bit or four 4 bit × 4 bit multiplications. Ideally, this
processing mode could reduce energy and time-to-solution
by 4× and 16×, respectively. At the same time, the overhead
of this processing mode has to be carefully weighed as it
requires additional registers to capture intermediate results
and control of iteration count across the word length.

Assuming a dedicated implementation, the energy reduc-
tion for 8 bit × 16 bit and 8 bit × 8 bit compared to the
baseline of 16 bit × 16 bit should be 53% and 22%, respec-
tively [20]. However, [38] achieves a respective energy reduc-
tion of only 84% and 68%. A striking contrast to this design
is [22], which achieves for 8 bit × 8 bit 36% of its base-
line energy. It is worth mentioning that [38] was taped out
but [22] was not. The inefficiency of [38] for lower word
lengths is underlined by the effect on time-to-solution, which
is expected to reduce by 85% and 75%, respectively, but does
not decrease at all. Thus, it seems as [38] is optimized for
16 bit × 16 bit. In general, higher flexibility comes with the
price of reduced efficiency [38], [41], [42]. For this reason,
most hardware accelerators for DNNs support only a limited
number of DNNs very efficiently.

Going one step further, DNNs feature layers of varying
complexity in terms of number of feature maps and weights.
Also, the sensitivity towards quantization noise is a function
of the analyzed layer. It follows, that for a certain accu-
racy goal the word length requirement varies throughout the
model. This fact can be exploited by layer-wise quantiza-
tion while maintaining classification accuracy as was done
in [24], [25], [36], [37]. Besides appropriate data formats,
the functional units have to be designed to support varying
word lengths to maximize the benefit.

A benefit of a linear quantization pattern is its relative
ease of use. Other quantization techniques have been pro-
posed to improve the represented dynamic range as well as
to provide higher precision for values close to zero. One
option is logarithmic quantization as in [34], [35]. Here, linear
quantization, Q(), is applied to the binary logarithm of the
weights w, and activations a:

wQ = Q(log2(w)) (6)

aQ = Q(log2(a)). (7)

In the extreme case, the number is quantized to the first
non-zero digit reducing multiplications to binary shift opera-
tions.

Finally, another advantage of strong quantization is the
increase in sparsity, if small values are set to zero. This
increased sparsity in turn is exploited by other techniques
such as compression or zero-skipping. Furthermore, quanti-
zation reduces the amount of representable values, which is
beneficial for techniques like weight sharing.
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3) ANALOG AND MS DESIGN STYLE
ASICs can be designed in digital, analog, or MS design style.
Key motivation to scale according to Moore’s law [43] is cost
cutting by reducing the size of SRAMbit-cells and increasing
the gate density. At the same time, scaling improves perfor-
mance and energy efficiency. In the case of analog design,
size reduction has come to a halt [21] as uncertainties increase
inversely with the feature size. Even in older technologies,
8 bit resolution has been considered the break-even between
analog and digital signal processing [44]. This implies, that
low precision operations can be realized more efficiently
adopting an analog design style.

Yet, all analog and MS design suffer from accuracy reduc-
tion compared to their reference classification accuracy,
e.g. [26], [27] suffer from 0.2% (CIFAR10) - 0.3% (MNIST)
and [39] suffers from 0.5% (MNIST) - 5% (CIFAR10),
due to inherit reduction of the SNR for these designs. This
SNR reduction can have different additive causes, like quan-
tization, thermal effects, or voltage scaling cf. Sec. IV-B7.
For [28], [29] SNR reduction is limited to voltage scaling,
due to the ‘ceteris paribus’ principle. Hence, lower energy and
faster time-to-solution are possible at the cost of increased
classification errors.

FIGURE 6. Fan-in based data flow: stationary weights w in bit-cells,
broadcast of activations a and fan-in of partial sums.

A comparison between both design styles shows that MS
designs are more common [26]–[29], [39], [45] than purely
analog ones [31], [40]. Both target mostly small benchmarks,
like MNIST and CIFAR10 (cf. Fig. 3). The designs with a
significant lower energy than the trend line, in Fig. 3 encircled
with a dashed line, share the same data flow, cf. Fig. 6.
Hence, this data flow assures low energy per operation while
requiring significantly higher AT complexity. The data flow
is mostly used by CIM implementations, but not limited to
these. The weights are stationary inside the SRAM and the
input activations are broadcasted horizontally to the bit-cells.
Inside the bit-cell, the partial sum is computed by multiplying
the weight with the input activation. These partial sums are
accumulated vertically via fan-in to feed the output activa-
tions. Most benefit is realized by mapping the accumulation
to an integration of charge on the bit-line of a memory, giving
rise to the many analog or MS designs incorporating CIM.

