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ABSTRACT The scene rigidity is a strong assumption in typical visual Simultaneous Localization and
Mapping (vSLAM) algorithms. Such strong assumption limits the usage of most vSLAM in dynamic
real-world environments, which are the target of several relevant applications such as augmented reality,
semantic mapping, unmanned autonomous vehicles, and service robotics. Many solutions are proposed
that use different kinds of semantic segmentation methods (e.g., Mask R-CNN, SegNet) to detect dynamic
objects and remove outliers. However, as far as we know, such kind of methods wait for the semantic
results in the tracking thread in their architecture, and the processing time depends on the segmentation
methods used. In this paper, we present RDS-SLAM, a real-time visual dynamic SLAM algorithm that
is built on ORB-SLAM3 and adds a semantic thread and a semantic-based optimization thread for robust
tracking and mapping in dynamic environments in real-time. These novel threads run in parallel with the
others, and therefore the tracking thread does not need to wait for the semantic information anymore.
Besides, we propose an algorithm to obtain as the latest semantic information as possible, thereby making
it possible to use segmentation methods with different speeds in a uniform way. We update and propagate
semantic information using the moving probability, which is saved in the map and used to remove outliers
from tracking using a data association algorithm. Finally, we evaluate the tracking accuracy and real-time

performance using the public TUM RGB-D datasets and Kinect camera in dynamic indoor scenarios.
Source code and demo: https://github.com/yubaoliu/RDS-SLAM. git

INDEX TERMS Dynamic SLAM, ORB SLAM, Mask R-CNN, SegNet, real-time.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) [1] is a fun-
damental technique for many applications such as augmented
reality (AR), robotics, and unmanned autonomous vehicles
(UAV). Visual SLAM (vSLAM) [2] uses the camera as the
input and is useful in scene understanding and decision mak-
ing. However, the strong assumption of scene rigidity limits
the use of most vSLAM in real-world environments. Dynamic
objects will cause many bad or unstable data associations that
accumulate drifts during the SLAM process. In Fig. 1, for
example, assume m is on a person and its position changes
in the scene. The bad or unstable data associations (the red
lines in Fig. 1) will lead to incorrect camera ego-motion
estimation in dynamic environments. Usually, there are two
basic requirements for vSLAM: robustness in tracking and
real-time performance. Therefore, how to detect dynamic
objects in the populated scene and prevent the tracking
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algorithm from using data associations related to such
dynamic objects in real-time is the challenge to allow vSLAM
to be deployed in the real world.

We classify the solutions into two classes: pure
geometric-based [3]-[7] and semantic-based [8]—[13] meth-
ods. These geometric-based approaches cannot remove all
potential dynamic objects, e.g., people who are sitting. Fea-
tures on such objects are unreliable and also need to be
removed from tracking and mapping. These semantic-based
methods use semantic segmentation or object detection
approaches to obtain pixel-wise masks or bounding box of
potential dynamic objects. Sitting people can be detected
and removed from tracking and mapping using the semantic
information and a map of static objects can be built. Usu-
ally, in semantic-based methods, geometric check, such as
Random Sample Consensus (RANSAC) [14] and multi-view
geometry, are also used to remove outliers.

These semantic-based methods first detect or segment
objects and then remove outliers from tracking. The tracking
thread has to wait for semantic information before tracking
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FIGURE 1. Example of data association in vSLAM under dynamic scene.
F¢, (t > 0) is the frame and KF; is the selected keyframe. m;, i € {0, 1, ...}
is the map point. Assume m; moved to new position m because it
belongs to a moving object. The red line indicates the unstable or bad
data association.
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FIGURE 2. Blocked model. Semantic model can use different kinds of
segmentation methods, e.g., Mask R-CNN and SegNet. Note that this is
not exactly the same as the semantic-based methods mentioned [8]-[13].
The tracking process is blocked to wait for the results of semantic model.

(camera ego-motion estimation), which is called the blocked
model in this paper (as shown in Fig. 2). Their processing
speed is limited by the time-consuming of semantic segmen-
tation methods used. For example, Mask R-CNN requires
about 200ms [15] for segmenting one image and this will limit
the real-time performance of the entire system.

Our main challenge is how to execute vSLAM in real-time
under dynamic scenes with various pixel-wise semantic seg-
mentation methods that ran at a different speed, such as
SegNet and Mask R-CNN. We propose a semantic thread
to wait for the semantic information. It runs in parallel with
the tracking thread and the tracking thread does not need to
wait for the segment result. Therefore, the tracking thread
can execute in real-time. We call it a non-blocked model in
this paper. Faster segmentation methods (e.g., SegNet) can
update semantic information more frequently than slower
methods (e.g., Mask R-CNN). Although we cannot control
the segmentation speed, we can use a strategy to obtain as
the latest semantic information as possible to remove outliers
from the current frame.

Because the semantic thread runs in parallel with the track-
ing thread, we use the map points to save and share the
semantic information. As shown in Fig. 1, we update and
propagate semantic information using the moving probability
and classify map points into three categories, static, dynamic,
and unknown, according to the moving probability threshold.
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These classified map points will be used to select as stable
data associations as possible in tracking.

The main contributions of this paper are:

(1) we propose a novel semantic-based real-time dynamic
vSLAM algorithm, RDS-SLAM, which enables the tracking
thread does not need to wait for the semantic results any-
more. This method efficiently and effectively uses seman-
tic segmentation results for dynamic object detection and
outliers removing while keeping the algorithm’s real-time
nature.

(2) we propose a keyframe selection strategy that uses as
the latest new semantic information as possible for outliers
removal with any semantic segmentation methods with dif-
ferent speeds in a uniform way.

(3) We show the real-time performance of the proposed
method is better than the existing similar methods using the
TUM dataset.

The rest of the paper is structured as follows. Section II dis-
cusses related work. Section III describes a system overview.
Sections IV, V, and VI detail the implementation of the pro-
posed methods. Section VII shows experimental results, and
section VIII presents the conclusions and discusses future
work.

