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ABSTRACT With the development of Industry 4.0 and cloud computing technology, personalized cus-
tomization as a new production mode is showing a trend of rapid development. Personalized customization
has the characteristics of order-driven production, strict processing times, high dynamic external conditions,
and large flexibility in the production process, all of which bring more uncertainty to the production system
and great challenges to the edge computing processing of related tasks in personalized customization
production. Aiming at the above problems, a thing-edge-cloud collaborative computing decision-making
(TCCD) method in customized production is proposed. First, the architecture of a personalized customized
production system used for implementing the TCCDmethod is presented. Then, according to the number and
type of products in the customer order received from the private cloud platform, the customer’s personalized
customized order is dynamically divided. Subsequently, a task priority sorting algorithm is proposed to
optimize the waiting time of all tasks involved in the order. Furthermore, a discrete particle swarm algorithm
is proposed to optimize the average execution time of all tasks and equipment utilization decision-making
options (thing-edge collaborative computing, edge-edge collaborative computing, or edge-cloud collabora-
tive computing). Finally, the effectiveness of the proposed TCCD method is verified by using the prototype
platform of personalized product packaging intelligent production line with the same process flow.

INDEX TERMS
Edge collaborative computing, decision-making, Industry 4.0, customized production.

I. INTRODUCTION
Recently, new information technologies, such as artificial
intelligence [1]–[3], cloud computing [4]–[6] and Internet of
Things (IoT) [7]–[9], have emerged one after another, which
have enlightened upgrades to the manufacturing industry.
Nowadays, customer-needs show a trend of diversity and
individualization, and the personalized customization pro-
duction mode has gradually become mainstream. With the
development of personalized and customized production,
the demand for high-quality production is increasing, and
the requirements for business delay, privacy, and security
indicators have been further upgraded [10], [11]. The overall
operation presents the trend of refinement, flexibility, and
intelligence, which requires not only the overall operation of

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenyu Zhou .

cloud computing but also the local real-time decision-making
function of edge computing [12]–[14]. Edge computing is
an open platform with a network, computing, storage, appli-
cation, and other functions. It is located at the edge of
the network near the device or data source and provides
intelligent services to meet the key requirements of intelli-
gent manufacturing, agile connection, real-time processing,
data cleansing, and privacy protection [15]. Edge computing
provides a mechanism for interconnection and intercommu-
nication between devices, operational technology (OT) sys-
tems, and information technology (IT) systems as well as
real-time data collection, aggregation, storage, and analysis
mechanisms deployed in the manufacturing site, which can
quickly and easily achieve integration ofOT and IT [16]–[20].
However, in personalized customization production, higher
requirements are put forward to shorten the average execution
time of all the tasks related to production and make full
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use of the equipment computing resources. The collaborative
computing of the edge, cloud, and manufacturing equipment
can effectively solve these problems.

In recent years, many scholars have analyzed and studied
the problem of edge computing and edge computing task
offloading decision-making in industrial IoT (IIoT), and
some achievements have been made. Ma et al. [21] pro-
posed a production system scheduling framework under the
edge-cloud collaborative paradigm based on the dynamic
fluctuation of orders under personalized customization
requirements, and built an edge-cloud collaborative schedul-
ing model, which guaranteed real-time distributed scheduling
at the edge. Wang et al. [22], aimed at the problem that
the large amount of sensor data collected in the industrial
sensor cloud system (SCS) was untrustworthy, proposed a
data collection and cleaning method based on mobile edge
nodes, which can maintained the reliability and integrity of
the data. At the same time, it improved the efficiency of
data cleaning and greatly reduced the bandwidth and energy
consumption of industrial SCS. To address the problem that
typical energy-saving and battery life technologies in indus-
trial devices cannot supported dynamic wireless channels in
edge computing, Sodhro et al. [23] proposed a data reliability
model of IoT devices based on edge AI to improve the range
and computing speed of IoT devices in industry. Fu et al.
[24] designed a framework that integrated fog computing
and cloud computing to improve the efficiency and security
of data storage and retrieval in IIoT in response to data
processing, secure data storage, efficient data retrieval, and
dynamic data collection in IIoT. Wang et al. [25] proposed
a cloud-edge computing environment and a CNN-based ele-
ment segmentation method to solve the problem of visual
sorting in customization driven manufacturing systems. The
prototype system showed that the proposed method can pro-
vided high classification accuracy within an acceptable time.
Previous research has been conducted on edge computing
in IIoT. The above results provided a good reference point
for our research, but personalized and customized production
products show multi-variety and small-volume characteris-
tics; besides, the production materials in the production sys-
tem, including personnel, equipment, materials and product
design, scheduling management, routes, and other production
processes show the characteristic of continuous dynamic flex-
ibility. Prior research has not considered the new features of
personalized customized production, and thus their results do
not apply to personalized customized production systems.

