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ABSTRACT Due to the high dependence of economic and social development on power systems, the demand
for reliable operation of power systems is increasing. Considering the popularity and widespread installation
of smart meters, accurate system/node reliability indexes can be obtained. The inverse problem of reliability
evaluation (IPRE) refers to the use of known system/node reliability indexes to obtain component reliability
parameters. In this paper, a novel method of solving the IPRE is proposed. First, based on a nonsequential
Monte Carlo (NSMC) method, analytical expressions for system reliability indexes in terms of component
reliability parameters are derived, and then, the nonlinear equations of the IPRE are constructed. Second,
a high-order polynomial approximation based on the conjugate gradient algorithm is used to calculate
the unknown component reliability parameters, and the results are compared with those obtained using
traditional neural networksmethod. Finally, a continuationmethod is used to correct the errors of the obtained
component reliability parameters. Three cases, namely, the IEEE 1979 Reliability Test System (IEEE RTS-
79), the Roy Billinton Test System (RBTS) and the Chuanyu power system in Southwest China, are used to
test the method proposed in this paper to verify its feasibility and accuracy.

INDEX TERMS Inverse problem of reliability evaluation, nonsequential Monte Carlo method, high-order
polynomial approximation, continuation method.

I. INTRODUCTION
With the increasing proportion of complex power electronic
equipment in power systems, the reliable and secure oper-
ation of such systems has been greatly challenged [1], [2].
Finding the weak links in a power system for further invest-
ment and reinforcement is an effective means of improving
the reliability of the system. Accurate component reliability
parameters can serve as the basis for guaranteeing the secure
operation of such a system under the N-1 scenario. How-
ever, if the component reliability parameters are incorrect,
it may be difficult to balance the economy and safety of the
system [3].

Component reliability parameters are usually obtained
via point estimation from historical statistical data [4], [5].
If the historical statistical data are inaccurate, the esti-
mated component reliability parameters may be incorrect.
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Unfortunately, considering the shortage of component out-
age data and the subjective nature of manual records,
the available component failure statistics are often inac-
curate, hindering efforts to realize precise investments in
power system planning [6]. Therefore, it is very important
to accurately calculate or correct the component reliability
parameters.

The concept of power system reliability evaluation was
clearly defined in [3] in terms of the quantitative assessment
and risk analysis of random fault events affecting a large
power grid. The concept of the inverse problem of reliability
evaluation (IPRE) was first proposed in [7]; the objective of
this problem is to use known system/node reliability indexes
such as the loss of load probability (LOLP), the loss of
load frequency (LOLF) and the expected energy not supplied
(EENS) to obtain the unknown component reliability param-
eters and then strengthen components with low reliability to
improve the reliability of the whole system. With the increas-
ing popularity of smart meters, it has become feasible to
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obtain accurate node/system data, which can lay a foundation
for solving the IPRE.

At present, studies on the IPRE are rare. The existing
relevant studies mainly include investigations of reliability
parameter correction [8]–[10] and reliability parameter opti-
mization [11], [12]. However, relevant research on the estab-
lishment of accurate mathematical models and the realization
of accurate calculations is still lacking.

The IPRE is constructed as a set of nonlinear equations
that are analytical expressions for system reliability indexes
in terms of component reliability parameters. In [7], the non-
linear equations of the IPRE were established based on the
enumeration method. However, the applicability of the enu-
meration method is limited by the scale of the system, and
the computational burden is often enormous for a large-scale
power system. In [13], a mathematical model of the IPRE
based on a sequential Monte Carlo method was proposed.
However, the sampling rules of the sequential Monte Carlo
method are complex and require a large amount of original
data, resulting in a high time cost.

Traditional methods excessively depend on the initial
values and have poor accuracy when solving the nonlin-
ear equations of the IPRE. The Newton method and the
Gauss–Seidel method have been widely used in power flow
calculation [14], [15]. However, the mathematical model of
the IPRE is highly nonlinear, and improper initial values will
lead to nonconvergence. Artificial neural networks are effec-
tive and popular methods of nonlinear approximation [16],
but their performance is highly dependent on the selection of
the training samples, which may lead to concerns about the
credibility of the approximation results.