4) ANALOG COMPUTING-IN-MEMORY
CIM generally refers to the concept of overcoming the mem-
ory wall by executing the computations directly at the storage
locations. In a broader sense, the memory periphery or cir-
cuits directly attached to the memory compute the results.
The narrower interpretation places operations within the bit-
cell array. Extreme cases are cross-bar arrays, which utilize
memristive switching devices to store a weight value persis-
tently. Due to a lack of details, such as specifying classifica-
tion accuracy, no memristive design are included. Therefore,
cross-bar arrays are not further considered in the following.

Most analog CIM designs map storage of weights and
computation of partial sums to the same memory [26], [27],
[31], [39], [40]. This occurs usually in combination with
low bit-width from 8 bit down to binary. The partial sum is
accumulated as charge on the bit-line. The bit-line is directly
charged via either a current for a certain duration [39], [40],
or a bit-cell capacitor [26], [27], [31]. The total system
energy E per analog CIM operation varies widely from
14.3 fJ / bit [39] to 2.5 pJ / bit [26], [27]. A comparable dig-
ital design [34] achieves for the same benchmark, MNIST,
12.6 pJ / bit. Hence, analog CIM improves energy efficiency.

5) SPIKING NEURAL NETWORKS
Following more closely the operational principle of the
human brain, spiking neural networks (SNN) have the
promise to achieve higher energy efficiency than conven-
tional computing. In this work, spiking hardware architec-
tures are only analyzed in their ability to support DNNs.
Dedicated spiking hardware architectures designed for spe-
cific DNNs [45], [46] achieve comparable ATE efficien-
cies as their non-spiking counterparts, but their classification
accuracy is 5% or more below expectations for the given
benchmark.

However, it is also possible for spiking hardware accelera-
tors to achieve competitive accuracies, e.g. [30], even though
this capability comes at the price of 76× higher normalized
energy E and 277× higher normalized AT complexity than
average. The ATE trade-off is below the trend line in Fig. 3.
This fact indicates that the design has selected an atypi-
cal trade-off between energy and AT complexity. Further-
more, these architectures are conceived for a different use
case - the simulation of large scale biological neural networks
[30], [47]. So, a direct mapping of DNN architectures to
SNNs appears not to be advantageous. To fully exploit the
benefits observed in nature, more capable SNN models first
have to be conceived that closely adhere to the neuromorphic
principles.

B. TECHNIQUES WITHOUT IMPACT ON
CLASSIFICATION ACCURACY
1) MEMORY HIERARCHY
Designers differentiate between on-chip memory and off-chip
memory, as depicted in Fig. 7. The on-chip memory is either
located inside the logic (as memory level 1) or outside of the
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FIGURE 7. System level view for general ASIC. Level 1 and level 2 are
on-chip memory and level 3 is off-chip memory.

logic (as memory level 2). Usually memory outside the logic
is used to store all types of data. Hence, it is referred to as
the global buffer. Memory inside the logic stores data directly
required for the computations, and the granularity of memory
level 1 comes in many flavors. It can be split into dedicated
buffers, register-files, or even down to individual registers
integrated into the PE. The off-chipmemory (memory level 3)
is, as the name suggests, located outside of the chip and as
such not considered in the quoted area.

The energy for an off-chip memory access is approx.
130× higher [11] than the energy for an on-chip mem-
ory access. Furthermore, time-to-solution T is affected by
the memory throughput and latency. Off-chip memory, e. g.
DRAM, needs typically multiple cycles to provide the first
word to the PE, whereas on-chip memory, e. g. SRAM, can
deliver it immediately. So, a choice between on-chip memory
and off-chip memory always includes a trade-off between
area A, time-to-solution T , and energy E .

FIGURE 8. Impact of memory choice on energy E and area A, with either
energy E adapted to reflect required off-chip access, or area A increased
to meet the data footprint of the DNN.