Chen et al. [26] proposed a decision method based on
game theory to realize distributed and efficient computing
unloading among device users aimed at the multi-user com-
puting offloading in a multi-channel wireless environment
scenario. This method can achieved higher computational
offload performance and scale under the condition of increas-
ing user size. Deng et al. [27] proposed a dynamic adaptive
sequential offloading decision method aimed at the problem
that the limited computing resources of the edge computing
server of the community and the serious interference between

communities limit the scalability of offloading. This method
can achieved efficient performance in terms of time delay and
energy consumption. Liang et al. [28] designed a multi-user
collaborative offloading scheduling algorithm based on a
decomposition method to solve the coordination problem
of wireless resources and computing resources allocation
in a multi-user mobile edge computing system under I/O
interference, which can made the offloading controllable and
has better results. Tran et al. [29] proposed a new heuristic
algorithm for collaborative task offloading and resource allo-
cation in edge computing, which significantly improved the
user’s utility for traditional methods. Ruan et al. [30] used
Lyapunov theory and the proposed deviation update decision
algorithm to solve the computing offloading decision and
the formulation of the offloading update sequence for the
resource allocation problem in the application of the fog
computing technology to the sharing mode. This strategy
can saved system consumption and improved the resource
demand satisfaction rate. In summary, none of these works
considered how to choose an edge collaborative model in a
customized production environment, and the above-presented
decisionmethods are not suitable for a customized production
environment.

Faced with the challenges of stricter task execution time
and full utilization of edge device computing resources in
personalized customized production, the traditional central-
ized cloud computing models cannot meet the demand.
To build and implement a flexible and reliable edge collab-
orative computing system, we propose an edge collaborative
computing system architecture for personalized customized
production and a thing-edge-cloud collaborative computing
decision (TCCD) method to achieve efficient computing of
customized production tasks and optimal utilization of equip-
ment computing resources. The main contributions of our
work can be summarized in three aspects.

1) From the perspective of personalized customized
production order task operation, an edge collaborative com-
puting system architecture for personalized customized pro-
duction is designed for the industrial environment, which
helps implement the TCCD method.

2) The TCCD method is analyzed to dynamically divide
the customized orders, and a task priority sorting algorithm is
proposed to optimize the waiting time of all tasks. Moreover,
a decision-making method based on a discrete particle swarm
algorithm is proposed to optimize the average execution time
of all the tasks and equipment utilization.

3) The proposed TCCD method and traditional methods
are compared. To verify its feasibility and effectiveness,
the method proposed in this article is implemented on a
customized production prototype platform.

The remainder of this article is organized as follows:
Section II presents the personalized customized production
system architecture used to implement the TCCD method.
Section III describes the TCCD method in personalized cus-
tomization production, explains dynamically dividing per-
sonalized customization orders, and proposes a task priority
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FIGURE 1. The KubeEdge-based edge collaborative computing architecture in a customized production environment.

sorting algorithm and a decision-making method based on a
discrete particle swarm algorithm. Section IV experimentally
verifies the effectiveness of the proposed TCCD method
in personalized customized production and analyzes the
experimental results. Section V concludes this article.

II. SYSTEM ARCHITECTURE
To realize the collaborative computing environment of pro-
duction equipment, edge computing node, and private cloud
in the customized production system, a KubeEdge-based
edge collaborative computing system architecture is con-
structed as shown in Fig. 1. KubeEdge builds a homogeneous
execution environment for cloud computing and edge com-
puting and connects each edge node, cloud virtual machine,
and network container as a VPN. The core of the KubeEdge
architecture includes EdgeMetadata service and KubeBus.
Edge collaborative computing based on KubeEdge can real-
ize network communication and collaborative computing
between production equipment, edge nodes, and the private
cloud platform. The EdgeMetadata service is responsible for
data storage and synchronization computing when the con-
nection between the edge node and the private cloud platform

is unstable. KubeBus provides a software interface for the
data communication link between the edge node and the
private cloud platform.

The KubeEdge provides a multi-tenant edge infrastructure.
On the private cloud data center side, it includes a multi-
tenant management/data plane and has a cluster of multiple
tenants. The multi-tenant management/data plane includes
KubeBus in the cloud center and tenant management func-
tions. A tenant cluster includes one or more edge nodes
running in the edge area and a Kubernetes cluster running
in the cloud. KubeEdge is deployed in the edge intelligent
gateway and realizes the edge collaborative computing func-
tion through proxy services. In the private cloud, for each
tenant’s Kubernetes cluster, a KubeBus virtual router runs on
a VM node to route traffic between the edge node subnet and
the VM subnet/container network subnet.