Considering the accuracy requirements of the IPRE and the
shortcomings of traditional algorithms, this paper proposes a
novel method of solving the IPRE. The contributions of this
paper are as follows:

1. First, analytical expressions for the IPRE are derived
based on a nonsequential Monte Carlo (NSMC) method.

2. By means of a high-order polynomial approximation
method, a set of high-order polynomials equivalent to the
nonlinear equations of the IPRE is derived, and the conjugate
gradient algorithm is used to calculate the fitting coefficients,
yielding solutions with improved accuracy compared with
those obtained using traditional methods.

3. A continuation method is proposed to modify some
of the component reliability parameters with large errors in
order to obtain accurate final results.

The remainder of this paper is organized as follows.
In Section II, analytical expressions for the IPRE are derived
based on an NSMC method. Section III introduces the
high-order polynomial approximation method based on the
conjugate gradient algorithm. In Section IV, the continuation
method for correcting the deviations in the values of some
component reliability parameters is presented. Section V
presents the use of three test systems, namely, the IEEE
1979 Reliability Test System (IEEE RTS-79), the Roy
Billinton Test System (RBTS) and the Chuanyu power grid,

to verify the accuracy and feasibility of the proposed method.
Section VI provides a summary of the whole paper.

II. ANALYTICAL MODEL OF THE IPRE BASED ON A NSMC
METHOD
Based on the conditional probability criterion, unknown com-
ponent reliability parameters can be extracted via an NSMC
process; then, an analytical model of the system reliabil-
ity indexes in terms of the unknown component reliability
parameters can be established. Suppose that each component
has two states, namely, the normal state and the fault state, and
that the fault states of different components are independent
of each other. For NC components with unknown parameters,
there are a total of M = 2NC possible combined states. Let
Fj denote the j-th of these M combined states. These M states
are mutually exclusive and constitute a complete event group
in the state space.

The formula for calculating the probability P(Fj) of the
combined state Fj of the components with unknown parame-
ters is expressed as shown in (1):

P(Fj) =
∏
g∈3j,u

Ag
∏

h∈3j,d

Uh (1)

where Ag =
µg

µg + λg
,Uh =

λh

µh + λh
(2)

Here, Ag and Uh are the availability rate of component
g and the unavailability rate of component h, respectively,
and 3j,u and 3j,d are the sets of components with unknown
parameters that are in the normal state and the fault state,
respectively. For fault events generated through enumeration,
the system index EENS can be obtained as shown in (3):

EENS =
∑
s∈�

H (s)P(s) (3)

where H (s) represents the loss of load and � represents the
set of all load-loss events in the system. Then, based on the
combined state of the components with unknown parameters,
(3) can be

EENS =
∑

s∈�∩π1

H (s)P(s)+
∑

s∈�∩π2

H (s)P(s)

+ · · · +

∑
s∈�∩πM

H (s)P(s) (4)

In (4), πj represents the set of component fault events for
which the associated combined state of the components with
unknown parameters is Fj. Considering the full probability
and conditional probability formulas, (4) can be rewritten as
shown in (5):

EENS = P(F1)
∑

s∈�∩π1

H (s)P(s|F1)

+ · · · + P(FM )
∑

s∈�∩πM

H (s)P(s|FM ) (5)

where

Lj =
∑

s∈�∩πj

H (s)P(s|Fj), j = 1, 2, . . . ,M (6)
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(5) is the analytical expression for EENS obtained through
event enumeration. For failure events generated via the
NSMC approach, the corresponding EENS expression is
shown in (7):

EENS =
1

Nsamp

∑
s∈9

H (s) (7)

where Nsamp represents the total number of samples drawn
and ψ represents the set of all load-loss events generated via
sampling.

