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ABSTRACT Multiple sensor data fusion is necessary for effective condition monitoring as the electric
machines operate in a wide range of diverse operations. This study investigates sensor acquired vibration
and current signals to establish a reliable multi-fault diagnosis framework of a brushless DC (BLDC) motor.
Faults in stator and rotor were created deliberately by shorting two adjacent windings and creating a hole on
the surface, respectively. The threshold for different health states was obtained by the third harmonic analysis
of motor current. Later, the key features from sensor acquired current and vibration signals are selected
based on monotonicity and reduced using the principal component analysis (PCA). For future predictions,
an artificial neural network (ANN) is used to classify different fault features and its performance is evaluated
using several metrics. Analysis of motor current harmonics and impulsive vibration response at the same time
provides a thorough health estimation of BLDC motor in the presence of both electrical and mechanical
faults. Multiple sensor information is fused to obtain a better understanding of the fault characteristics and
mitigate the randomness of fault diagnosis. The proposed model was able to detect and classify multiple
fault features with higher accuracy compared to other similar methods.

INDEX TERMS ANN, BLDC motor, condition monitoring, CEEMD, fault diagnosis.

I. INTRODUCTION
Predictive maintenance (PdM) using data-driven approaches
has become quite popular in academia and industries. The
major advantage of a data-driven maintenance framework is
that it does not require a prior physics of failure model of the
system [1]. A proper mathematical model is often difficult to
establish, and considering the intricate industrial operations,
a physical model will require continuous updating based on
operating conditions. This is a time consuming and econom-
ically expensive task. Therefore, data-driven methods have
gained popularity over the model-based methods over the
years. Also, ease in acquiring and storing big-data, availabil-
ity of computational resources, advances signal processing
techniques, etc. have made data-driven approaches on top of
the maintenance frameworks [2]. In a PdM framework, there
are mainly two challenges. One is the fault diagnosis and the
other is fault prognostics. Prognostics is making predictions
based on historical failure data. Therefore, fault diagnosis is
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the foremost important step in a PdM framework that should
be implemented precisely [3].

An increase in the production demand has made the indus-
trial machines to run in a complex operating condition.
Depending on the variety of necessities, an electric machine
runs in both stationary and nonstationary operating condi-
tions. In case of rotary machinery operation, stationary refers
to the fact that the machine is operating under fixed load
and speed [4]. Electric motors are expected to deliver a fixed
mechanical output given a fixed electrical input in a station-
ary condition. On the other hand, machinery operation with
variable speed and loading conditions is referred to as non-
stationary operation [5]. In case of a fault, due to the changes
in operation parameters, the fault patterns also change with
different operating conditions making it a difficult task to
detect and isolate the fault. In literature, there are a plethora
of methods available to detect and diagnose these faults [6].
However, most of them are based on the single sensor data and
univariate methods. In this study, we propose a fault diagnosis
framework of BLDC motor combining multiple sensor data
for accurate fault detection and classification.
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Brushless DC motor (BLDC motor) is an improvement
over the conventional brushed DC motors. The major advan-
tage of BLDC motor is that it does not have a mechanical
commutator unlike brushed DC motor. Lack of a mechanical
part gives BLDC motor several other benefits such as- longer
lifetime, noiseless operation, precise control, better speed-to-
torque ratio, etc. High reliability is the defining character-
istic of BLDC motor [7]. Nevertheless, like other electrical
machines, a BLDC motor can also fail due to complex opera-
tions and overload. Since there is no mechanical part between
the stator and rotor, the entire commutation in a BLDCmotor
is based on the electromagnetic induction between the stator
and rotor. Stator is a winding of conductor coils that can carry
different polarity currents through the wires creating tempo-
rary electromagnets. On the other hand, rotor is a permanent
magnet in a BLDC motor. By switching the polarity of stator
coils, permanent magnet is rotated by continuous attraction
and repulsion of opposite and different poles, respectively.
Therefore, a fault in the stator or rotor operation will signifi-
cantly affect the entire motor operation and if not monitored
properly, it can lead to catastrophic system failures [8]. To get
a thorough intuition about the fault characteristics as well as
establishing a total fault diagnosis framework, in this study,
we have investigated both the stator and rotor related faults at
the same time. Both faults are deliberately created in a BLDC
motor. In stator, a winding short circuit is created by joining
two adjacent stator coil windings and this fault is referred to
as WSC fault. And, in rotor, a crack is created by producing
a hole in the permanent magnet, which is referred to as CRF
fault.