Besides, in a private cloud, the server is mainly responsible
for controlling edge nodes; receiving information uploaded
by edge nodes; assigning tasks; providing IoT applications,
such as device management; intelligent production applica-
tions, such as virtual factories; and intelligent service appli-
cations based on big data analysis. Operators are provided
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with a visual interface, and the supervision and scheduling
of on-site resources are realized through collaborative com-
puting with edge nodes. In the edge decision-making layer,
industrial field resources are connected to the edge intelligent
gateway device through the field network. The algorithm
model, event management, message routing, and other ser-
vices deployed in the edge intelligent gateway device perform
real-time processing and analysis of the accessed data, on-site
reasoning decision-making, conversion, transmission, and so
on. Furthermore, the physical device layer, which includes the
autonomous guided vehicle (AGV), sensor, and robot, is not
only the executing part of the system but also the information
acquisition part, and it is mainly responsible for completing
the sensing and control work.

Under the framework of an edge collaborative computing
system based on KubeEdge technology, this article focuses
on the research of the TCCD method for personalized cus-
tomized production. For the proposed edge collaborative
computing system, all the computing tasks are created on
on-site devices, including production machines, wireless net-
work nodes, andmobile devices. Tasks are random events and
should usually be processed in real-time. For customized pro-
duction tasks, there are three factors to consider: the amount
of computation, the amount of transmission, and the amount
of data returned that results from the computation. According
to these three factors, the queued waiting time of tasks in
a certain time window can be optimized. Then, in the edge
collaborative computing system, intelligent tasks can choose
different edge collaborative computing methods according to
the decision algorithm.

III. THING-EDGE-CLOUD COLLABORATIVE COMPUTING
DECISION-MAKING METHOD
Based on the proposed edge collaborative computing
architecture, this section analyzes the TCCDmethod from the
perspective of order task division and different edge collabo-
rative computing methods. Moreover, it focuses on optimiz-
ing the task queue waiting time, average task execution time,
and equipment utilization.

A. REPRESENTATIVE ORDER TASK DIVISION FOR
PERSONALIZED CUSTOMIZED PRODUCTION
In the customized production environment, the edge intelli-
gent gateway dynamically divides the customer’s customized
orders according to the number and types of products in the
customer’s order received from the private cloud platform.
The customized order can be expressed as [n1 n2 n3 . . . ],
where n1 represents the quantity of product Category 1,
n2 represents the quantity of product Category 2, and so on.
The number of products required by the customer is set to
M , the type of products required by the customer is set to F ,
the number and upper limit of all categories are set to N , and
the product category that can be produced by personalized
customization is set to G. The steps of dynamic division can
be described as follows:

1) When the order is submitted, it is divided into the
following three categories according to the quantity of the

FIGURE 2. Diagram of representative order task division for customized
production.

products required by the customer. When 1<= M < N /3,
it is set to Class A; when N /3<= M <2N /3, it is set to Class
B; and when 2N /3< M <= N , it is set to Class C.
2) When the order is submitted, it is divided into the

following three categories according to the types of products
required by the customer. When 0< F <= G/3, it is set to
Category a; when G/3< F <= 2G/3, it is set to Category b;
and when 2G/3< F <= G, it is set to Category c.

3) Based on the above two classification characteristics,
(A, a), (A, b), and (B, a) are classified as Class I, which
can be selected for thing-edge collaborative computing, edge-
edge collaborative computing, and edge-cloud collaborative
computing; (A, c), (B, b), and (C, a) are classified as Class II,
which can be selected for edge-edge collaborative computing
or edge-cloud collaborative computing; and (B, c), (C, b), and
(C, c) are classified as Class III, which can be selected for
edge-cloud collaborative computing.

The diagram of the representative order task division for
customized production is shown in Fig. 2. The ‘‘thing’’ in
thing-edge collaborative computing refers to end-of-things
devices, which can also be described as IoT devices, mainly
including sensor devices, cameras, and factory machinery
equipment. The ‘‘edge’’ in edge-edge collaborative com-
puting and edge-cloud collaborative computing refers to
edge computing nodes, which mainly include Raspberry Pi,
gateways, routers, and servers. ‘‘Cloud’’ refers to a private
cloud platform, mainly a computer cluster with powerful
computing, storage, and analysis capabilities.

B. THING-EDGE-CLOUD COLLABORATIVE COMPUTING
MODE
The thing-edge collaboration is mainly located at the bottom
of the production site, which can integrate the computing
resources on the link between production equipment and
edge computing nodes to make it fully utilized, capitalize
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FIGURE 3. The thing-edge collaborative computing mode.

FIGURE 4. The edge-edge collaborative computing mode.

on the advantages of different equipment, and better enhance
the capability of edge nodes. The thing-edge collaboration
computing mode is shown in Fig. 3. It is widely used in
the IoT, especially in smart homes and smart manufactur-
ing. Under the thing-edge collaborative computing mode,
the thing is responsible for collecting data and sending it to
the edge. Meanwhile, the calculation and control instructions
of the edge are received for specific production operations.
The edge is responsible for the centralized calculation of
multi-channel data, issues instructions, and provides network,
computing, and storage services. The thing can perform some
simple calculations, and the edge, as the main body of the
computing task and the core hub of the system, needs to
undertake more computing tasks.