Similar to the derivation process for the analytical EENS
model based on the state enumeration method, (7) can be
divided into a sum of M terms:

EENS =
1

Nsamp

 ∑
s∈9∩π1

H (s)+
∑

s∈9∩π2

H (s)

+ · · · +

∑
s∈9∩πM

H (s)

 (8)

Since (8) is a sample-based estimate of the EENS index,
theoretically, when the number of samples is sufficiently
large, the EENS values obtained via the state enumeration and
NSMC methods should be equal. By combining (3) and (7),
(9) can be obtained:

1
Nsamp

∑
s∈9

H (s) =
∑
s∈�

H (s)P(s) (9)

Similarly, by comparing the terms on the right-hand sides
of (5) and (9), (10) can be obtained:

P(Fj)Lj =
1

Nsamp

∑
s∈9∩πj

H (s), j = 1, 2, . . . ,M (10)

Lj =
1

P(Fj)
×

1
Nsamp

×

∑
s∈9∩πj

H (s), j = 1, 2, . . . ,M

(11)

(11) is the calculation formula for Lj based on the NSMC
method. In summary, the analytical expression for the EENS
index based on the NSMC process is given in (12):

EENS =
M∑
j=1

P(Fj)Lj =
M∑
j=1

(
∏
g∈3j,u

Ag
∏

h∈3j,d

Uh)Lj (12)

Similarly, an expression for LOLF can be written as shown
in (13) based on the enumeration method, and (13) can then
be divided into a sum of M terms as shown in (14).

LOLF =
∑
s∈�

P(s)R(s) (13)

LOLF =
∑

s∈�∩π1

P(s)R(s)+ . . .+
∑

s∈�∩πM

P(s)R(s) (14)

Based on the NSMC method, the expression for LOLF is
as follows:

LOLF =
1

Nsamp

∑
s∈ψ

R(s)

=
1

Nsamp
[

∑
s∈ψ∩π1

R(s)+ . . .+
∑

s∈ψ∩πM

R(s)] (15)

In (15), R(s) represents the sum of the transfer rates of
the system components, and Rj is the sum of the transfer
rates of these components when the combined state of the
components with unknown parameters is Fj, which can be
obtained by comparing (16-a, b and c):

1
Nsamp

∑
s∈ψ∩πj

R(s) =
∑

s∈�∩πj

P(s)R(s) (16-a)

Ns∈ψ∩πj
Nsamp

Rj = P(Fj)Rj
∑

s∈�∩πj

P(s|Fj) (16-b)

1
Nsamp

∑
s∈ψ∩πj

Ro(s) = P(Fj)
∑

s∈�∩πj

P(s|Fj)Ro(s) (16-c)

Here, Ro(s) represents the sum of the transfer rates of
the components with known parameters for system event s.
From (16), the analytical expression for LPLF based on the
NSMC method can be obtained as shown in (17):

LOLF =
M∑
j=1

[P(Fj)RjT1,j + P(Fj)T2,j] (17)

where

RJ =
∑
g∈3j,u

−λg +
∑

h∈3j,d

µh (18-a)

T1,j =
∑

s∈�∩πj

P(s|Fj) =
Ns∈ψ∩πj
NsampP(Fj)

(18-b)

T2,j =
∑

s∈�∩πj

P(s|Fj)Ro(s) =

∑
s∈ψ∩πj

Ro(s)

NsampP(Fj)
(18-c)

The derivation process for the system index LOLP is sim-
ilar to that for EENS. The analytical expression for LOLP is
given in (19):

LOLP =
M∑
j=1

P(Fj)Kj =
M∑
j=1

(
∏
g∈3j,u

Ag
∏

h∈3j,d

Uh)Kj (19)

where

Kj =
Ns∈ψ∩πj
NsampP(Fj)

(20)

(12), (17) and (19) are the analytical expressions for the
reliability indexes in terms of the unknown reliability parame-
ters of the components. Based on these analytical expressions,
the system reliability indexes can be quickly obtained, and a
large number of accurate data samples can be used to derive
high-order polynomial approximations.

III. METHOD FOR OBTAINING UNKNOWN COMPONENT
RELIABILITY PARAMETERS BASED ON HIGH-ORDER
POLYNOMIAL APPROXIMATION
When solving the nonlinear equations of the IPRE, tradi-
tional numerical methods excessively depend on the initial
values, which may lead to nonconvergence. In this paper,
a high-order polynomial approximation approach is used
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to solve the IPRE. Suppose that the component reliability
parameters are regarded as the independent variables xi,
the system reliability indexes are regarded as the dependent
variables y, and the approximation coefficients are denoted by
a with appropriate subscripts; then, the nonlinear equations
of the IPRE can be approximated in the form of the following
n-order polynomial (21):

y = a10 + a11x1 + a12x21 + . . .+ a1nx
n
1

+ . . . aj0 + aj1xj + aj2x2j + . . .+ ajnx
n
j

+

f ,g=j;p,q=n∑
f ,g,p,q=1

akx
p
f . . . x

q
g (21)

In the least squares method, the objective is to minimize
the sum of the squares of the errors between the fitted values
and the actual values, as shown in (22):

minϕ(x) = ‖G1a− H‖2 (22)

In (22), a0 is the initial value of a, and G = ∇y(a, x),
1a = a − a0, and H = y − y(a0, x). Then, (23) can be

obtained.