In literature, several methods are adopted by researchers
to detect and diagnose electric motor faults. For example,
Park et al. used input impedance as an early fault detec-
tion factor of a BLDC motor subjected to inter-turn fault
[9]. The same authors also diagnosed BLDC motor eccen-
tricity related faults using stator current spectral analysis
[10]. Kar et al. monitored gearbox vibration through the
motor current signature analysis (MCSA) [11]. Kia et al.
used the current vector analysis for gear tooth surface fault
detection [12]. Among them, harmonic analysis of motor
current has been proven to be the most effective one for early
fault diagnosis. Also, monitoring current spectra does not
require any advanced signal processing technique and can
be performed keeping the motor in operation. This allows
an opportunity for online condition monitoring of BLDC
motors.

In data-driven maintenance frameworks, several sensor-
acquired data are processed and analyzed to investigate the
diagnostic related information of a system. Depending on the
system architecture, the data type can be varied from acoustic
emission monitoring to magnetic flux induction monitoring.
Vibration is the most used sensor-data for fault diagnosis and
condition monitoring of rotary machinery [13]. There are two
main reasons behind that:

(a) Easy to handle: Acquiring vibration data does not
require any prior knowledge of the system. Mounting and

acquiring vibration data using a sensor provides ease even in
a complex environment [14].

(b) Easy to process: Fault in a rotating component can
be easily diagnosed by analyzing the changes in frequency
patterns. By using advanced signal processing techniques
such as- time-frequency analysis, fault characteristics for an
abruptly changing vibration response can also be detected.
Also, the vibration response of a component lifetime can be
monitored using a single sensor. This vast amount of data
widens the opportunity of fault diagnosis and prognosis using
machine learning techniques [15].

Faults in industrial operation are random in nature and
multi-sensor data are required for a reliable condition mon-
itoring framework. Based on the degree of stress on motor,
its electrical and mechanical signatures can vary significantly
[16]. For example, an electric motor exhibits abrupt vibration
response and increased phase currents if a larger load is con-
nected to it. This does not imply the motor has deviated from
the healthy state. Monitoring multi-sensor data reduces the
chance of having a false alarm about the fault in motor. How-
ever, combining multiple sensor data and building a reliable
fault diagnosis framework is a challenging task as different
sensor data will evolve differently. Another challenge in using
multiple sensor data is that for a fault, one sensor data will
show anomalous behavior but the other might not show a
distinguishable change in trend. In this paper, we have taken
these challenges into consideration and built a multi-sensor
fault diagnosis framework for BLDC motor in the presence
of two different faults.

In this study, we have acquired and investigated the motor
vibration response to detect different faults at the early stage
for both stationary and nonstationary operations. Vibration
response shows reasonable fault patterns when the fault is
at a severe stage. However, extracting fault characteristics
at the incipient stage is a challenging task as the irregu-
lar frequency components are difficult to detect. To have a
better intuition about the weak fault frequencies, we per-
formed complete ensemble empirical mode decomposition
(CEEMD) technique. CEEMD is an improvement over the
empirical mode decomposition (EMD) introduced by Huang
et al. [17]. CEEMD overcomes the mode-mixing problem of
EMD method and minimizes reconstruction error produced
in EEMD method [18]. After the selection of proper IMF,
several features are extracted from the IMF that play the
role of health indicator (HI) in maintenance field. We have
considered HI extraction from time domain and frequency
domain, both to have a wide range of diagnostic information.
On the other hand, harmonic signature analysis is performed
onmotor current signals to detect winding short-circuit faults.
Zero sequence components also referred to as the third har-
monics of motor current is an indication of fault [19]. To diag-
nose motor faults, third harmonic magnitude and frequency
is computed and later, fault features are extracted from the
sensor signal.