Il. RELATED WORK

A. VISUAL SLAM

vSLAM [2] can be classified into feature-based methods
and direct methods. Mur-Artal et al. presented ORB-SLAM?2
[16], a complete SLAM system for monocular, stereo, and
RGB-D cameras, which works in real-time on standard CPUs
in a wide variety of environments. This system estimates the
ego-motion of the camera by matching the corresponding
ORB [17] features between the current frame and previous
frames and has three parallel threads: tracking, local map-
ping, and loop closing. Carlos et al. proposed the latest
version ORB-SLAM3 [18], mainly adding two novelties:
1) a feature-based tightly-integrated visual-inertial SLAM
that fully relies on maximum-a-posteriori (MAP) estimation;
2) a multiple map system (ATLAS [19]) that relies on a new
place recognition method with improved recall. In contrast to
features-based methods,. For example, Kerl et al. proposed a
dense visual SLAM method, DVO [20], for RGB-D cameras
that minimizes both the photometric and the depth error over
all pixels. However, none of the above methods can address
the common problem of dynamic objects. Detecting and deal-
ing with dynamic objects in a dynamic scene in real-time is a
challenging task in vSLAM.

Our work follows the implementation of ORB-SLAM3
[18]. The concepts in ORB-SLAM3: keyframe, covisibility
graph, ATLAS and Bundle adjustment (BA), are also used in
our implementation.

1) KEYFRAME
Keyframes [18] is a subset of selected frames to avoid
unnecessary redundancy in tracking and optimization. Each
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keyframe stores 1) a rigid body transformation of the camera
pose that transforms points from the world to the camera
coordinate system; 2) ORB features, associated or not to
a map point. In this paper, keyframes are selected by the
same policy as ORB-SLAM3; a keyframe is selected if all
the following conditions are met: 1) 20 frames have passed
from the last global relocalization or the last keyframe inser-
tion; 2) local mapping thread is idle; 3) current frame tracks
at least 50 points or less than 90% points than reference
keyframe.

2) COVISIBILITY GRAPH

Covisibility graph [16] is represented as an undirected
weighted graph, in which each node is a keyframe and the
edge holds the number of commonly observed map points.

3) ATLAS

The Atlas [19] is a multi-map representation that handles an
unlimited number of sub-maps. Two kinds of maps, active
map and non-active map, are managed in the atlas. When
the camera tracking is considered lost and relocalization was
failed for a few frames, the active map becomes a non-active
map, and a new map will be initialized. In the atlas, keyframes
and map points are managed using the covisibility graph and
the spanning tree.

4) BUNDLE ADJUSTMENT (BA)

BA [21] is the problem of refining a visual reconstruction to
produce jointly optimal 3D structure and viewing parameter
estimates. Local BA is used in the local mapping thread
to optimize only the camera pose. Loop closing launches a
thread to perform full BA after the pose-graph optimization
to jointly optimize the camera pose and the corresponding
landmarks.

B. GEOMETRIC-BASED SOLUTIONS

Li et al. [5] proposed a real-time depth edge-based RGB-D
SLAM system for dynamic environments based on the frame-
to-keyframe registration. They only use depth edge points
which have an associated weight indicating its probability
of belonging to a dynamic object. Sun et al. [6] classify
pixels using the segmentation of the quantized depth image
and calculate the difference in intensity between consec-
utive RGB images. Tan et al. [3] propose a novel online
keyframe representation and updating method to adaptively
model the dynamic environments. The camera pose can reli-
ably be estimated even in challenging situations using a
novel prior-based adaptive RANSAC algorithm to efficiently
remove outliers.

Although the geometric-based VvSLAM solution in
dynamic environments can restrict the effect of the dynamic
objects to some extent, there are some limitations: 1) they
cannot detect the potential dynamic objects that temporarily
keep static; 2) lack of semantic information. We cannot judge
dynamic objects using priori knowledge of the scene.

23774

C. SEMANTIC-BASED SOLUTIONS

DS-SLAM [10], implemented on ORB-SLAM?2 [16], com-
bines a semantic segmentation network (SegNet [22]) with a
moving consistency check to reduce the impact of dynamic
objects and produce a dense semantic octree map [23].
DS-SLAM assumes that the feature points on the people are
most likely to be outliers. If a person is determined to be static,
then matching points on the person can also be used to predict
the pose of the camera.

DynaSLAM [9], also built on ORB-SLAM?2, is robust
in dynamic scenarios for monocular, stereo, and RGB-D
datasets, by adding the capabilities of dynamic object detec-
tion and background inpainting. It can detect the moving
objects either by multi-view geometry, deep learning, or both
and inpaint the frame background that has been occluded by
dynamic objects using a static map of the scene. It uses Mask
R-CNN to segment out all the priori dynamic objects, such as
people or vehicles. DynaSLAM II [24] tightly integrates the
multi-object tracking capability. But this method only works
for rigid objects. However, in the dynamic scene of TUM [25]
dataset, people change their shape by sometimes standing and
sometimes sitting.

Detect-SLAM [12], also built on ORB-SLAM?2, integrates
visual SLAM with single-shot multi-box detector (SSD) [26]
to make the two functions mutually beneficial. They call
the probability of a feature point belonging to a moving
object the moving probability. They distinguish keypoints
into four states, high-confidence static, low-confidence static,
low-confidence dynamic, and high-confidence dynamic.
Considering the delay of detection and the spatio-temporal
consistency of successive frames, they only use the color
images of keyframes to detect using SSD, meanwhile prop-
agating probability frame-by-frame in the tracking thread.
Once the detection result is obtained, they insert the keyframe
into the local map and update the moving probability on
the local map. Then they update the moving probabil-
ity of 3D points in the local map that matched with the
keyframe.