To properly compare different designs, we ran a sanity
check to see whether the required data fits into the on-chip
memory. If the on-chip storage is insufficient, energy is
added to account for the assumed minimal number of off-
chip accesses to process a single image. In Fig. 8 these
adjusted design points can be compared to their original
counterparts. The most striking effect of this technique can
be seen for [39], which uses a MLP for MNIST. Here, either
energy E increases by 104× or area A increases by 100×.
Because the original data plus additional area would lead
to an increased divergence of the original design, only the
original data and the original data plus off-chip access energy
are shown in Fig. 3.

The use of very small on-chip memories in combina-
tion with disregarding off-chip access is mostly seen in the
MNIST benchmark for [39], [46] and in the CIFAR10 bench-
mark for [39]. These architectures are not scalable to support
larger networks despite promising metrics. With respect to
time-to-solution and energy efficiency, an optimal design
would ‘simply’ provide sufficient on-chip memory to fit the
used DNN. Taking area into account as well, optimization has
to include on-chip memory hierarchy and off-chip access as
in [48]–[51] to fully exploit data reuse techniques.

The energy consumption for off-chip memory access is a
product of transferred bits and energy per transfer. The latter
is driven by the off-chip memory standard. In the following,
four different off-chip memory technology options are com-
pared: DDR3, DDR4, LPDDR3 and a 3D SRAM stack, [35].

The performance increases for each DDRx generation.
Overall, most publications consider a DDR3 off-chip mem-
ory. Thus, our minimal ‘off-chip data access energy’
assumes DDR3 with 70 pJ / bit according to [52] as base-
line. LPDDR3 was used in [53], which references 21 pJ / bit
according to the LPDDR3 memory model from [54].
DDR4 was mentioned in [55] but not directly included in
the energy budget. The design is customized for the read and
write bandwidth of 25.6GB/s of the DDR4-3200. According
to [56] DDR4 needs 15 pJ/bit. An example for the case of 3D
SRAM in [34], [35] shows that the total chip area was signif-
icantly influenced by the off-chip memory area, because the
computing engine and memory are stacked. But in general,
the off-chip area itself is not taken into account for the total
area of a design. To write one bit via 3D SRAM TCI coil is
reported at 1.6 pJ, whereas the read per bit costs 0.4 pJ.

To highlight the impact of off-chip data storage in Fig. 3
and Fig. 4, the reported computing and on-chip memory
energies are supplemented with the minimal energy for nec-
essary off-chip access. The gap between these points under-
lines the necessity of considering off-chip access to get the
full picture. For a more advanced DDRx standard, energy
efficiency and bandwidth would be significantly improved.
Hence, the choice of DDRx standard influences the total ATE
efficiency.

2) DATA REUSE
Let us consider an idealistic hardware architecture, where
movement of operands and results contributes an insignifi-
cant overhead, i. e. only the energy consumption of computa-
tions counts. This perspective is highlighted as lower bound
(black line) in Fig. 9. Quite apparently, all references lay
above this limit, as energy used by data-movement adds to any
numeric computation. Hence, increasing the computational
intensity by data reuse has significant potential to increase
efficiency.

Looking at the distribution, there are 65× more weights
than activations in AlexNet. For CONV layers, weight reuse
is obvious. Furthermore, images can be loaded in batches,
whereas the number of images determines the batch size
B. A batch can be processed with the same set of weights,
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FIGURE 9. System energy vs. MAC energy AlexNet for CONV layers only
(for symbols cf. Fig. 3).

called batch processing, and the reuse factor of each weight
increases by B. For the energy efficiency focused case, i. e.
without off-chip access, the energy reduction comes at a price
of area increase as the on-chip memory needs to store all
partial sums of the different images. As a matter of fact,
the weights are stored off-chip for large networks. Thus, even
an ideal architecture would have to load each weight at least
once. This case is indicated as the red dotted line in Fig. 9,
accounting for off-chip access as well as energy consumption
for computation.