HIs from three different health states namely, healthy state,
WSC fault state, and CRF fault state are classified using an
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artificial neural network (ANN) [20]. Due to the abundance
of big data and excellent performance, ANN is a widely used
method in the machinery fault diagnosis. HIs hold different
patterns for different health states which can be compared
to the pattern recognition problem in the deep learning field
[21]. Some of the applications of ANN in condition monitor-
ing field are electrical load forecasting [22], fault diagnosis
of rolling element bearings [23], transformer fault diagnosis
[24], bearing fault diagnosis [25], etc. Another feature of
ANN is its simple architectural design. It basically consists
of one input layer, one output layer, and one or more hidden
layers. However, the selection of hyperparameters is a chal-
lenging task as the model might get overfitted or underfitted.
In this study, model parameters of ANN are done by several
trial-and-error bases. After training the neural network, its
performance was tested and several performance metrics are
computed, and model performance is evaluated based on
those metrics. The goals of this study are:

(a) Decision making based on multi-sensor data.
(b) Create a feature set by preserving the multi-sensor fault

characteristics.
(c) Fault classification using a neural network approach.

The main goal of this study is to establish a multi-fault diag-
nosis framework usingmultiple sensor informationwhich can
be further used for different stator and rotor related faults of
BLDC motor.

II. PROPOSED METHOD
In this study, we propose a robust fault diagnosis framework
based on multi-sensor data fusion that will detect and clas-
sify BLDC motor faults at the incipient stage. Main aim of
this paper is early fault detection of BLDC motor for both
mechanical and electrical faults at the same time. A crack
is made on the rotor body to produce a mechanical fault
and two adjacent windings are shorted together to produce
an electrical fault. Motor current is used to FDI of a stator
related fault named winding short-circuit (WSC). And vibra-
tion signals are analyzed to detect rotor related fault called
crack rotor fault (CRF). Third harmonics of motor currents
are analyzed to detect irregularity in the stator coil operation.
Frequencies of these harmonics as well as the amplitude are
also determined to understand the fault magnitude. For the
vibration signals, signals are decomposed into IMFs using
CEEMD technique. CEEMD allows us to find the hidden
fault characteristics which is a difficult task to find by directly
analyzing the raw vibration signals. After CEEMD decom-
position, several features are extracted from the best-fit IMF
in time-domain and frequency-domain. Primary concern of
this study is to merge mechanical and electrical fault fea-
tures by combining fault characteristics from vibration and
current signals, respectively. Most appropriate features from
the current and vibration signals are chosen based on the
monotonicity score. Selected features are further reduced to
a 2-D feature space using the principal component analysis
(PCA) method. A combination of monotonicity score and

PCA allows us to efficiently classify the fault states by pre-
serving the dominating fault characteristics of both sensor
signals. A concise framework of the proposed method is
shown in Fig. 1.

III. RELATED THEORIES
A. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION
EMD is an adaptive signal processing technique that can
decompose a time series signal into corresponding orthog-
onal components called IMFs. It is a popular technique to
observe the hidden characteristics of a signal by decomposing
it into some mode functions and residuals. In EMD, a signal
is decomposed into corresponding intrinsic mode function
(IMF) and residual each having different characteristics. One
major drawback of EMD technique is that mode aliasing
problem. That is the mix of frequency components into dif-
ferent IMFs. In the field of fault diagnosis, this can lead
to erroneous approximation as we need to detect the fault
frequencies from sensor data. As mentioned earlier, EEMD is
introduced to improve the move aliasing phenomena in EMD
by adding Gaussian white noise to the original signal [26].
However, during the reconstruction, removal of this noise
leads to a larger computational time and reconstruction error.
To overcome these issues, a better decomposition method,
CEEMD is proposed which works with adaptive noise. Both
techniques work on a similar basis called sifting process.
CEEMD overcomes the mode-mixing problem with almost
zero reconstruction error [27].Major steps of a sifting process
are:

Step 1: Identification of all local minima and maxima
points of the signal x(t).