DM-SLAM [11] combines Mask R-CNN, optical flow, and
epipolar constraint to judge outliers. The Ego-motion Estima-
tion module estimates the initial pose of the camera, similar
to the Low-cost tracking module in DynaSLAM. DM-SLAM
also uses features in priori dynamic objects, if they are not
moving heavily, to reduce the feature-less case caused by
removing all priori dynamic objects.

Fan et al. [8] proposed a novel semantic SLAM system
with a more accurate point cloud map in dynamic environ-
ments and they use BlizNet [27] to obtain the masks and
bounding boxes of the dynamic objects in the image.

All these methods use the blocked model. They wait for the
semantic results of every frame or keyframe before estimating
the camera pose. As a result, their processing speed are
limited by the specific CNN models they used. In this paper,
we propose RDS-SLAM that uses the non-blocked model and
shows its real-time performance by comparing it with those
methods.

VOLUME 9, 2021



Y. Liy, J. Miura: RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods

IEEE Access

TRACKING
New
Extract Track Last Track Local
Frame ORB Frame Map Keyf_rgme Keyframe
Decision
j
ATLAS
Semantic @ 5
. Keyframe < merton ||
Map Points Selection Z z
® 5 :
- O Recent
Semantic 3 : T
»\ ® O ' Segmentation || X M%ju::l’iggts g
—— | I m ®
Covislbility O O Semantic % .
Graph || N~ T < Label New Points
Creation
Spanning Mask
Tree Generation Local BA
@ Unknown @ Static @ Dynamic I
Update Priori Local
] Moving Keyframes
. Semantic-based 2 :
Full BA Loop Closing Optimization —‘ Probability Culling

FIGURE 3. System architecture. Models with orange color are modified blocks based on ORB-SLAM3. Models with magenta color are newly added

features. Blocks in blue are important data structures.

lll. SYSTEM OVERVIEW

Each frame will first pass through the tracking thread. The ini-
tial camera pose is estimated for the current frame after being
tracked with the last frame and further optimized by being
tracked with the local map. Then, keyframes are selected
and they are useful in semantic tracking, semantic-based
optimization, and local mapping thread. We modify several
models in the tracking and the local mapping threads to
remove outliers from camera ego-motion estimation using
the semantic information. In the tracking thread, we propose
a data association algorithm to use as the features on static
objects as possible.

The semantic thread runs in parallel with the others, so as
not to block the tracking thread and saves the semantic infor-
mation into the atlas. Semantic labels are used to generate
the mask image of the priori dynamic objects. The moving
probability of the map points matched with features in the
keyframes is updated using the semantic information. Finally,
the camera pose is optimized using the semantic information
in the atlas.

We will introduce the new features and modified models in
the following sections. We skip the detailed explanations of
the modules that are the same as those of ORB-SLAM3.

IV. SEMANTIC THREAD

The semantic thread is responsible for generating seman-
tic information and updating it into the atlas map. Before
we introduce the detailed implementation of the semantic
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thread, we use a simple example to explain the general
flow, as shown in Fig. 4. Assume the keyframes are selected
every two frames. The keyframes are selected by the ORB-
SLAM3 and we inserted them into a keyframe list KF sequen-
tially. Assume, at time t = 12, KF,-KF¢ are inside KF.
The next step is to select keyframes from KF to request
semantic labels from the semantic server. We call this pro-
cess as semantic keyframe selection process in this paper.
We take one keyframe from the head of KF (KF3) and one
from the back of KF (KFg) to request the semantic labels.
Then, we calculate the mask of the priori dynamic objects
using semantic labels S and S¢. Next, we update the moving
probability of map points stored in the atlas. The moving
probability will be used later to remove outliers from the
tracking thread.

Alg. 1 shows the detailed implementation of the semantic
thread. The first step is to select semantic keyframes from
keyframe list KF' (Line 2). Next, we request semantic labels
from the semantic model and return the semantic labels SLs
(Line 3). Lines 4-8 are to save and process the semantic
results for each item returned. Line 6 is to generate the mask
image of dynamic objects and Line 7 updates the moving
probability stored in the atlas. We will introduce each sub-
module of the semantic thread sequentially (see Fig. 3).

A. SEMANTIC KEYFRAME SELECTION ALGORITHM
The semantic keyframe selection algorithm is to select
keyframes for requesting the semantic labels later. We need
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FIGURE 4. Semantic tracking example. Assume keyframes KFj, is selected every two frames F, and inserted into keyframe list KF.
We choose keyframes from KF to request semantic labels S,. Then we update the moving probability into the atlas using the mask image
of dynamic objects that reproduced from the semantic label. Blue circles stand for the static map points and red circles for the dynamic

map points. Others marked in green are unknown.

Algorithm 1 Semantic Tracking Thread
Require: KeyFrame list: KF
1: while not_request_finish() do
2 SK = semantic_keyframe_selection(KF)
3 SLs = request_segmentation(SK)
4 fori = 0;i < SLs.size(); i + + do
5: KeyFrame kf = SR[{]
6
7
8
9

kf->mask = GenerateMaskImage(SLs[i])
kf->UpdatePrioriMovingProbability()
end for
: end while

to keep the real-time performance while using different kinds
of semantic segmentation methods. However, some of them,
such as Mask R-CNN, are time-consuming and the current
frame in tracking may not obtain the new semantic informa-
tion if we segment every keyframe sequentially.

To evaluate the distance quantitatively, we define the
semantic delay that is the distance between the latest frame id
which has the semantic label (S;) that holds the latest semantic
information and the current frame (F%) id, as follows:

d = FramelD(F;) — FramelD(S;). (1)

Fig. 5 shows the semantic delay for several cases. The
general idea is to segment each frame or keyframe sequen-
tially, according to the time sequence as shown in Fig. 5 (a).
We call this kind of model the sequential segmentation model.
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However, this will monotonically increase the time delay
when using time-consuming segmentation methods as shown
as the blue line in Fig. 6. For instance, at time r = 10 (F9),
the semantic model completed the segmentation of KFy (Fp)
and the semantic delay is d = 10. Similarly, at time 40 (Faq),
the semantic delay becomes 34. That is, the last frame that
has semantic information is 34 frames behind the current
frame. The current frame cannot obtain the latest semantic
information.