GTG1a− GTH = 0 (23)

The above equation (23) is called the normal equation
of (22) in mathematical terminology. Based on (23), the fit-
ting coefficient can be obtained through an iterative solution
process as shown in (24-a and b):

1a = (GTG)−1GTH (24-a)

a = a0 +1a (24-b)

From (24-a and b), it can be found that the initial value
of the fitting coefficient α will affect the final result, and
an unsuitable value of α may lead to fitting deviations or
even failure. To avoid the occurrence of the above situation,
this paper takes the fitting coefficient α as the search direc-
tion D, and a one-dimensional search is carried out along the
direction D.

In addition, the conjugate gradient algorithm is used to
improve the computational efficiency. A new functional is
defined in this paper, as shown in (25):

L(D) =
1
2
[GD,D]− [H ,D] (25)

where [x, y] denotes the inner product operation, i.e., [x, y] =
x1y1 + x2y2 + x3y3 + . . .+ xnyn.
The gradient of the objective function L(D) can be

expressed as follows:

∇L(D) = GD− H (26)

Let GD − H = −γ , where γ represents the residual on
the negative gradient of L(D). Therefore, s search along the
direction D can yield (27) and (28):

a = a0 + ωminD (27)

ωmin : L(a0 + ωD) = min (28)

By substituting (27) into (25), (29) can be obtained. Then,
equation (30) can be found.

L(a0 + ωD) =
1
2
[G(a0 + ωD), a0 + ωD]− [H , a0 + ωD]

(29)
∂L(a0 + ωD)

∂ω
= ω[GD,D]− [γ,D] (30)

The minimum iteration step ωmin is calculated as
shown in (31):

ωmin =
[γ,D]
[GD,D]

(31)

(25)-(31) constitute the mathematical description of the
conjugate gradient algorithm. In the k-th step of iteration, the
following equations apply:

ak+1 = ak + ωkDk (32)

where

ωk : L = min(ak + ωkDk ) (33-a)

ωk =
∇L(ak )TDk
DTk GDk

(33-b)

γ =
1L(ak+1)TGDk

DTk GDk
(33-c)

Dk+1 = −∇L(ak+1)+ γkDk (33-d)

Based on the above theory, the algorithm flow of the con-
jugate gradient algorithm in the high-order nonlinear polyno-
mial approximation model is shown in TABLE 1.

TABLE 1. Flow of the conjugate gradient algorithm.

IV. CONTINUATION METHOD FOR MODIFYING THE
NUMERICAL SOLUTION TO THE IPRE
The method proposed in Section III can be used to approx-
imately obtain the component reliability parameters. In this
section, considering the need for more accurate component
reliability parameters in some engineering cases, a contin-
uation method is proposed to modify component reliability
parameters with large deviations. The results obtained via the
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high-order polynomial approximation method are used as the
initial solutions to the nonlinear equations of IPRE, and then,
the deviations are iteratively modified via the continuation
method.

A. TECHNIQUE AND THEORY OF THE CONTINUATION
METHOD
To make the iterative sequence {xk} converge to the true
value x∗, traditional methods of solving nonlinear equations,
such as the Newton method, require that the initial value x0
and the true value x∗ are sufficiently close to each other.
However, it is difficult to find an initial value for the iterative
solution process that satisfies the requirements for practical
calculation, especially when solving equations with a high
degree of nonlinearity. In contrast, a continuation method has
the advantages of a strong convergence ability and indepen-
dence of the initial values. Therefore, in this paper, a continu-
ation method is used to modify the deviations of the solutions
to the IPRE.