Step 2: Find the upper envelope, eu (t) and the lower enve-
lope, el (t).

Step 3: Calculate the mean envelope:

m (t) =
eu (t)− el(t)

2
(1)

Step 4: Obtain the primitive value of IMF as:

hk (t) = hk−l (t)− mk−l (t) (2)

Step 5: Store hk (t) as an IMF i(t) if it satisfies all the
conditions of an IMF.
Step 6: Compute residuals as:

ri (t) = xi (t)− IMF i(t) (3)

In step 5, the conditions of considering the output as IMF
are:
(a) The discrepancy between the number of extrema

and the number of zero-crossings must be either
equal or differ at most by one.

(b) At any point, the mean value of the IMF is zero.
In CEEMD, IMF is obtained by adding a white noise at
each stage of the IMF computation [28]. εi denotes the
noise coefficient at the ith level of decomposition where i =
1, 2, 3 . . . . . .N . The first IMF is computed same as the EEMD
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FIGURE 1. Proposed fault diagnosis architecture.

method and the residual of the first computation is shown in
(4).

ĨMF1(t) =
1
I

I∑
i=1

IMF i1 (t) = IMF1(t) (4)

r1 (t) = x (t)− ˜IMF1(t) (5)

Thus, the second IMF is computed as:

ĨMF2(t) =
1
I

I∑
i=1

E1(r1 (t)+ ε1E1(ωi(t))) (6)

r2 (t) = r1 (t)− ĨMF2(t) (7)

Here, Ek [�] operator defines the k th mode defined by the
EMDmethod. ωi(t) is the adaptive white noise added in each
stage of IMF computation. After the modes are computed and
necessary stopping criteria are met, the final signal can be
reconstructed using the following equation.

x (t) =
K∑
k=1

ĨMFk (t)+ Rk (t) (8)

B. ARTIFICIAL NEURAL NETWORKS
Ease in acquiring and handling big data has given neural
networks a boost in the field of machinery health assess-
ment. Compared to conventional machine learning algo-
rithms, ANNs have better accuracy for large datasets [29].

The concept of the ANN was established by mimicking
human brain operation where the neurons share information
throughout the neural connection tomake a decision. InANN,
there are several layers that are interconnected to map the
input and output. Basically, there are three layers in an ANN
architecture [30]. The first one is the input layer where the
ANN takes input data. The second one is hidden layer. In hid-
den layer, input data is taken and processed by some weight
computation. The third layer is the output layer, where the
weighted data is mapped with target neurons for decision
making. Internal weights can be optimized to better capture
the implicit mapping of input-output data.
To solve a classification problem, a set of pairs of

training data are fed into the ANN model. For a train-
ing set, {(x1, y1) , (x2, y2) , (x3, y3) . . . . . . . . . (xN , yN )}, xi
denotes the feature and yi denotes the label of ith feature. The
number of neurons in the input layer is equal to the number of
features that are to be trained in the ANNmodel. Each neuron
has a weight and the product of this weight and the input value
is transferred to the next neuron as an output. An activation
function is used to map the input values to the output of the
next neuron. There is a plethora of activation functions avail-
able for neural networks each having certain characteristics.
To train an ANN model, an effective and computationally
efficient activation function should be chosen. In this study,
rectified linear unit (ReLU) is used as activation function in
the hidden layers and sigmoid is used in the output layer.
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TABLE 1. Parameters for motor test.

A major concern in designing an ANN framework is
hyperparameter optimization. Selection of proper activation
function, depth of the network, loss function, dropout rate,
etc. largely influence the performance of the model [31].
These hyperparameters are chosen during the training stage
and based on the performance of prediction, these can be
optimized further. In a classification problem, several perfor-
mance measures can be used to evaluate model accuracy. For
example, precision, recall, F1-score, geometric mean, etc.