Collaborative computing between the edge-edge infras-
tructures is a current research hotspot, which can solve the
contradiction between the resource requirements of intelli-
gent algorithms and the limited resources and intelligent task
requirements of edge devices and the single capability of edge
devices. The edge-edge collaboration computing mode is
shown in Fig. 4. Specifically, the computing power of a single
edge computing node is limited, and, to improve the overall
computing power of the system, time-sharing coordination
between multiple edge computing nodes is required.

For example, when completing the training task of the
deep neural network model, it is not feasible to train in a

FIGURE 5. The edge-cloud collaborative computing mode.

single edge computing node, which not only consumes a
lot of time and computing power but is also easy to overfit
the model due to the limitation of data volume to fail to
obtain the optimal solution predicted by the model. There-
fore, multiple edge compute nodes are required to train the
model together. The second is to solve the ‘‘data island’’
problem ‘‘data island’’ in production and manufacturing. The
data source of a certain edge computing node has a strong
locality and needs to cooperate with other edge computing
nodes to complete a larger range of tasks. For example, in
the operation monitoring of the customized production line
of the whole factory, generally, one edge computing node can
only obtain the operating status information of one workshop,
and the cooperation among multiple edge computing nodes
can be combined into an overview diagram of the workshop
operating status of the whole intelligent factory.

In edge-cloud collaborative computing, the edge is respon-
sible for data computing and storage in the local area, and
the cloud is responsible for big data analysis, mining, and
algorithm training optimization. The edge-cloud collabora-
tion computing mode is shown in Fig. 5. The collaboration
of the edge-cloud can be divided into two parts. The first is
functional collaboration. This kind of collaboration assumes
different functions based on different geographic spaces and
roles of different computing devices. For example, the edge
is responsible for preprocessing, and the cloud is responsi-
ble for multi-channel data processing and service provision.
The second is performance collaboration. This is due to the
limitation of computing power, and computing devices of dif-
ferent levels undertake tasks with different computing power
requirements, including longitudinal cutting and assignment
of tasks.

C. THING-EDGE-CLOUD COLLABORATIVE COMPUTING
DECISION-MAKING ALGORITHM
In the thing-edge-cloud collaborative computing system,
Ci = {J c,Bc,Qc} represents cloud node Ci, where J c rep-
resents the computing capacity of cloud node i, Bc represents
the available bandwidth (in Mbps) between the cloud node
and smart devices, and Qc represents the cost of processing
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TABLE 1. Notations

unit data on the cloud node. There are many edge computing
nodes around smart devices to provide edge computing ser-
vices. Moreover, Ei = {J e,Be,Qe} represents edge node Ei,
where J e represents the computing capacity of cloud node
i, Be represents the available bandwidth (in Mbps) between
the edge node and smart devices, and Qe represents the
cost of processing unit data on the edge node. Smart device
refers to any kind of equipment, apparatus or machine with
computational processing capabilities. Si refers to a certain
smart device, whose computing power is represented by J s,
and the task generated by the smart device can be represented
as Tj =

{
Uj,Dj,Rj

}
, whereUj is the input data size uploaded

by task j,Dj is the computational volume of the task processed
on the cloud or edge node, and Rj is the data size returned
by the computational results of the task. When choosing
a collaborative computing mode for tasks, there are two
main optimization goals for a customized production system,
including increasing the utilization of edge computing nodes
and reducing the average execution time of all tasks. Themain
notations description used in the thing-edge-cloud collabora-
tive computing decision-making are given in Table 1.

Task execution time is not only a factor of great concern
in the personalized customization production process but also
an important indicator of personalized customization produc-
tion efficiency. Task execution time can be divided into four
parts in the process of selecting edge collaborative computing
mode.

1) The selection of decision stage td mainly includes
information collection and making decisions based on
the collected information and the necessary waiting time.

2) In the data transmission stage tt , after making a decision,
data needs to be transmitted from the source (thing) node to
the edge computing node or cloud node. The transmission
time can be expressed as:

tt = U/B (1)

where U is the upload data size of the task, and B (Bc or Be)
is the network bandwidth.

3) The task execution stage te refers to the time to execute
tasks on smart devices, edge nodes, or cloud nodes. The time
cost is as follows:

te = D/J (2)

where D is the amount of task data that needs to be processed
on smart devices, edge nodes, or cloud nodes; and J (J s, J e or
J c) is the computing capacity of smart devices, edge nodes,
or cloud nodes.

4) The result return stage tr refers to the time required to
return the result data from the edge node or cloud node to
the smart device. Here, we assume that the bandwidth of the
two-way communication is stable and consistent. The time
can be expressed as:

tr = R/B (3)

where R is the data size of the task result, and B (Bc or Be) is
the network bandwidth.

Then, the execution time of task decision for collaborative
computing is:

Tt = td + (U + R)/B+ D/J (4)

In general, the purpose of selecting the task computing
method is to reduce the task execution time, that is, the exe-
cution time meets the following conditions:

Ts > td + (U + R)/B+ D/J (5)

where Ts is the time to execute the task on the smart
device, and the other parameters are the same as in Equa-
tion (4). If thing-edge collaboration, edge-edge collaboration,
or edge-cloud collaborative computing perform tasks faster
than smart devices, then it is worthwhile to choose the edge
collaborative computing mode.