The CONV layer and, to a certain extent, also the FC
layer, offer even for a single image reuse possibilities con-
sidering the computations of the output activations. Basically,
the CONV layer operates over four loops of flexible execution
sequence (cf. Fig. 1). The first loop iterates over the pixels
in one kernel and the equivalent pixel in the feature map to
be convoluted. This is most commonly known as element-
wise multiplications. The second loop iterates over the input
feature maps to be convoluted with their equivalent filter, e. g.
an edge detection filter for a red image channel that differs
from an edge detection filter for a green channel. The third
loop iterates over the activations of one output feature map,
thus, the filter kernel is convoluted with the complete feature
map. Finally, the fourth loop iterates over the different kernel
windows to step over the same input feature maps as in Fig. 1,
e. g. in addition to an edge detection filter there is also a Gaus-
sian filter. Only the second and fourth loop are used as well
in FC layers. Here each activation represents an individual
featuremap and each kernel pixel contains a single, individual
weight, which is only used once per classification. Efficient
unrolling of these loops, alias Loop unrolling, can result in
efficient data reuse schemes as shown in [23], [34], [35]. The
optimal unrolling depends on the underlying hardware as well
on the neural network.

Dedicated hardware accelerators, however, are not lim-
ited to loop unrolling. Because of their opportunity of an

individual and fine granular memory hierarchy, they can
use data flow optimization for further exploitation of key
concepts of systolic data movement. Pure systolic arrays are
basically fully pipelined networks of processing elements
(PE) [12]. In this case, each PE communicates only with its
direct neighboring PEs and receives and distributes data from
and to them. Weights, input activations, partial products, or a
combination of these can be stored within or in close proxim-
ity to the PE. The resulting data flow for these architectures
can be classified according to the stored input parameter in
the PE, into weight stationary (cf. Fig. 10a), output stationary
(cf. Fig. 10b), and no local reuse [50].

FIGURE 10. Systolic data flow with (a) weight stationary and (b) output
stationary adapted from [12], each box represents an individual PE.

Kung et al.’s description of data flows focuses on the
PE, whereas the perspective can be extended to different
levels of the multi memory hierarchy architecture (e. g. [49]).
Utilizing different levels of the memory to replicate data
and allowing smart data flow and distribution (cf. Fig. 10a)
[48], [49], [51] achieves extraordinary low off-chip number
of accesses and with this an immense energy reduction. This
technique reduces, in combination with batch processing,
memory access for CONV layers for AlexNet from 6.7MB
for one image to 15.4MB / 4 for B = 4 [49], [51] to
10.4MB / 16 for B = 16 [48]. The inset in Fig. 9 reveals the
benefit of batch processing in combination with an optimized
data flow as [49]–[51], represented via the blue dashed line,
compared to the minimum off-chip access, represented via
the red dotted line. Furthermore, the point ‘C [49]a’ with off-
chip access reaches almost the corresponding red dotted line,
yet it stays beyond its theoretical limits, indicated by the blue
dashed line, which is exploiting batch processing. This gap
can be caused by the overhead in logic for the optimized data
flow.

3) COMPRESSION
Off-chip energy is a product of transmitted bits and energy
per access. Having optimized both, count and word lengths,
as described above, additional savings can be achieved by
further reducing the transferred bits through compression.
The original classification accuracy is preserved, if lossless
compression is applied. Compression exploits the inherent
sparsity in activations and weights. On the one hand, spar-
sity might refer to a low number of non-zero weights and
activations. On the other hand, clustered value distributions
also lead to a sparse use of the available value range. Thus,
it is not surprising that this technique works well with weight
sharing [57] to further reduce the total data, which needs to
be accessed off-chip and on-chip.
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Compression can either be applied to weights [47], [57],
feature maps [49]–[51], [53], or both [55], [58]. The most
common compression techniques include the compression
with sparsity map and non-zero value list [53], the Run-length
compression (RLC) [49]–[51], and the compressed sparse
column format (CSC) [47], [55], [57], [58]. RLC is a standard
compression technique used in communication networks.
It captures only the change in symbols in the raw data, i. e. for
binary ‘0’ to ‘1’ or vice versa. So, this compression technique
is especially useful for long sequences of identical symbols.
A good example for the effect of RLC compression combined
with data flow optimization is [49]–[51]. It utilizes the fact
that the input feature maps consist 57.53% of zeros. The CSC
format was first introduced by [59]. Here, the values are first
read column by column out of the target matrix. Then all
non-zero values are stored with their value, row, and column
index. If the data can be processed in compressed form,
further energy E and time-to-solution T reduction is possible,
in comparison to processing decompressed data [55].