IV. EXPERIMENT DESCRIPTION
A. TEST RIG SETUP
A 2-pole 12 winding interior permanent magnet (IPM) type
BLDC motor is used in this study. BLDC motor is coupled
with a BLDC generator with the help of a mechanical cou-
pling. Since there is no mechanical connection between the
stator and rotor, the entire commutation of BLDC motor is
done by means of electromagnetic induction between the sta-
tor and rotor. Stator is a winding of conditioner coils and rotor
is a permanent magnet. Based on the pole position of rotor,
opposite poles are created in the adjacent stator windings to
attract the rotor’s pole. Thus, the rotor tries to align with the
stator pole position which is controlled externally by supply-
ing a pulse width modulated (PWM) input. A motor driver
is used to sense the rotor position and supply corresponding
polarity current to the stator windings. An embedded hall
effect sensor (HES) in the motor sense the rotor position, and
the motor driver alters the line currents’ polarity according to
the HES signal. It is understandable that any irregularity in
stator or rotor operation will disturb the normal operation of
BLDC motor and affect the desired output. These anomalies
can be detected by monitoring and analyzing motor current,
vibration, stator coil temperature, generated output, etc.

FIGURE 2. Sifting process for IMF computation in EMD.

In this study, we are mainly focused on motor vibration
and current signals. Vibration signals are acquired using an
integrated electronics piezotronics (IEPE) sensor mounted
on top of it and the current signal for all three phases was
acquired by using a direct line-to-line connection. A chassis
NI cDAQ-9178 is used from national instruments (NI) with
different embedded modules for different data acquisition.
A brief description of the apparatus used in this study is
presented in Table 1.

The test rig consists of a G-M setup where the motor is
coupled with a generator through a mechanical coupling.
A regulated constant power DC source is used to supply
voltage to the motor driver. Motor driver then converts the
DC into a PWMwaveform and delivers it into the three-phase
stator winding. Some external loads are connected to the gen-
erator end to create different levels of loadings. Vibration and
current data are acquired continuously and stored in the hard-
disk drive. A test bench photo is presented in Fig. 4 showing
the sensors and DAQ setup.

B. FAULT DESCRIPTIONS
Several electrical and mechanical faults can take place in
a BLDC motor. Some of the commonly occurring rotor
faults are bent shaft, broken edge, misalignment, etc. Most of
these faults directly or indirectly interrupt the magnetic field
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FIGURE 3. Proposed ANN architecture.

FIGURE 4. Test rig setup for motor test.

distribution of the permanent magnet, which causes imbal-
ance in electromagnetic induction. Imbalanced induction pro-
duces several attributes in motor operation including abrupt
vibration change, distorted phase currents, local heating,
torque reduction, noise emission, etc. Primarily, mechanical
faults are responsible for early vibration change and electrical
faults produce inconsistent line currents [32].

In this study, we have investigated both the stator and
rotor faults at the same time. A rotor fault is introduced by
creating a circular crack with a diameter of 3.2 mm and
depth 1.6mm. On the other hand, different types of short-
circuits such as: inter-turn, coil-to-ground, coil-to-coil, etc.
are the most frequent faults that take place in the stator.
For stator fault, a winding short circuit is created by joining
phase A and phase C. It should be noted that each four coil
windings are connected internally to create a single phase
in the stator part. Hence, there are three different phases
each having four common coils connected together. All three
phases are arranged in a star configuration having a common
neutral node. During each step of commutation, two phases
are energized with a positive and negative current where the

TABLE 2. BLDC motor commutation logic.

third phase is kept unenergized. For example, in Fig. 5, phase
A is energized with a negative polarity current and phase C is
energized with a positive polarity current and phase B is kept
neutral. On the next step commutation, phase current polarity
is altered according to the pole position of rotor. A phase-
winding commutation logic for BLDC motor is presented
in Table 2. Due to this stepwise commutation, a fault in a
BLDC motor leaves diagnostic information in its current and
vibration signals. Our aim is to locate and isolate both types
of faults by analyzing motor current and vibration signals.