To shorten the distance, supposed that we segment two
frames sequentially at the same time (Fig. 5 (b)). Then,
the delay becomes 12—2 = 10if KF( and KF'| are segmented
at the same time. The delay still grows linearly as shown as
the red line in Fig. 6.

To further shorten the semantic delay, we use a
bi-directional model. We do not segment keyframes sequen-
tially. Instead, we do semantic segmentation using keyframes
both from the front and back of the list to use as the latest
semantic information as possible, as shown in Fig. 5 (c) and as
the yellow line in Fig. 6. The semantic delay becomes a con-
stant value. In practice, the delay in the bidirectional model is
not always 10. The distance is influenced by the segmentation
method used, the frequency of keyframe selection, and the
processing speed of the related threads.

The left side of Fig. 7 indicates a semantic keyframe selec-
tion example and the right side of Fig. 7 shows the time-
line of requesting semantic information from the semantic
model/server. We take both keyframes from the head and

VOLUME 9, 2021
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(c) Bidirection Model

FIGURE 5. Bi-direction model vs sequential model. Assume we use Mask
R-CNN (200ms) and ORB-SLAM3 (20ms), and the keyframe is selected
every two frames. About 200/20 = 10 frames delay while waiting for the
semantic result.
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FIGURE 6. Semantic delay of sequential model vs bi-direction model.

back of KF to request the semantic label. (Round 1) At time
t =2, two keyframes KFy and KF are selected. Segmen-
tation finished at t+ = 12. By this time, new keyframes are
selected and then inserted into KF (see Round 2). Then we
take two elements KF; from the front and KFg from this back
to request the semantic label. At the time t = 22, we received
the semantic result and continue the next round (Round 3).
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FIGURE 7. Semantic time line. The left side is the contents inside the
keyframe list KF and right side is the time line of requesting semantic
label. Keyframe in green color means this item has already obtained the
semantic information in the previous round.

We can obtain relatively new information if we segment the
keyframe at the tail of the KF list. Then why do we also need
to segment the keyframe that in front of the list? Different
from the blocked model, there is no semantic information for
the first few frames (about 10 frames if use Mask R-CNN)
in our method. Since the processing speed of the tracking
thread is usually faster than the semantic thread, vSLAM
may have already accumulated large errors because of the
dynamic objects. Therefore, we need to correct these drift
errors using the semantic information by popping out and
feeding the keyframes in the front of the KF list sequentially
to the semantic-based optimization thread to correct/optimize
the camera poses.

B. SEMANTIC SEGMENTATION

In our experiment, we use two models with different
speeds, Mask R-CNN (slower) and SegNet (faster), as shown
in Fig. 8. Mask R-CNN [15] is trained with the MS
COCO [28], which has both pixel-wise semantic segmenta-
tion results and instance labels. We implemented it based on
the TensorFlow version of Matterport.! SegNet [22] imple-
mented using Caffe,? is trained with the PASCAL VOC [29]
2012 dataset, where 20 classes are offered. We did not refine
the network using the TUM dataset because SLAM usually
runs in an unknown environment.

C. SEMANTIC MASK GENERATION

We merge all the binary mask images of instance segmenta-
tion results into one mask image that is used to generate the
mask image (Fig. 8) of people. Then we calculate the priori
moving probability of map points using the mask. In practice,
since the segmentation on object boundaries are sometimes
unreliable, the features on the boundaries cannot be detected
if directly apply the mask image, as shown in Fig. 9 (a).

1 https://github.com/matterport/Mask_RCNN
2https:// github.com/alexgkendall/SegNet-Tutorial
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(b) (M) Mask image

(c) (S) Segmentation result (d) (S) Mask image
NN IS e

(e) Detected outliers using mask image

FIGURE 8. Semantic information. “M” stands for Mask R-CNN and “S” for
“SegNet". () shows the outliers that marked in red color, which are
detected using the mask image.

(a) Original

(b) Enlarged

FIGURE 9. Mask dilation. Remove outliers on the edge of dynamic
objects.

Therefore, we dilate the mask using a morphological filter to
include the edge of dynamic objects, as shown in Fig. 9 (b).

D. MOVING PROBABILITY UPDATE

In order not to wait for the semantic information in the
tracking thread, we isolate the semantic segmentation from
tracking. We use the moving probability to convey semantic
information from semantic thread to tracking thread. The
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(a) Features

(c) Mask of Person

(b) Segmentation

FIGURE 10. Segmentation failure case. Some features on the body on the
person (a) cannot be identified as outliers using unsound mask

(c) generated by semantic result (b). Therefore, those features are
wrongly labeled as static in this frame.

0 Os 0.5 (Init) ~ 6d 1
S ‘ > >

Dynamic

h
Static unknown

FIGURE 11. Moving probability. 05 is the static threshold and 64 is the
dynamic threshold value.

moving probability is used to detect and remove outliers from
tracking.

1) DEFINITION OF MOVING PROBABILITY

As we know, VSLAM is usually running in an unknown
environment, the semantic result is not always robust if the
CNN network is not well trained or refined according to
the current environment (Fig. 10). To detect outliers, it is
more reasonable to consider the spatio-temporal consistency
of frames, rather than just use the semantic result of one
frame. Therefore, we use the moving probability to leverage
the semantic information of successive keyframes.

We define the moving probability (p(m!), mi € M) of each
map point i at the current time as shown in Fig. 11. The
status of the map point is more likely dynamic if its moving
probability is closer to one. The more static the map point
is if it is more closer to zero. To simplify, we abbreviate the
moving probability of map point i at time ¢ (p(m!)) to p(m;).
Each map point has two status (M), dynamic and static, and
the initial probability (initial belief) is set to 0.5 (bel(my)).