Furthermore, a task priority sorting algorithm is proposed
to optimize the waiting time of tasks in the queue. The task
priority sorting algorithm is shown in Algorithm 1. Tasks
are being prioritized based on the previous results. First,
according to the task characteristic model established above,
the computing amount, transmission amount, and amount
of data returned by the computing result of each task are
obtained. Then, the priority of the computing amount, trans-
mission amount, and the amount of data returned from the
computing result is set to 0 or 1 because the amount of data
returned from the computing result is usually relatively small,
which is ignored. Finally, if the priority of the computing and
transmission of the task are both 1, then the task is a high
priority task; if the priority of the computing and transmission
of the task are both 0, then the task is a low priority task;
otherwise, the task is a medium priority task.
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Algorithm 1 Pseudocode of Task Priority Sorting Algo-
rithm
Initialization: Input task number N t , task Tj, computing
amount of task D, transmission amount of task U
Output: sorted task flow L
Begin

Initialize task flow randomization
Set the priority of D,U to 0 or 1
for j = 1; j <= N t

; j++
for i = 0; i < N t ; i++

if the priority of D and U are 1 then
P(Tj) = 0 // Tj is a high priority task
L[i] = Tj
if the priority of D and U are 0 then

P(Tj) = 1 // Tj is a low priority task
L[i] = Tj

else
P(Tj) = 1/2 // Tj is a medium priority
task
L[i] = Tj

end if
end if

end for
end for
Reorder the elements in L using the insertion sort
algorithm
return L

End

Equipment utilization is another important indicator that
must be considered when making thing-edge-cloud col-
laborative computing decisions. In customized production,
the improvement of equipment utilization can make full use
of the computing resources of the equipment and improve the
flexibility and intelligence of the production line. Equipment
utilization refers to the ratio of the time taken to perform tasks
on edge nodes to the time taken to complete tasks, which can
be expressed as:

Zt = De
/
(J ∗ Tt) (6)

where Zt represents equipment utilization, De represents the
amount of task data to be processed on the edge node, and Tt
represents the execution time of the task.

Based on the above model, the task execution time and
equipment utilization are often related to the edge collab-
orative computing method of task selection, and thus this
article defines a decision variable Ij ∈ {−1, 0, 1} to represent
the edge collaborative computing method of a task, and this
variable is also the decision amount of selection. This variable
can be expressed as follows:

Ij =


−1, if task j is TEC computing
0, if task j is EEC computing
1, if task j is ECC computing

(7)

where, Ij = −1 if task j is the thing-edge collaborative (TEC)
computing mode;Ij = 0 if it is the edge-edge collaborative

(EEC) computing mode; and, otherwise, the task is the edge-
cloud collaborative (ECC) computing mode, and then Ij = 1.

Next, we discuss the TCCD algorithms for optimizing
execution time and device utilization. Choosing the TCCD
method for tasks with a large amount of computing in
personalized customization production should simultane-
ously reduce task execution time and improve equipment
utilization. The optimization objectives are as follows:

min
[(
α ∗ Tt + β ∗ 1

/
Zt + γ ∗ N t

∗ Q
)
∗ I
]

(8)

where Tt is the normalized value of the execution time of the
task; Zt is the normalized value of equipment utilization; N t

is the number of tasks to be processed on the edge node or
cloud node; Q (Qe or Qc) is the cost of processing unit data
on the edge node or cloud node; N t

∗ Q represents the cost
of TCCD task computing mode; α, β, and γ are the weights
of execution time, equipment utilization, and cost of edge
collaborative computing, and α + β + γ = 1. These param-
eters can help the customized production system to adjust
the bias of task execution time, equipment utilization, and
cost. Besides, I represents the decision variable of the edge
collaborative computing mode selection, that is, the edge col-
laborative computing mode selected for each task (whether to
choose the TEC computing, the EEC computing, or the ECC
computing mode. It satisfies I = [I1, I2, . . . , Ij, . . . , IN t ] and
Ij ∈ {−1, 0, 1}). The other parameters have the samemeaning
as before.

Since there are three options for edge collaborative com-
puting for each task, there are 3N t possible solutions for
TCCD for N t tasks. Therefore, this is a nonlinear restricted
programming problem, and the problem cannot be solved
by a formula. If the enumeration method is used to traverse
the entire solution set to find the optimal solution, then the
computational time complexity is very high, and thus this
method is not suitable for solving this problem. Therefore,
it is extremely necessary to design a fast and low-time com-
plexity heuristic algorithm to find the optimal solution and
reduce the computational complexity. It can be observed that
the TCCDvariable I is a vector with only discrete values. This
study used the discrete particle swarm algorithm to solve this
nonlinearly restricted planning problem.