V. RESULT ANALYSIS
A. FAULT DETECTION
As mentioned earlier, stator operation is the driving factor for
a proper electromagnetic induction in BLDC motor opera-
tion since there is no mechanical commutator. Motor current
signature carry significant diagnostic related information to
detect and diagnose stator and rotor related faults in BLDC
motors. MCSA can be done in various ways depending on
the problem and solution. Such as- harmonic analysis, vector
space analysis, wavelet analysis, etc. In this study, we chose
to perform harmonic analysis as it is easy to compute and
studies have shown it can diagnose different stator and rotor
related faults efficiently [8], [19]. Harmonics are the multi-
plied fundamental frequency (fn) components in a sinusoidal
waveform. In an ideal case, a sinusoidal wave should consist
of only one frequency, fn. However, due to the diverse and
intricate operating conditions, different harmonics can be
seen in real life signals. Harmonics in an electrical machine
signal can be categorized into three class:

(a) Positive sequence: These harmonics are responsible for
forward rotation.

(b) Negative sequence: These harmonics cause reverse
rotation of synchronous direction causing the motor to
slow down.

(c) Zero sequence: These harmonics do not disturb the
rotation of motor, but, adds current to the neutral node
of stator coils which causes excessive heating and dis-
torted line currents.
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FIGURE 5. CAD illustration of motor faults. (a) Stator winding short-circuit (WSC). (b) Rotor crack fault (CRF).

Therefore, presence of third harmonics in the motor current
spectra is considered as an irregular stator operation [35].
As the motor phases are organized in a Y-configuration, third
harmonic indicates a current flow in the neutral junction
of stator windings. This current initially produces excessive
heating in the stator coils and gradually further irregularities
in the stator operation. Also, as per the Kirchhoff’s current
law (KCL), the amount of current entering the node should be
equal to the amount of current leaving that node. The presence
of third harmonic component also indicates a violation of
KCL [19]. In this study, we took this characteristic as a
diagnostic feature to detect and localize the faults in BLDC
motor for both, stator, and rotor faults. Motor current signals
and harmonics are presented in Fig. 6. It can be seen that in
healthy state operation, there is no visible third harmonics in
current spectra. However, for WSC and CRF faults, the pres-
ence of third harmonics is observedwhich indicates an irregu-
larity in motor operation. The fundamental frequency for the
WSC fault signal is 300 Hz and the harmonics are located
at 1.18 kHz and 2.36 kHz with a magnitude of 1.03 and
0.30, respectively. On the other hand, for CRF fault signal,
third harmonics are found at 1.48 kHz and 2.28 kHz with a
magnitude of 0.40 and 0.14, respectively. WSC fault directly
affects the stator current operation and therefore the harmonic
peaks are higher. In case of CRF fault, motor current is
affected by the irregular magnetic flux distribution produced
by the opposite magnetic pole in permanent magnet (rotor).
Therefore, the effect of harmonic distortion is smaller com-
pared to the WSC fault.

B. FEATURE EXTRACTION AND SELECTION
Motor vibration signals are decomposed using the CEEMD
approach into five IMFs. Each IMF comprises unique fault

patterns and shows distinguishable patterns which are dif-
ficult to detect using the sensor vibration signals. CEEMD
decomposition of signals are shown in Fig. 7. Pearson cor-
relation coefficient, ρ is computed to find the best fit IMF
and compute features that serve the purpose of health indi-
cators (HIs). Pearson correlation coefficient can be defined
as (9). In case of healthy state signal, IMF-2 is selected as
with highest correlation, ρ = 0.82 to the sensor signals.
For faulty state signal, IMF-3 is selected which has ρ =
0.86. A portion of vibration signals with 10,000 samples
are analyzed, and decomposition is shown in Fig. 7. Mag-
nitude spectrums for the sampling frequency (25.6 kHz) are
shown in the right column of each time-domain signals.
In case of IMFs, frequency response of more centered to
the fundamental frequency region making it easier to cap-
ture the diagnostics related information in the frequency
domain.

r =

∑n
i (xi − x) (yi − y)√∑n

i (xi − x)
2
√∑n

i (yi − y)
2

(9)

Several features are extracted from the motor current and
vibration signals that serve the purpose of HI. Mathematical
representation of the features and their physical significance
for system condition monitoring are presented in Table 3.
A further description of the features can be found in [33],
[34]. Features, F1-F8 are extracted from the time domain
signal whereas, F9-F12 are computed from the frequency
domain. Same feature is extracted from the time domain
and frequency domain since the goal of this study is to
fuse multiple sensor data. A combination of multidomain
HIs ensures a reliable and detailed health state estimation
of motor.