M = {static(s), dynamic(d) }
bel(my = d) = bel(mg = s) = 0.5

2) DEFINITION OF OBSERVED MOVING PROBABILITY
Considering the fact that the semantic segmentation is not
100% accurate, we define the observe moving probability as:

plz =dm =d) = «a,
pz=slm=d)=1-a,
Pz = slm; =s) = B, and
pz =dim =s) =1—B.
The values « and § are manually given and it is related to the
accuracy of semantic segmentation. In the experiment, we set

« and B to 0.9 by supping the semantic segmentation is fairly
reliable.

VOLUME 9, 2021
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3) MOVING PROBABILITY UPDATE

The moving probability of the current time bel(m;) is pre-
dicted based on the observation z1.; (semantic segmentation)
and initial status mgy. We formulate the moving probability
updating problem as a Bayesian filter [30] problem:

bel(m;) = p(my|z1:, mg)
= np(z|my, 21:0—1, mo)p(mye|z1:—1, mo)
= np(z¢|m)p(my|z1:0—1, mo)
= np(z|m)bel(m;) 2

In Eq. 2 exploits Bayes rule and the conditional independence
that the current observation z; only relies on the current status
my. 1 is a constant. The prediction bel(m;) is calculated by:

bel(m;) = /P(mtlmz—l,Zl:z—l)P(mz—lIlez—l)dmz—l

= / p(my |my_1)bel(m; 1 )dm;_q (3)

In Eq. (3), we exploit the assumption that our state is com-
plete. This implies if we know the previous state m;,_1, past
measurements convey no information regarding the state m;.
We assume the state transition probability p(m; = d|m;—1 =
s) = 0 and p(m; = d|m;—1 = d) = 1 because we cannot
detect the suddenly change of objects. n is calculated by
(bel(m; = d)+Dbel(m; = s))/2. The probability of map points
belonging to dynamic is calculated by:

bel(m; = d)
= p(m; = d|m;—y = d)bel(m— = d) 4

4) JUDGEMENT OF STATIC AND DYNAMIC POINTS

Whether a point is dynamic or static is judged using prede-
fined probability thresholds, 6; and 6 (see Fig. 11). They are
set to 0.6 and 0.4 respectively in the experiment.

dynamic  p(m;) > 64
p(my;) < 65 (%)

unknown others

Status(mﬁ) = { static

V. TRACKING THREAD

The tracking thread runs in real-time and tends to accumulate
the drift error due to the incorrect or unstable data associa-
tions of 3D map points and 2D features in each frame caused
by dynamic objects. We modify the Track Last Frame model
and Track Local Map model of ORB-SLAM3 tracking thread
to remove outliers (see Fig. 3). We propose a data association
algorithm that uses as good data associations as possible
using the moving probability stored in the atlas.

A. TRACK LAST FRAME

Alg. 2 shows the data association algorithm in tracking last
frame model. For each feature i in the last frame, we first
get their matched map point m (Line 2). Next, we find
the matched feature in the current frame by comparing the
descriptor distance of ORB features (Line 3). After that,
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Algorithm 2 Robust Data Association Algorithm
Require: Current Frame: F;
Last Frame: F;_;
Unknown subset: Unknown<Featureld, MapPoint*>
Static subset: Static<Featureld, MapPoint*>
Threshold: 6,4, 6, T = 20

1: fori =0;i < F;_.Features.size(); i + + do
2:  MapPoint* m = F;_1.MapPoints[i]

3:  f = FindMatchedFeatures(F;, m)

4. if p(m) > 6, then

5: continue

6: end if

7. if p(m) < 9, then

8: Static.insert(f, m)

9: end if
10.  if6; < p(m) < 6, then
11: Unknown.insert(f , m)
12: endif
13: end for
14: for it = Static.begin(); it! = Static.end();it ++ do
15:  F;.MapPoints[it->first] = it->second;
16: end for

17: if Static.size()<t then
18:  for it = Unknown.begin(); it!=Unknown.end();it ++

do
19: F;.MapPoints[it->first] = it->second;
20:  end for
21: end if

in order to remove the bad influence from dynamic map
points, we skip those map points that have higher moving
probability (Lines 4-6). Then, there are two kinds of map
points left, static and unknown map points. We want to
use only the static map points as far as we can. Therefore,
we classify the remaining map points into two subsets: static
subset and unknown subset, according to their moving proba-
bility (Lines 7-12). Finally, we use the selected relative good
matches. We first use all the good data stored in static subset
(Lines 14-16). If the size of these data is not enough (less
than the threshold T = 20, the value used in ORB-SLAM3),
we also use the data in unknown subset (Lines 17-21).

We try to exclude outliers from tracking using the moving
probability stored in the atlas. How well the outliers are
removed will have a great influence on the tracking accuracy.
We show the results of a few frames in Fig. 12. All the features
in the first few frames are in green color because no semantic
information can be used and the moving probability of all
map points is 0.5, the initial value. The features in red belong
to dynamic objects and they are hard to match with the last
frame than static features (blue features). The green features
are almost disappeared because the map points obtained the
semantic information over time. We only use features in the
static subset if its size number is enough to estimate camera
ego-motion.
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FIGURE 12. Results after tracking last frame. “M” stands for Mask R-CNN an “S” for SegNet. The features in red color are not used in tracking. Blue
features belong to the static subset and green features belong to the unknown subset.
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FIGURE 13. Results after tracking local map. “M” stands for Mask R-CNN and “S” for SegNet.

B. TRACK LOCAL MAP

The basic idea of the data association algorithm in the Track-
ing Local Map model is similar with Alg. 2. The difference
is that here we use all the map points in the local map to
find good data association. The data association result after
tracking local map is shown in Fig. 13. More map points are
used to match in this model than the tracking last frame. The
features on the people are almost successfully detected or not
matched/used.