Based on this, the standard particle swarm optimization
(PSO) is only suitable for searching for optimal solutions in
a continuous space, and it cannot be used directly for discrete
spaces.

In the traditional PSO algorithm [31], all particles have
their own positions and speeds. The meaning of particle
position is a feasible solution in the solution space, while
the particle speed represents the distance between the next
position of a particle and the current position.

In the solution space of the J -dimensional optimization
problem, the update formulas for the position and velocity
of the j-th dimension of i-th particle are as follows:

V k+1
ij = wV k

ij + c1r1(PBest
k
ij − X

k
ij )+ c2r2(GBest

k
j − X

k
ij )

(9)

10968 VOLUME 9, 2021



C. Jiang, J. Wan: TCCD Method for Personalized Customization Production

and

X k+1ij = X kij + V
k+1
ij (10)

To solve the problem of minimizing the task execution
time and maximizing equipment utilization rate of intelligent
equipment in the personalized customized production envi-
ronment constructed in this article, a discrete PSO (DPSO)
algorithm based on the PSO algorithm is adopted.

In DPSO, each dimension Xij of the particle position and
each dimension PBestij of the optimal historical position of
the particle are set to discrete values −1, 0, or 1, and the
particle velocity Vij is the same as in the PSO algorithm. The
function is defined as follows, where the parameter is the j-th
dimension of the current velocity of i-th particle:

S(V k+1
ij )=

[(
V k+1
ij

)2
− 1

]/[(
V k+1
ij

)2
+ V k+1

ij +1
]

(11)

As shown, this function is amonotonically increasing func-
tion with a value range of (−1, 1). The function value of the
particle’s velocity can be regarded as the probability that the
particle’s position is −1, 0, or 1, which is consistent with
the decision variables of the edge computing of personalized
customized production. When the velocity value is large,
the probability of particle position going to 1 is greater; when
the velocity value is small, the probability of particle position
going to −1 is greater; when the velocity value is small,
the probability of particle position going to 0 is greater. Then,
the j-th dimension of the current position of i-th particle in the
DPSO algorithm is updated to the following formula:

X k+1ij =


1, if Rij < S(V k+1

ij )

−1, if Rij > S(V k+1
ij )

0, otherwise

(12)

where Rij is a random number uniformly distributed in the
interval [−1,1].

In this article, the position of the particle is the decision
variable of the execution position of each task for the opti-
mization of the execution time and equipment utilization
of the TCCD method for personalized production. Using
the function of Equation (12), the speed can be used as a
parameter to choose whether the position of the particle is
−1, 0, or 1. According to DPSO, the first step is initialization,
that is, to randomly assign decision variables to the particle
swarm and then calculate the corresponding execution time of
each particle and the equipment utilization value at this time
through Equations (4) and (6), and the historical optimal posi-
tion of each particle and the historical optimal position of the
population are obtained. The next step is a cyclic process in
which the global optimal value of the problem is approached
continuously. For each particle, the following operations are
performed: update the particle velocity and position, calculate
the equipment utilization rate and order task execution time
corresponding to the new decision variable, and update the
historical optimal position of each particle and the historical

Algorithm 2 Pseudocode of the TCCD method based on
discrete particle swarm algorithm
Initialization: Input L obtained by Algorithm 1, task
Tj//Tj belongs to L
Output: optimal task decision variable I , minimum task
execution time Tt , maximum equipment utilization Zt
Begin

for each particle Tj
Initialize velocity Vij and position Xij for particle
Tj
Calculate PBestij and GBest
Evaluate particle Tj and set PBestij = Xij

end for
GBest = min{PBestij} //I = GBest
while did not reach the iteration termination number
k do

for i = 1 to L.size() // L.size() is the scale of the
particle

Update the velocity and position of particle
Tj
Calculate Tt and Zt and get F(Tj) according
to (8)
Evaluate particle Tj
if F(Tj) > min(F) then

Give up the current position of particle Tj
else

if fit(Xij) < fit(PBestij) then
PBestij = Xij

end if
if fit(PBestij) < fit(GBest) then

GBest = PBestij
end if

end if
end for

end while
return I , Tt , Zt

End

optimal position of the population according to the least prin-
ciple of (8). When the set number of cycles is reached, a rela-
tively optimal decision variable can be obtained to minimize
the average execution time of all the order tasks andmaximize
equipment utilization. Therefore, the specific description of
the TCCDmethod algorithm based on discrete PSO is shown
in Algorithm 2. For this nonlinear constrained programming
problem, the time complexity of DPSO is polynomial, while
the time complexity of the exhaustive method is exponential.
As shown, the edge cooperative decision algorithm based on
discrete PSO has the advantages of low time complexity and
reduced computational complexity.

IV. EXPERIMENTS AND ANALYSIS
In this section, we describe an actual customized production
prototype platform as a case study to verify the effectiveness
of the proposed TCCD method.
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FIGURE 6. Prototype platform used for the TCCD method in the
customized production of candy packaging.