VOLUME 9, 2021 9435



T. A. Shifat, J.-W. Hur: ANN Assisted Multi Sensor Information Fusion for BLDC Motor Fault Diagnosis

FIGURE 6. Motor current signature analysis.

FIGURE 7. CEEMD decomposition of vibration signals. (a) Healthy signal and IMFs, (b) FFT of the healthy signal and IMFs, (c) Faulty signal and IMFs, (d)
FFT of the faulty signal and IMFs.

C. FAULT CLASSIFICATION
Wehave used amonotonicity test to quantify the fault patterns
between HIs extracted from current and vibration signals.
Monotonic score is ranged from 0 to 1 where 0 indicates
the feature is non-monotonic and 1 indicates the feature is
perfectly monotonic [36]. Monotonic score can be defined as
(10) where dF is the differential of feature series and T is the

length of features. A highermonotonic score indicates the fact
that it will show distinguishable diagnostic characteristic to
classify the faulty states accurately. The monotonicity scores
of current and vibration features are shown in Fig. 8. A feature
having a higher monotonic value is considered to select the
corresponding feature set. For example, for F1 feature, vibra-
tion shows a better monotonic trend compared to current. So,
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TABLE 3. Features computed from vibration and current signals.

for the postprocessing, vibration feature set is selected for
F1 feature.

mon =

∣∣∣∣dF > 0
T − 1

−
dF < 0
T − 1

∣∣∣∣ (10)

Selected features from monotonic trends are further reduced
based on correlation. The threshold for independence was
set to be 0.50. Features having a correlation score more than
0.50 were eliminated and thus we chose a total of 8 features.
In order to have better accuracy inmodel predictions, selected
features were further reduced to a 2-dimentional principal
component analysis (PCA) space. Additional scaling or nor-
malization is avoided during the training of the ANN model.
Number of hidden layers chosen for themodel is 2where each
layer comprises of 512 neurons.

As we chose a large number of neurons, model can get
overfitted which is a commonly occurring phenomenon in
neural nets. To avoid overfitting, we have used a regular-
ization method named ‘‘Dropout’’, which randomly ignores
some output of the previous layer neurons by temporarily
removing it from the network. The Dropout rate set for train-
ing ANNwas 0.15. Several values for different hyperparame-
ters were tested for ANN model. Based on the computational
time and accuracy, the best ones are chosen for training. A list
of model parameters is presented in Table 4.

70% of the total data were used as the training samples and
15% of these samples were used as validation set to computed
validation accuracy during the training stage. The learning
curves for 1000 epochs are presented in Fig. 9. It took around
400 epochs for the model to reach to a stable performance
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TABLE 4. ANN model parameters.

FIGURE 8. Feature selection based on monotonicity.

TABLE 5. Performance metrics of ANN model.

point. To avoid overfitting due to a large number of neurons
in the hidden layers, we have used dropout to randomly
disable some neurons during the training stages. This allows
the model to randomly deactivate some neurons during the
forward propagation computation of model training stage.
In the output layer, a SoftMax activation function is used
that computes the probability of the desired class. After a
satisfactory training step, the trained model is used to predict
the test data and classify. Among the 1800 healthy label fea-
tures, 1786 were predicted correctly and 12 were predicted as

FIGURE 9. ANN model loss and accuracy for different epochs.