VI. OPTIMIZATION

A. SEMANTIC-BASED OPTIMIZATION

We optimize the camera pose using the keyframes given by
the semantic keyframe selection algorithm. Considering that
the tracking thread runs very fast than the semantic thread,
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drifts have already accumulated to some extent with the
influence of dynamic objects. Therefore, we try to correct
the camera pose using semantic information. We modify
the error term used in ORB-SLAM3 by using the moving
probability of map points for weighting, as shown below.
In the experience, we only use the matched static map points
for optimization.

Assume ij € R3 is the 3D pose of a map point j in the
world coordinate system. The i-th keyframe pose in the world
coordinate is 7;" € SE(3). The camera pose 7;" is optimized
by minimizing the reprojection error concerning the matched
keypoint x;; € R? of the map point. The error term for the
observation of a map point j in a keyframe i is:

e(i, j) = (g — mi(T}*, X;))(1 = p(n)), (6)
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where m; is the projection function that projects a 3D map
point into a 2D pixel point in the keyframe i. The larger the
moving probability is, the smaller contribution to the error.
The cost function to be optimized is:

T o—1
C=) ple);}e)) @)
i.j
where p is the Huber robust cost function and Qi_jl is the
covariance matrix.

B. BUNDLE ADJUSTMENT IN LOCAL MAPPING THREAD
We modify the local BA model to reduce the influence of
dynamic map points using semantic information. What we
modified are: 1) the error term, in which the moving probabil-
ity is used, as shown in Eq. 6; 2) only keyframes that already
obtained semantic information are used for BA.

VII. EXPERIMENTAL RESULTS

We evaluate the tracking accuracy using TUM [25] indoor
dataset and demonstrate the real-time performance by
comparing with state-of-the-art VSLAMs methods using,
when possible, the results in the original papers.

A. SYSTEM SETUP

Our system is evaluated using GeForce RTX 2080Ti GPU,
Cuda 11.1, and docker. 3 Docker is used to deploy differ-
ent kinds of semantic segmentation methods on the same
machine. We also use Kinect v2 4 camera to evaluate in real
environment.

B. TRACKING ACCURACY EVALUATION
The proposed method was compared against the ORB-
SLAM3 and similar semantic-based algorithms to quantify
the tracking performance of our proposal in dynamic scenar-
ios.
The TUM RGB-D dataset contains color and depth images
along the ground-truth trajectory of the sensor. In the
sequence named “‘fr3/walking_*" (labeled as f3/w/*), two
people walk through an office. This is intended to evaluate
the robustness of VSLAM in the case of quickly moving
dynamic objects in large parts of a visible scene. Four types
of camera motion are included in walking data sequences
1) “xyz”, the Asus Xtion camera is manually moved along
three directions (xyz); 2) “static”’, where the camera is kept in
place manually; 3) “halfsphere’, where the camera is moved
on a small half-sphere of approximately one-meter diameter;
4) “rpy”, where the camera is rotated along the principal axes
(roll-pitch-yaw). In the experiment, the person is dealt with as
the only priori dynamic object in the TUM dataset.

We compared the trajectory of camera with ORB-
SLAMS3,> DS-SLAM,% and DynaSLAM. 7 Fig. 14 compares

3 https://docs.docker.com/

4https:// github.com/code-iai/iai_kinect2

5 https://github.com/UZ-SLAMLab/ORB_SLAM3
6https:// github.com/ivipsourcecode/DS-SLAM

7 https://github.com/BertaBescos/DynaSLAM
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the obtained trajectories using their source codes and
therefore the trajectories are not exactly the same as the
ones in their original paper. We evaluated our system
using both Mask R-CNN (M) and SegNet (S). The tra-
jectory of DynaSLAM that use Mask R-CNN is very
similar with our Mask R-CNN version as shown in
Fig. 14 (m-p) and Fig. 14 (g-t). The performance of our
SegNet version (Fig. 14 (i and j)) is similar to the DS-SLAM
(Fig. 14 (e and 1)).

The error in the estimated trajectory was calculated by
comparing it with the ground truth, using two promi-
nent measurements: absolute trajectory error (ATE) and
relative pose error (RPE) [25], which are well-suited for
measuring the performance of the vSLAM. The root mean
squared error (RMSE), and the standard deviation (S.D.)
of ATE and RPE are compared. Each sequence was run at
least five times as dynamic objects are prone to increase
the non-deterministic effect. We compared our method
with ORB-SLAM3 [18], DS-SLAM [10], DynaSLAM [9],
SLAM-PCD [8], DM-SLAM [11], and Detect-SLAM [12].
The comparison results are summarized in Tables 1, 2, and 3.
DynaSLAM reported they obtained the best performance
using the combination of Mask R-CNN and geometric model.
In this paper, we mainly focus on the time cost problem
caused by semantic segmentation. Contrary to the very heavy
geometric model that DynaSLAM used, we only use the very
light geometric check, such as RANSAC, photometric error
to deal with the outliers that not rely on the priori dynamic
objects.

Our proposal outperforms the original ORB-SLAM3
(RGB-D mode only without IMU) and obtains similar per-
formance with DynaSLAM, SLAM-PCD, and DM-SLAM,
in which the tracking error is already very small. Different
from them, we use the non-blocked model. The first few
frames do not have any semantic information. The number
of keyframes that have a semantic label is smaller than suing
the blocked model because the processing speed of the track-
ing thread is much faster than the semantic segmentation
(especially for the heavy model, Mask R-CNN). However,
we achieved a similar tracking performance using less seman-
tic information.

C. REAL ENVIRONMENT EVALUATION

We test our system using Kinect2 RGB-D camera, as shown
in Fig. 15. All the features are in initial status when in the first
few frames because they have not yet obtained any semantic
information. The static features will be increasingly detected
over time and used to estimate camera pose. The features
on the person is detected and excluded from tracking. The
algorithm runs in around 30HZ, as shown in Table 4.