4) ZERO-SKIPPING
Energy is not only consumed via data movement but also
via computation. One technique to reduce the number of
computations is zero-skipping, i. e. the MAC is not executed
if the input parameter (weight or activation) is equal to zero.
Because just non-zero values are saved in compressed matrix
it is not surprising that zero-skipping is mainly used in combi-
nation with compression. Literature mostly considers zeros in
the activations [49]–[51], [53], [57]. Only for [55], [58] both
zeros in weights and activations are skipped.

Zero-skipping causes a slight increase in area, due to the
additional logic. This increase could be best mitigated by
exploiting the statistics of the zeros in weights and with this,
reducing the total number of PEs. But themore common tech-
nique, utilizing the statistics of the activations, would cause
for images with few zeros an increase in time-to-solution.
Hence, it would lead to a trade-off between area A and worst
case time-to-solution T .

TABLE 2. Benefit of zero-skipping incl. compression in the case of
AlexNet.

An example for the benefits of zero-skipping and com-
pression is given in Table 2. Both designs process data in
compressed form. Energy E and time-to-solution T are more
improved for FC layers [57] than for the total DNN [55], [58].
Taking AlexNet as an example, it was shown [55], [58]
that for a quantized model the number of total MACs and

non-zero parameters can be reduced by more than 12.9×
and 100×, respectively. Exploiting such sparsity is non-trivial
due to the non-continuous data streams. Ideally, the total
computational energy and speed-up scale proportionally to
the MAC reduction. The dedicated hardware architecture
Eyeriss V2 realizes a speed-up via compression of 2.7×
(from 102.1 to 278.7 inferences / s) while energy without off-
chip access was reduced by a factor of 3.8×, whereas ideal
scaling proportional to the number of zeros would result in
a 6.6× reduction. We assume that zero-skipping is also used
for the non-compressed AlexNet. It is remarkable that the off-
chip access for the compressed AlexNet is reduced by a factor
of 3.2× compared to the non-compressed AlexNet, which is
almost as good as the expected optimum of a compression
factor of 3.3×. The total accuracy reduction of less than 1%
is striking.

As before, energy includes the on-chip energy and the
minimum off-chip energy, if the on-chip memory cannot fit
the total DNN on-chip. If only the energy without off-chip
access is taken into account, the compressed network reduces
energy by 29×, cf. Table 2 [57]. But this work is optimized for
a tenth of the original memory requirements, thus, the com-
pressed FC layer do not need any additional off-chip access.
So, the off-chip access is only added to the non-compressed
network, reducing the total energy of the compressedDNNby
168× compared to the non-compressed DNN. Because this
design does not skip clock cycles via look ahead function but
only gates the unnecessary MACs, the time-to-solution is not
reduced. Finally, it is fair to say that the maximum benefit of
zero-skipping and compression goes hand in hand with the
overall chip design including data flow and on-chip memory
size.

FIGURE 11. Bit-parallel and bit-serial processing of two words with word
length, M and N , respectively.

5) DATA PROCESSING
Data can be processed in either serial or parallel fashion
(cf. Fig. 11), with parallel processing being most common
in ASIC designs. If the quantization of the input parameter
is variable, hardware utilization can be improved by serial
processing. Hence, serial processing is mostly used for DNN
models with layer-specific quantization of weights or activa-
tions. Serial processing either implies both operands (BOP)
are used in bit-serial fashion or only a single operand (SOP)
is used in bit-serial fashion and the other in parallel fashion.

BOP bit-serial in context of DNNs means that both
weights and activations are serially processed as in [34]–[36].
SOP bit-serial processing is applied in [24], [25], [37].
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The possibilities for data processing are depicted in the clas-
sification tree in Fig. 12, with leaves containing examples for
each class. All examples are hardware accelerators for DNN,
which support AlexNet.

FIGURE 12. Data processing tree with references for AlexNet.