WSC fault and 1 as CRF fault. The largest misclassification is
seen for WSC fault classification where 1731 were classified
accurately, and 11 were predicted as healthy samples and
61 were predicted as CRF fault samples. On the other hand,
in case of CRF fault, 1738 samples were predicted accurately,
and 57 were predicted as WSC fault samples and 3 as healthy
samples. It is understandable that healthy and CRF features
are well oriented to be classified separately. However, WSC
fault features have some overlapping with healthy and CRF
fault features, making some inaccurate predictions in test
data. If we look at the confusion matrix of the train data,
a similar thing can be observed for WSC fault. This is due
to the cyclostationarity behavior of the CRF fault signal. Due
to the crack in rotor, each rotation leaves an impulsive on
vibration of BLDC motor. These vibration impulses result in
larger distortions and abruptly changing frequency responses
which are captured as different HIs during feature extraction.
To better understand the performance of the ANN model,
we have computed several performance metrics based on the
predicted values and actual values. Mathematical expressions
of the metrics are shown in (11)- (14):

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1 = 2×
Precision× Recall
Precision+ Recall

(13)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(14)
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FIGURE 10. Confusion matrix for ANN predictions. (a) Train data, (b) Test
data.

where,
TP = True positive
TN = True negative
FP = False positive
FN = False negative
Accuracy indicates the overall performance of the model.

For test data set, ANN achieved an accuracy of 98%. As
mentioned on Section III, CEEMD is used in this study to
decompose the vibration signals into corresponding IMFs.
In literature, there are several other mode function decom-
position methods such as EMD, EEMD, etc. To better under-
stand the outcome of CEEMD, we have compared the model
accuracy for other decomposition methods too. The com-
parison result is presented in Table 6. CEEMD is a time-
consuming algorithm compared to other algorithms due to
the adaptive noise addition in each IMF computation. But
the ANN accuracy achieved by the CEEMD decomposition

TABLE 6. Performance comparison with other methods.

outperforms other decomposition techniques. The major con-
tribution of CEEMD technique is that equal distribution of
mode functions in each iteration. In the case of EMD and
EEMD, the most significant IMF is the IMF-1. EMD fails
to capture fault characteristics due to the nonstationary fault
characteristics and EEMD causes the IMFs to lose fault infor-
mation during the reconstructions. CEEMD overcomes these
drawbacks by adding an adaptive noise at each stage of IMF
computation and hence an improved classification accuracy.

As the commutation is by means of electromagnetic induc-
tion, stator coil and rotor are prone to failures in a BLDC
motor. Outcomes of this study is the accurate detection and
identification of multiple faults in BLDCmotor using a single
approach, ANN. Using a neural network approach further
justifies the robustness of the proposed framework as it can
be deployed for a larger amount of data.

VI. CONCLUSION
Fault detection and identification (FDI) is important for
a rotary machinery to ensure maximum uptime in indus-
trial applications. Negligence of proper condition monitoring
approach can lead to frequent shutdown of the system and
gradual decrease in the production. In many cases, a faulty
component can cause for catastrophic failures that can be
detrimental to humans and environment. This paper presents a
fault detection and identification framework consideringmul-
tiple faults in BLDC motors. Artificial faults were produced
in rotor and stator part since these two are the most vital
elements of a BLDC motor. Faults were detected by motor
current signature analysis where themagnitude and frequency
of third harmonic components were computed. Later, hid-
den fault characteristics were extracted from the vibration
and current signals. Vibration signals were decomposed into
mode functions to better isolate the fault related information.
An improved version of EMD technique, CEEMD is used
to decompose the signals and fault features were extracted
from a single IMF. Several features were computed from
the current and vibration signals, and the most significant
ones are selected based on monotonicity, correlation and then

VOLUME 9, 2021 9439



T. A. Shifat, J.-W. Hur: ANN Assisted Multi Sensor Information Fusion for BLDC Motor Fault Diagnosis

reduced using the PCA. It is found out that CEEMDmethods
obtains a higher classification accuracy compared to other
decomposition techniques. Also, the ANN model was able
to successfully classify three different health states with an
accuracy of 98%.

In this study we have proposed a fault diagnosis approach
of BLDC motor using multi sensor information fusion. This
study can be further extended to modeling a degradation
trend from healthy state to faulty state using a deep learning
regression model. That will allow to estimate the remaining
useful life of BLDC motor at a given instance when a fault
takes place.
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