In the continuation method, a continuation parameter t is
introduced into the considered problem, where t ∈ [0, 1].
A cluster of mappings H(x, t) : D× [0, 1] ⊂ Rn+1 → Rn is
constructed, and the original mapping F is embedded into the
mapping cluster H , so that ∀x ∈ D, H satisfies the following
conditions (34):

H(x, 0) = F0(x),H(x, 1) = F(x) (34)

where x0 is the solution to the equation F0(x) = 0, which
can be easily obtained, and the equation H(x, 1) = 0 repre-
sents the original nonlinear equations. Thus, the problem is
transformed into the problem of solving equation (35). (35)
is called a homotopic equation, and the function x(t) is the
solution function of equation system (35).

H(x, t) = 0, t ∈ [0, 1], x ∈ D (35)

The core of the continuation method is that the domain
of the continuation parameter t ∈ [0, 1] is divided into N
segments, where N is the number of continuation steps.

H j = H(x, tj) = 0, 0 = t0 < . . . < tj < . . . < tN = 1 (36)

Taking the solution x∗j as the initial value for the next
equation H j+1 = 0, if tj+1 − tj is sufficiently small, then x∗j
can be regarded as an approximate solution for x∗j+1, meaning
that the iterative process has converged. Thus, x∗j is the final
solution to the original equations.

B. ITERATIVE FORMULAS FOR AND FLOW OF THE
CONTINUATION METHOD
The aim of the continuation method is to provide good initial
values for a conventional algorithm to solve the nonlinear
equations. Therefore, it is necessary to take the solution
obtained via the continuation method as the initial values
and then use another conventional algorithm, such as the
Newton method, to continue the iterative process until the
solution finally converges to the true values. If the number

of continuation steps is N , then the iterative formulas for the
continuation method are as shown in (37):
x1 = x0 − h[J (x0)+ aI ]−1F(x0)

xk+1/2 = xk +
1
2
(xk − xk−1)

xk+1 = xk − h[J (xk+1/2)+ a(1− t3k+1/2)I ]
−1
× [F(x0)

−3at2k+1/2(x
k+1/2

− x0)], k = 1, · · · ,N − 1
(37)

After the first iteration of the continuation method,
the Newton method can be used to continue the iteration:

xk+1 = xk − [J (xk )]−1F(xk )k = N ,N + 1, · · · (38)

where h = 1/N , tk+1/2 = (k + 1/2)h, and J (x) is the
Jacobian matrix of the mapping F(x). a is called the non-
singular control parameter, which is used to deal with the
singular case of the matrix J (x) during the iterative process,
and I is the identity matrix with dimensions of n × n. When
using (37) for iterative calculation, the singular problem for
the matrix J (x) can be solved by automatically controlling the
nonsingular parameter a. TABLE 2 shows the algorithm flow
of the continuation method.

TABLE 2. Flow of the continuation method.

V. CASE STUDY
In this section, three test systems, namely, the IEEE
RTS-79, the RBTS and the Chuanyu power system in South-
west China, are used to verify the feasibility and accuracy
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of the method proposed in this paper. The annual load curve
of the IEEE RTS-79 is used for each test system, and the
NSMC method is used to calculate the reliability indexes of
the systems and nodes.

FIGURE 1. Topology of the IEEE RTS-79.

FIGURE 2. Topology of the RBTS.

As shown in Fig. 1 and Fig. 2, the IEEE RTS-79 consists
of 33 units, 33 transmission lines and 5 transformer branches.
The peak load is 2850 MW, and the installed capacity is
3405 MW. The RBTS consists of 11 units and 9 transmission
lines. The peak load is 185 MW, and the installed capacity
is 240 MW. The Chuanyu power system consists of 64 units
and 173 transmission lines (voltage levels of 500 kV and 220
kV), with a peak load of 9732 MW and an installed capacity
of 10684 MW.

A. CASE A: ACCURACY OF HIGH-ORDER POLYNOMIAL
APPROXIMATION BASED ON THE CONJUGATE
GRADIENT ALGORITHM
In this section, four traditional machine learning algorithms,
namely, a feedforward neural network with a single hidden
layer (FNN(1)), a feedforward neural network with three

hidden layers (FNN(3)), a radial basis function neural net-
work (RBFNN) and a convolutional neural network (CNN),
are used for comparison with the high-order polynomial
approximation based on the conjugate gradient algorithm
proposed in this paper. The FNNs were trained via the back-
propagation process based on the Levenberg-Marquardt algo-
rithm, and for the CNN, the Adam algorithm was used for
training. To solve for n reliability parameters, the numbers
of neurons in the three hidden layers of FFN(3) were set
to 3n, 2n and 1.5n, respectively, from the first to the last
layer. The CNN contained two convolutional layers and two
fully connected layers. The numbers of neurons in the first
and second fully connected layers were set to 3n and 2n,
respectively. The number of training epochs was set to 2000.