Parallel processing needs more chip area but serial pro-
cessing needs more processing time, so ideally the AT com-
plexity is constant. Interestingly, bit-serial processing designs
are over represented in the Pareto fronts in Fig. 4c despite
their, supposedly, less efficient realization, due to requiring
additional control and register access. As a side note, the high
ATE efficiency of [36], [37] is based on simulated data, only.
Themost left point in Fig. 3 is [37], whereas in the right dotted
circle are the designs from [24], [25], [34], [35]. It is striking
that [37] outperforms the other bit-serial designs for the nor-
malized comparison Fig. 3. One reason is its high number of
MAC in its DNN, but even the unnormalized AT complexity
of [37] is between 16× (for [24], [25]) to 74× (for [34], [35])
lower, cf. Fig. 4c. The area of [37] is 2.6× smaller than
for [34], [35]. Furthermore, [37] achieves a 28× lower time-
to-solution T compared to [34], [35]. One key reason is the
use of a 3D SRAM in [34], [35], whereas [37] uses a classic
huge on-chip SRAM. So, [37] needs less area and offers
a lower latency. Another major difference between [37] to
[24], [25], [34], [35] is its data flow. Unlike [24], [25], [34],
[35], [37] does not keep the partial sum in the MAC unit
stationary, but uses a fan-in of the partial sums outside of
the individual MAC units (this is the inter PE level). So once
again, a fan-in based data flow is proven beneficial.

6) CMOS TECHNOLOGY NODE
Digital designs are made to operate in a deterministic fash-
ion independent of manufacturing technology. The choice
of technology node and supply voltage plays a key role in
setting energy consumption, achievable time-to-solution, and
area requirement. Whereby, the voltage scaling potential is
also a function of the technology node. The latter drives NRE
(non-recurring engineering and tape-out) design costs, i. e.
the smaller the node - the higher the price, leading to a rather
complex optimization problem.

Comparing design techniques as opposed to the availability
of modern process nodes, all digital designs are scaled to a
65 nm node operating at 1.1V supply voltage. The impact
of scaling is visualized for the case of AlexNet in Fig. 13
highlighting the change on the example of energy E .

FIGURE 13. Energy E is shown in blue vs. scaled values in red (examples:
AlexNet). It is indicated whether the CONV layer (C), the FC layer
(FC) or all layers (A) of AlexNet are processed. The original voltage and
technology node are given in brackets. All data is scaled to 1.1 V and
65 nm technology node.

7) VOLTAGE UNDERSCALING
Voltage underscaling means the reduction of the supply volt-
age below its nominal value. It provides a quadratic saving
on energy but causes for digital designs frequency reduction
(cf. [49] in Fig. 9). Here, the supply voltage and clock fre-
quency scale from ‘C [49]a’- ‘C [49]c’. The supply voltage
decreases only by 1.17× and 1.43× for ‘C [49]b’ and ‘C
[49]c’ compared to ‘C [49]a’. Whereas the clock frequency
decreases by 1.30× and 2.65×, respectively.
The data is scaled, cf. Sec. III-A, to a common level, to bal-

ance out the energy benefit. But this scaling does not counter
balance the frequency benefit. So, even with the total system
energy and the related off-chip access, the data point ‘C [49]a’
is more efficient than its corresponding points ‘C [49]b’ and
‘C [49]c’ because the design seems optimized for the supply
voltage of the superior point, 1.17V and with this, its superior
clock frequency.

Voltage scaling is not limited to digital designs, but can
increase efficiency for analog designs as well. A highly
insightful ‘ceteris paribus’ principle can be found for
[28], [29] Fig. 4b, which decreases in 0.2V steps the supply
voltage from 1V to 0.6V. This decreases the processing
frequency and increases the energy efficiency, so, all three
design points are Pareto points, Fig. 4b. The persistently high
efficiency comes with an accuracy drop of 0.3% for 0.6V.

8) DIGITAL COMPUTING-IN-MEMORY
Classic computer architectures separate computation and
storage. The benefits of these designs are their flexibility
and split paths for integration and optimization, while having
the downsides of inefficiency in area A, time-to-solution T ,
and energy E caused by a high communication overhead
for transfers between cores, memory, and periphery. For the
classic von-Neumann architecture adopted in [38] and [47],
this explains their high AT complexity.
CIM resolves these drawbacks. In digital designs, deter-

ministic computations are either mapped to an extended bit-
cell, executed as part of the read-out as in [23] or in a
nearby PE tightly coupled to the memory as in [32], [33].
The latter, [32], [33], belongs to the domain of near-memory
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TABLE 3. Summary of design techniques with related impact on energy E , area A, time-to-solution T , error e, the used dataset for the references which
use the technique are MNIST (M), CIFAR 10 (C), and ImageNet (I).

computing, where as the former, [23], utilizes the same data
flow for analog and MS CIM designs described in Fig. 6.
The total system energy for CIM in digital IC is diverse from
1.15 pJ / bit as in [32], [33] to 88.5 pJ / bit as in [23].