A. PROTOTYPING PLATFORM AND EXPERIMENTAL SETUP
This case study is based on an actual production environ-
ment of a multi-variety and small-batch candy packaging
intelligent production prototype platform. The layout of the
prototype platform production line is shown in Fig. 6, which
consisted of three parts: the physical device layer, the edge
computing layer, and the industrial private cloud server layer.
The physical device layer included multiple types of devices,
such as manipulators, AGVs, photoelectric sensors, and
RFID. In the edge computing layer, Raspberry Pi and edge
intelligent gateway had typical application features of edge
computing nodes that provided data processing, computation,
status monitoring, and control functions for field devices in
the prototype platform. Moreover, all the device data was
connected to the platform’s private cloud computing center
via industrial networks. Through the private cloud comput-
ing center, instructions for allocating various real-time tasks
and monitoring equipment status were generated, and per-
sonalized customized production was managed in real-time
through edge computing. At the same time, wired Ethernet
and wireless communication systems were used for infor-
mation interaction between different layers of the prototype
platform. All the edge computing nodes were connected to
the private cloud center through KubeEdge. Real-time tasks
and events were executed by the edge computing node unit
and perform related computations. Besides, long-term data
was sent to the private cloud center for storage in accordance
with the instruction cycle for subsequent offline analysis.

Then, based on the prototype platform, performance veri-
fication experiments were conducted. The prototype platform
was a candy packaging production line. The basic process
was as follows: First, customers selected their favorite candy
on the app or web page to buy it online, and then the
order information was sent to the manufacturing prototype
platform. After that, intelligent agents with edge collabora-
tive computing capabilities completed production tasks in a
self-organizing manner. Finally, the completed customized
orders were automatically transported to the warehouse by

FIGURE 7. Average execution time of the collaborative computing modes.

the logistics system of the customized production factory.
In this experiment, a neural network model with a size of
65 KB-4 MB was executed on the edge computing node,
and the number and type of candies in a customized candy
packaging order were used as the input of the neural network
model, which can be used to predict the completion time of
the personalized order. The network bandwidth supported by
each edge node and smart device is 100Mbps. The computing
capacity of smart devices and edge nodes are 500 MHz,
1.4 GHz respectively. The CPU processing frequency of the
cloud server is 8GHz, and the transmission rate is 5Mbps.
To ensure the reliability of the experimental results, for
each neural network model of different sizes, we carried out
repeated experiments.

At the same time, the average execution time and the equip-
ment utilization were used as evaluation indicators to evaluate
the performance of the TCCDmethod for customized produc-
tion. First, we compared the average execution time of task
packages based on the KubeEdge framework’s TEC, EEC,
and ECC computing modes. We compared the performance
of the proposed TCCD method with the three traditional
methods. Traditional comparison methods included a ran-
dom decision-making method (RAND) (assuming that each
collaborative computing method had the same probability of
being selected, the task randomly selected the collaborative
computing method), the minimum execution time decision
method (METD) (dynamic calculation of the capabilities
of each computing node, and edge collaborative computing
with smaller execution time was selected), and a deviation
update decision-making method based on Lyapunov theory
(LDUD) [30]. In the decision-making process of edge col-
laborative computing, we set α = 0.4, β = 0.4, and γ =
0.2. Finally, the influence of α, β, and γ on the experimental
results were analyzed.

B. RESULT AND ANALYSIS
The relationship between the KubeEdge based framework
and the average execution time under the change of task
package size is presented in Fig. 7, which can verify the
advantages of the KubeEdge framework-based proposed in
this article. As shown, the average execution time of the col-
laborative computing modes increased exponentially with the
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FIGURE 8. Average execution time under different numbers of tasks.

increase of the task package size. Furthermore, the EEC com-
puting mode was faster than the TEC and ECC computing
modes, especially for larger task packages (i.e., greater than
200 KB). The average execution time was less than 1 second
for the task packet that was less than 200 KB, while the
peer-to-peer communication between edge computing nodes
still had a low delay. Moreover, due to the low computing
capability of the physical device, when the task package was
larger than 2 MB, it was sent step by step, and the average
execution time increased rapidly. We observed that it was not
feasible to exchange task packages larger than 32 MB in the
TEC and EEC calculation methods. This is probably due to
the hardware and memory limitations of the embedded devel-
opment board. Therefore, to reduce the number of messages
transmitted to the private cloud, this article used KubeEdge as
an edge orchestration device cluster structure to achieve the
effect of reducing costs and increasing the number of devices
that can support the specific available bandwidth.