D. EXECUTION TIME

Tab. 4 compares the execution time of vSLAM algorithms.
In the blocked model, the tracking thread needs to wait for
the semantic label. The speed of the other methods is related
to the semantic segmentation methods used. The heavy the
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FIGURE 14. Trajectory comparing frame by brame. “M” stands for “Mask R-CNN” and “S” for “SegNet".
TABLE 1. Results of absolute trajectory error of TUM (m). Ours (1) and (3) are evaluated results only using keyframes.
Detect- Ours (1) Ours (2) Ours (3) Ours (4)
s ORB SLAM3 DS-SLAM DynaSLAM) SLAM-PCD DM-SLAM SLAM KeyFrame All KeyFrame All
d- (Mask R-CNN) | (Mask R-CNN) (SegNet) (SegNet)

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE | RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 0.6572 03124 | 0.0303 0.0159 | 0.0296 0.0157 | 0.0241  0.0122 | 0.0274 0.0137 | 0.0514 | 0.0306 0.0171 | 0.0259 0.0141 | 0.0291 0.0143 | 0.0807 0.0454
w/rpy 1.0197  0.5122 | 04442 0.2350 | 0.0354  0.019 0.0453  0.0316 | 0.0328 0.0194 | 0.2959 | 0.0587 0.0380 | 0.1468 0.1051 | 0.0128 0.0081 | 0.1604  0.0873
w/static | 0.3614  0.1522 | 0.0081  0.0033 | 0.0068 0.0032 | 0.0077 0.0039 | 0.0079 0.0040 | - 0.0720  0.0343 | 0.0815 0.0224 | 0.0215 0.0104 | 0.0206 0.012
w/Xyz 09178  0.4859 | 0.0247 0.0161 | 0.0164 0.0086 | 0.0157 0.0084 | 0.0148 0.0072 | 0.0241 | 0.0240 0.0139 | 0.0213 0.0127 | 0.0565 0.0184 | 0.0571  0.0229
s/static 0.0090  0.0043 | 0.0065 0.0033 | 0.0108 0.0056 | 0.0080 0.0037 | 0.0063 0.0032 | - 0.0084  0.0043 | 0.0088 0.0043 | 0.0039 0.0017 | 0.0084 0.0043

semantic model used, the higher the total time consuming is. known, DynaSLAM is not a real-time algorithm. DS-SLAM
Although DynaSLAM achieved good tracking performance, is the second fastest algorithm because it uses a lightweight
the processing time is long due to Mask R-CNN. As we semantic segmentation method, SegNet. However, the
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TABLE 2. Results of translational relative pose error (RPE) (m). Ours (1) and (3) are evaluated results only using keyframes.

Ours (1) Ours (2) Ours (3) Ours (4)
Se ORB SLAM3 DS-SLAM DynaSLAM SLAM-PCD KeyFrame All KeyFrame All
a- (Mask R-CNN) (Mask R-CNN) (SegNet) (SegNet)
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
wh/half 03262  0.2625 | 0.0297 0.0152 | 0.0284 0.0149 | 0.0274 0.0140 | 0.0332 0.0208 | 0.0282 0.0155 | 0.0274 0.0140 | 0.0482 0.036
w/rpy 04368 0.3197 | 0.1503 0.1168 | 0.0448 0.0262 | 0.0616  0.0357 | 0.0700 0.0488 | 0.1114  0.0920 | 0.0245 0.0122 | 0.1320 0.1067
w/static | 0.7800  0.7563 | 0.0102  0.0038 | 0.0089 0.0044 | 0.0102 0.0049 | 0.0529 0.0444 | 0.0419 0.0348 | 0.0221 0.0149 | 0.0221 0.0149
w/xyz 0.4258  0.3063 | 0.0333  0.0229 | 0.0217 0.0119 | 0.0204 0.0107 | 0.0299  0.4943 | 0.0281 0.0167 | 0.0269 0.0163 | 0.0426 0.0317
s/static | 0.0102  0.0049 | 0.0078 0.0038 | 0.0126  0.0067 | 0.0087 0.0038 | 0.0097 0.0052 | 0.0107 0.0050 | 0.0050 0.0026 | 0.0123 0.0070
TABLE 3. Results of rotational relative pose error (RPE) (m). Ours (1) and (3) are evaluated results only using keyframes.
Ours (1) Ours (2) Ours (3) Ours (4)
Se ORB SLAM3 DS-SLAM DynaSLAM SLAM-PCD KeyFrame All KeyFrame All
q- (Mask R-CNN) (Mask R-CNN) (SegNet) (SegNet)
RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 7.2352 59487 | 0.8142 04101 | 0.7842 0.4012 | 0.7440 0.3459 | 0.8194 0.4858 | 0.8216  0.4347 | 0.7332 0.3712 | 1.8828 1.5250
w/rpy 8.7683  6.4583 | 3.0042 23065 | 0.9894 0.5701 | 1.3831 0.8318 | 1.4736 1.0262 | 9.3192 8.5720 | 0.4973 0.2586 | 13.1693  12.0103
w/static | 6.0054  5.5995 | 0.2690 0.1215 | 0.2612 0.1259 | 0.2631  0.1119 | 1.4966  1.2839 1.1686 09917 | 0.4944 0.3112 | 0.4944 0.3112
w/xyz 7.8974 55917 | 0.8266 0.2826 | 0.6284  0.3848 | 0.6227 0.3807 | 0.7739  0.4943 | 0.7236  0.4435 | 0.7768  0.4886 | 0.9222 0.6509
s/static 0.3007  0.1300 | 0.2735 0.1215 | 0.3416  0.1642 | 0.2782 0.1210 | 0.3217 0.1522 | 0.3091 0.1325 | 0.1520 0.0821 | 0.3338 0.1706

TABLE 4. The execution time comparison of TUM Dataset. We use the data in their original paper as possible. If not provide in their papers,

we approximate the processing time.