C. SUMMARY OF TECHNIQUES
The quantitative assessment of design techniques in
(Sec. IV-A and Sec. IV-B) is qualitatively summarized
in Table 3 via arrows. A down arrow ↓ indicates a decrease
of the metric, the up arrow ↑ an increase, and for the right
arrow → no impact. The techniques are sorted on the one
hand according to their positive and negative impact on cost,
and on the other hand according to their focus either on
the physical entry level or on the logical and higher levels.
Techniques with logical and higher level focus can improve
existing general purpose platforms such as, GPU, CPU, and
FPGA. We assessed the positive and negative impact on
energy E , area A, time-to-solution T , and error e for each
technique individually by application of the ‘ceteris paribus’
principle.

The potential impact is larger for techniques with hardware
focus than with algorithmic focus. But the entry barrier for
the former is higher than for the latter. For example, the least
beneficial technique is processing DNNs on spiking hard-
ware architecture. This fact is especially the case for spiking
architectures, which were not designed with the objective to
process DNNs. Contrarily, the twomost beneficial techniques
are the choice of the newest digital IC design technology
and off-chip memory technology, with their major drawback
being monetary cost.

Also two different versions of the same technique, CIM,
can have significantly different impact on efficiency and
classification accuracy. Whereas CIM in analog designs has
an impact on classification accuracy, CIM in digital designs
has none. However, CIM in analog design seems more energy
efficient than CIM in digital designs. Finally, both options

experience a slight area increase compared to non-CIM
designs.

Certain combinations of techniques allow symbiotic
effects by either reusing the same preconditions or even
amplifying the possible positive impact on the ATE effi-
ciency. Thus, these techniques are usually combined. The
most common combinations are described in the following.

Typically CIM and analog design style, as well as CIM
and MS design style, are commonly implemented together,
because CIM naturally reuses preconditions given by the
analog and respectively, the MS design style. A sufficient
on-chip memory means that all data fit on the on-chip, and
the chosen DNN to enable this technique has typically only
a few parameters to allow an optimization of area and energy
efficiency. Both combinations do not qualify for realistic
benchmarks such as ImageNet because they reduce the clas-
sification accuracy significantly, thus, they are only used for
small benchmarks.

The following three combinations exploit the architecture
of bigger DNNs, typically used for more realistic bench-
marks. The first one combines data flow optimization and
the use of a high batch size to increase the reuse of weights.
Hence, off-chip access can be minimized. The second com-
bination also targets the reduction of number of off-chip
accesses: the use of low word length combined with com-
pression and zero-skipping. A low word length causes lower
precision and more truncation of data, and thus, the data
contains more zeros. These can be utilized for compression,
inducing fewer off-chip accesses, and for zero-skipping, lead-
ing to less MAC. But the word length has a major influence
on the classification accuracy. So, further optimization can
be reached via a flexible optimized quantization scheme.
Therefore, the last combination includes layerwise optimized
quantization, which varies from DNN to DNN, and bit-serial
processing. The layerwise quantization can be chosen such
that the classification accuracy is not negatively impacted.
Bit-serial processing allows a full exploitation of the
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beneficial impact of layerwise quantization on classification
accuracy, while optimizing ATE efficiency.

V. CASE STUDY
The variety of design techniques allows designers to operate
in a vast design space. However, choosing the right combina-
tion of techniques can be rather time consuming. This section
explores the design space for a given baseline design, [48],
which offers not only high ATE efficiency, but also a detailed
and transparent documentation that facilitates its implementa-
tion. The key feature of this design is the extensive use of opti-
mized data flow comparable to the techniques applied in [49]:
data flow optimization and a high batch size of 16 images.
However, in [48] not all possible orthogonally applicable
techniques are explored. The design space exploration is
limited to techniques with no impact on the classification
accuracy. The impact of the techniques on ATE efficiency is
assessed on the basis of the analysis in Sec. IV. To illustrate
the complete design space, we also considered the impact on
the design if no data reuse techniques are applied.