The effect of the number of tasks on the average execution
time is presented in Fig. 8. As shown, with the increased
number of tasks, the average execution time of each deci-
sion mechanism increased, and the proposed TCCD method
showed obvious advantages. When the number of tasks was
10, the average execution time of the TCCD method was
30%, 20%, and 25% lower than that of the RAND, METD,
and LDUDmethods, respectively. This is because the RAND
method randomly selected the edge collaborative comput-
ing method for tasks, which was a relatively blind method.
Sometimes it took a long time to wait, and thus the effect
was not good. The METD method was more scientific in
choosing edge collaborative computing, but the process was
complicated and time-consuming, and thus the result was not
the best. The LDUD method focused more on the stability of
the system, and its effect was even worse thanMETDmethod
when the number of tasks was large. The proposed TCCD
method considered a variety of factors and placed particular
emphasis on the cost of various times, which resulted in
relatively ideal results.

The equipment utilization of different methods with a
certain number of tasks is presented in Fig. 9. The results
showed that, for the four decision strategies, the TCCD
method had the highest equipment utilization rate, followed

FIGURE 9. Equipment utilization under different decision-making
methods.

FIGURE 10. Weight parameter analysis.

by the LDUD and METD methods, while the RAND method
was the worst. The RAND method had relatively large
randomness and unstable performance, and thus the equip-
ment utilization rate of the RAND method was the lowest.
The METD method adopted the strategy of the least time
principle, and better results can be obtained. However, this
method did not consider the equipment utilization factor
in the decision strategy, and thus its performance was not
optimal. The LDUD method calculated the deviation value
according to the optimal decision results of all tasks obtained
in the previous time to select the collaborative calculation
method of tasks, and its performance was better. However,
this method has the disadvantage of high computational com-
plexity and time complexity. The TCCD method proposed
in this article comprehensively considered the two factors
of time and equipment utilization, which has small time
complexity and can reduce the computational complexity, and
its performance was relatively best.

To analyze the influence of the parameters α and β on the
experimental results, we set γ = 0.2 and changed the values
of α and β. The trend of the average execution time and
equipment utilization with α and β is presented in Fig. 10.
The average execution time decreased with the increase of
α value. This means that a greater value of α means there is
a greater weight of the execution time in the TCCD and the
system will choose the edge collaborative computing method
with a shorter delay. Similarly, a larger value of β means the
system will choose the edge collaborative computing method
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with higher equipment utilization. In summary, the parame-
ters α, β, and γ are the weights of execution time, equipment
utilization, and cost, respectively. Producers can adjust dif-
ferent parameter values according to their own preferences to
meet the needs of specific scenarios.

C. DISCUSSION
In the previous part, we presented the results of the average
execution time of the task package based on the KubeEdge
framework, the performance of the TCCD method, and the
weight parameter analysis. Compared with TEC and ECC,
EEC had a lower average execution time, which is due to
the efficient message encapsulation ability of the KubeEdge
framework, which can greatly reduce the communication
pressure. When the four decision-making methods are com-
pared, the TCCD method proposed in this article can usually
produce the best results in some situations. However, within
the permissible range, the system may have some decision
errors, which may reduce the quality of service. In terms
of decision costs, considering more factors may be more
costly than considering fewer factors. Moreover, regarding
the decision-making strategy, the RAND method is a simple
method, but the cost is a high average task execution time and
low equipment utilization.

Although theMETDmethod has advantages in the average
execution time, in the actual customized production process,
not only the production efficiency was considered but also
the quality and cost of the production were also guaranteed.
Although the LDUD method has advantages in equipment
utilization, it is inferior in average execution time. Besides,
in the experiment, we only selected a lighter weight model as
the experimental load, and the number was small, which may
only meet the needs of small-scale customized production.
Determining the combined values of the parameters α, β,
and γ to better serve the edge of the network is a problem
worthy of discussion. For example, to avoid downtime in the
event of equipment failure, the value of β can be increased
to improve equipment utilization for on-time delivery. There-
fore, the values of the parameters α, β, and γ mainly depend
on actual production requirements. Considering that urgent
orders, process changes, and real-time processing of product
quality events exist in actual production applications, the
collaborative mechanism between edge computing nodes and
cloud computing nodes and the real-time processing method
of tasks should be further studied to improve the flexibility
and efficiency of personalized customization production.

V. CONCLUSION
In the production of personalized customization, edge
computing, as the middle layer of the IoT architecture,
provides real-time computing, storage, and communication
mechanism at the field level. Edge devices with limited
memory resources cannot compute tasks that require high
computing capability, especially when multiple tasks are
running on the edge device at the same time. In this article,
the TCCD method for customized production was studied.
First, a personalized customized production system

architecture for implementing the TCCD method was pro-
posed. Then, a task priority sorting algorithm was proposed
to optimize the waiting time of all tasks in the order. A
TCCD method based on discrete particle swarm algorithm
was proposed to optimize the average execution time of all the
order tasks and equipment utilization. Finally, the feasibility
of the proposed TCCD method was verified by using a candy
packaging personalized customization prototype platform.
The experimental results showed that the proposed TCCD
method was significantly better than the RAND, METD,
and LDUD methods in terms of average task execution time
and equipment utilization. In general, the proposed TCCD
method for personalized customized production can provide
a strong impetus for the unified management, scheduling,
operation, and maintenance of infrastructure resources on the
production edge.
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