Method GPU Semantic Segment‘anon/Detectlon Time of Other Models Related to Tracking Track Each Frame
Time (ms) (ms) (ms)
ORB-SLAM3 | - - - - 22 -30
Detect-SLAM | Nvidia GPU GTX960M | SSD 310 Propagation: 20 >310
Updating: 10
ORB feature extraction: 9.375046
DS-SLAM P4000 SegNet 3757330 Moving consistency check: 29.50869 > 63
- Multi-view Geometry: 235.98 (w/rpy)
DynaSLAM Nvidia Tesla M40 GPU | Mask R-CNN | 195 Background Inpainting: 183.56 (witpy) > 300
. Ego-motion: 3.16
DM-SLAM GeForce GTX 1080 Ti Mask R-CNN | 201.02 Dynamic Point Detection: 20.64 >201
Ours (1) Mask Generation: 5.42
GeForce RTX 2080Ti Mask R-CNN | 200 Update Moving Probability: 0.17 50 - 65 (15HZ)
TUM . O
Semantic-based Optimization: ~ 0.54
Ours (2) Mask Generation: 5.04
GeForce RTX 2080Ti SegNet 30 Update Moving Probability: 0.17 50 - 65 (15HZ)
TUM . PO
Semantic-based Optimization: ~ 0.50
Ours (3) Mask Generation: 9.01
. GeForce RTX 2080Ti Mask R-CNN | 200 Update Moving Probability: 0.15 22 - 30 (30HZ)
Kinect v2 . ST
Semantic-based Optimization: ~ 0.38
Ours (4) Mask Generation: 9.05
. GeForce RTX 2080Ti SegNet 30 Update Moving Probability: 0.18 22 -30 (30HZ)
Kinect v2 . Lo
Semantic-based Optimization: ~ 0.45

architecture used is also a blocked model. The execution time
will increase if a more time-consuming method is used. Our
method uses the non-blocked model and runs almost at a
constant speed regardless of the segmentation methods.

We evaluate the error metric of TUM dataset using 15SHZ
by manually adding some time delay in the tracking thread
because TUM dataset is very short. Very small semantic
information can be obtained in this short time. We compare
the time and the number of keyframes that obtained semantic
label (Semantic keyframe Number) in Tab. 5. We only com-
pared the Mask R-CNN version because SegNet is faster and
it can segment almost all the keyframes in each dataset. We
assume the time cost of Mask R-CNN is 0.2s for segmenting
each frame. The total time of running the fr3/w/xyz dataset is
about 57.3s for 15HZ, however, only 28.3s for 30HZ. In this
short time, the number of semantic keyframes in 30HZ (143)
is two times smaller than 15HZ (286). Usually, the more
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TABLE 5. Semantic keyframe number comparison (Mask R-CNN).

Total 15HZ 30HZ
Frames Total Time Semantic Total Time Semantic
s) KeyFrame (s) KeyFrame
‘ Num. i Num.

walk_xyz | 859 57.3 286 28.6 143
walk_rpy 910 60.7 303 30.3 151
walk_half | 1067 71.1 355 35.6 178
walk_sit 707 47.1 235 23.6 118

keyframes are segmented, the better tracking accuracy can be
achieved. This depends on the specific application and the
segmentation methods used.

In the bi-direction model, we selected two keyframes at
the same time. We offered two strategies to segment them:
1) infer images at the same time as a batch on the same GPU,
2) infer images on the same GPU sequentially (one by one).
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(b) After tracking last fram

"

(c) After tracking local map

FIGURE 15. Result of real environment. The green features are in initial
status and their moving probability is 0.5. The blue features are static
features and the red are outliers. (a) is the original detected ORB
features. (b) is the output after tracking last frame process and (c) is the
result after tracking local map process.

We suggest using (1) if the GPU can infer a batch of images at
the same time. Our Mask R-CNN version uses (1) because we
found we need 0.3s-0.4s in case (1) and 0.2s in case (2). Our
SegNet version is evaluated using the strategy (2) because
SegNet is very fast and can be segmented sequentially.

E. SEMANTIC DELAY EVALUATION

We have analyzed the semantic delay by assuming the
keyframe is selected every two frames (see Fig. 6). In exper-
iment, we follow the keyframe selection policy used in
ORB SLAM3 and we compared the semantic delay of
Mask R-CNN case and SegNet case using the TUM dataset,
as shown in Fig. 16. The semantic delay is influenced by these
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FIGURE 16. Semantic Delay of TUM w/xyz Dataset. The average value of
Mask R-CNN case is 10 and SegNet is 5.

factors: 1) the segmentation speed, 2) the keyframe selection
policy, 3) the undetermined influence caused by the different
running speed of multiple threads (e.g., Loop Closing thread),
3) the hardware configures. In the fr3/w/xyz dataset, the cam-
era sometimes moves very slow and sometimes moves for-
ward or backward. As a result, this will change the keyframe
selection frequency and cause the variance of semantic delay.

VIil. CONCLUSION

A novel vVSLAM system, semantic-based real-time visual
SLAM (RDS-SLAM) for dynamic environment using an
RGB-D camera is presented. We modify ORB-SLAM3 and
add a semantic tracking thread and a semantic-based opti-
mization thread to remove the influence of dynamic objects
using semantic information. These new threads run in parallel
with the tracking thread and therefore, the tracking thread is
not blocked to wait for semantic information. We proposed
a keyframe selection strategy for semantic segmentation to
obtain as the latest semantic information as possible that can
deal with segmentation methods with different speeds. We
update and propagate semantic information using the moving
probability which is used to detect and remove outliers from
tracking using a data association algorithm. We evaluated the
tracking performance and the processing time using the TUM
dataset. The comparison against state-of-the-art vSLAMSs
shows that our method achieved good tracking performance
and can track each frame in real-time. The fastest speed of the
system is about 30HZ, which is similar to the tracking speed
of ORB-SLAMS3. In future work, we will try to 1) deploy our
system on a real robot, 2) extend our system to the stereo
camera and mono camera systems, and 3) build a semantic
map.
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