TABLE 3 describes the known system/node reliability
indexes and the unknown component reliability parameters
in the three test systems.

TABLE 3. Known and unknown parameters of the three test systems.

FIGURE 3. Relationship between fitting order and correlation coefficient.

When the high-order polynomial approximation method
is used, a higher order will yield more accurate results.
Fig. 3 shows the relationship between the fitting order N and
the correlation coefficient R. As the value of the fitting order
N increases, R approaches 1, indicating a better approxima-
tion effect.
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TABLE 4. Calculation results for six reliability parameters in the
ieee rts-79.

TABLE 5. Calculation results for six reliability parameters in the rbts.

TABLE 6. Calculation results for six reliability parameters in the chuanyu
test system.

TABLES 4, 5 and 6 show the calculation results for each
test system obtained using the four traditional machine learn-
ing algorithms and the method proposed in this paper.

As shown in TABLES 4, 5 and 6, the high-order polyno-
mial approximation method can yield more accurate results
than any of the traditional machine learning algorithms.

To verify the feasibility and accuracy of the proposed
method, the true values of the component reliability param-
eters in the three test systems were selected as reference
values for comparison with the solutions obtained using the
method proposed in this paper and the traditional meth-
ods. As shown in Fig. 4 and Fig. 5(a,b,c), the high-order

FIGURE 4. Average errors of different methods.

FIGURE 5. (a) Comparison of results obtained with different methods in
the IEEE RTS-79. (b) Comparison of results obtained with different
methods in the RBTS. (c) Comparison of results obtained with different
methods in the Chuanyu power system.

polynomial approximation method proposed in this paper
can effectively approximate the true values for the different
systems, satisfying their practical operation requirements.
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B. CASE B: FEASIBILITY OF THE CONTINUATION METHOD
Considering the need for the true values of the component
reliability parameters in certain engineering applications, this
section demonstrates the use of the continuation method to
correct errors in the solutions obtained with the high-order
polynomial approximation method. TABLES 7, 8 and 9 show
the modified results for the three test systems obtained using
the continuation method. The efficiency and cost-time of
continuation method also can be obviously observed from the
results.

TABLE 7. Modified results obtained via the continuation method for the
ieee RTS-79.

TABLE 8. Modified results obtained via the continuation method for
the rbts.

TABLE 9. Modified results obtained via the continuation method for the
chuanyu test system.

As shown in TABLES 7, 8 and 9, the errors of the obtained
component reliability parameters can be corrected with the
continuation method. By virtue of its strong convergence
ability, an accurate solution to the IPRE can be realized.

Through an analysis of the above case studies, the follow-
ing conclusions are drawn:

(1) Based on the NSMC method, analytical expressions
for system/node reliability indexes and component reliability

parameters can be derived. In accordance with these ana-
lytical expressions, a large number of data can be gen-
erated to serve as source data for high-order polynomial
approximation.

(2) Compared with traditional machine learning algo-
rithms, the proposed high-order polynomial approximation
method based on the conjugate gradient algorithm offers a
considerably improved solution accuracy.

(3) For component reliability parameters with large errors,
the proposed continuation method is an effective means of
correcting those errors to finally obtain an accurate solution
to the IPRE.

VI. CONCLUSION
Considering the deficiencies of the existing research on the
IPRE, this paper proposes a novel and feasible method of
solving the IPRE. The main contributions of this paper are as
follows: First, based on the NSMCmethod, analytical expres-
sions for system reliability indexes and component reliability
parameters are established. Second, approximate solutions
to the nonlinear equations of the IPRE are obtained through
high-order polynomial approximation. Finally, a continuation
method is applied to correct errors. Case studies on three test
systems are presented to prove the accuracy and feasibility of
the proposed method.
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