FIGURE 14. Application of optimization techniques without accuracy
reduction on [48] as case study, normalized to the original design of [48]
processing all layers and including off-chip access.

All design points are normalized according to the scaled
baseline design of [48] (65 nm technology and 1.1V supply
voltage), which processes all layers (see Fig. 14). Hence, this
data point with normalized energy E and AT complexity
equal to 1 is highlighted with a black star. The blue arrow
visualizes the impact of the technology node. The blue data
points indicate a technology node between 65 nm, 45 nm,
32 nm and 20 nm. The red arrow shows the impact of the
supply voltage. For the exploration of each technology node,
we use 100% to 60% of its nominal supply voltage according
to [19]. The red data points demonstrate the different supply
voltage steps for the 65 nm technology node. The orange
circle around the three different red lines shows the impact
of the off-chip memory standard, here abbreviated as DDRx.
An alternative to storing data off-chip is the use of a sufficient

on-chip memory, which enables storing all data on-chip (grey
arrow to the right). We apply the same color code to the
mapped design points to facilitate finding the direction of
voltage and technology scaling. The applications of CIM
(upwards) also assumes a sufficient on-chip memory, so no
off-chip memory standard is applied for these design points.
The original design uses 16 bit for activations and weights.
It is commonly accepted that a word length reduction to 8 bit
does not decrease the classification accuracy. The 8 bit data
points are denoted by ‘×’ instead of ‘.’ (16 bit data points).
The additional orthogonal techniques like bit-serial process-
ing, zero-skipping and compression (z&c) and spiking are
highlighted as yellow areas. The red dotted line highlights
the resulting Pareto front.

The application of spiking and CIM do not improve the
baseline design. Hence, these techniques are not considered
in the following. A sufficient on-chip memory reduces energy
by 306× compared to the baseline design with DDR3 and
increases area by 19×. The trade-off between AT complexity
and energy E does not encourage a further exploration into
the application of a sufficient off-chip memory for this par-
ticular design baseline.

TABLE 4. Techniques with no impact on accuracy and their effects on the
metrics area A, time-to-solution T or energy E .

A quantitative comparison of the various design tech-
niques, without impact on the classification accuracy, can
be seen in Table 4. The new value for the used technique
determines the applied change compared to the baseline. The
baseline is as always the CMOS technology node 65 nm, with
1.1V as 100% nominal supply voltage VDD,nom, 16 bit word
length and DDR3 as off-chip memory technology. The condi-
tion indicates which baseline techniques are not changed, for
instance the technology node or the nominal supply voltage
for a given technology node. Finally, the last column indicates
the increase in efficiency as multiplicative change in the
corresponding key metric.
In total, a Pareto point is created by means of the applica-

tion of all these orthogonal techniques: technology scaling to
20 nm, voltage scaling to 60% of the supply voltage, off-chip
memory technology scaling to DDR4, bit-serial processing,
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zero-skipping and compression, and word length reduction.
This Pareto point is highlighted in black as the case study
in Fig. 3 and Fig. 4c, whereas it is scaled and normalized in
the same way as the other data points in the respective figure.
In comparison to the baseline point, this scaled Pareto point
decreases the total time-to-solution by 7.05×, the total area
by 2.47×, and the total energy, including off-chip access,
by 11.51×. The application of techniques creates a trade-
off between AT complexity and energy E efficiency. Hence,
further combinations of techniques create the complete Pareto
front in Fig. 14.

VI. CONCLUSION
This article assesses hardware accelerators for DNNs in
regard to their specific cost functions. The designs include
highly convoluted techniques to achieve the highest effi-
ciency for the lowest accuracy drop. The systematic nor-
malization and scaling of data points of relevant literature
enables the dissection of convoluted techniques and their
assessment according to their impact on classification accu-
racy and efficiency in costs as well as in terms of energy
per image, area, and time-to-solution. The presented findings
significantly improve the design of hardware accelerators
and help designers to converge to an optimal Pareto front.
Furthermore, this work emphasizes the importance of nor-
malizing and scaling designs to ensure their comparability.
Future work could apply similar methods to an analysis of
RNN accelerators.
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