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ABSTRACT Taxi group ride service (TGRS) is one potentially successful way to make traditional services
competitive as emerging app-based taxi services, simply through grouping similar taxi rides without
significant budget increases, generating one unique pick-up point and one unique drop-off point, thus serving
multiple passengers in one single trip. In this study, we mainly develop a scalable method for citywide
TGRS stand deployment driven by huge traditional taxicab trips. First, a spatial temporal clustering method
is proposed to explore trip clusters that present potential group rides. Second, the agglomerative clustering
method is applied to merge trip clusters at both spatial and temporal scale, which will yield potential taxi
stand location and schedule. Based on the one-month taxi trips in New York City, the proposed approach can
fast process the huge dataset and identify more than 60 stands with four schedules. The study contributes
towards efficient methods for developing TGRS in large-scale taxi systems.

INDEX TERMS Data mining, geolocation data, scalable stand deployment, spatial-temporal clustering, taxi

group ride services.

I. INTRODUCTION

The last few years have seen a rapid rise in the sharing econ-
omy. In transportation, trip sharing and app-based hailing
with services such as Uber and Lyft have disrupted tradi-
tional transportation services potentially suggesting a future
that has important implications for mobility and efficiency
of transportation services in urban areas. One of potential
implications is to group rides in a way that is beneficial both
for the users (reduced cost) and the system (reduced conges-
tion). These emerging services that are always convenient and
competitive have challenged the traditional street-hail taxi
service. Confronted with challenges, city policymakers and
transportation authorities are devoting remarkable efforts to
make these services competitive for users. Taxi group ride
service (TGRS) is one potentially successful way by group-
ing similar taxi rides without significant budget increases.
Under TGRS, taxicabs can pick up more than one passen-
ger at a fixed taxi stand and drive to a predefined drop-
off area, likely a street or a district. Passengers will pay
with the fixed fare rate per trip, not a distance-based and
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travel time-based fare rate. In addition, the passenger group
should be self-organized only at the fixed taxi stand, likely
with friends or strangers, and no more pickups are allowed
along the route. Figure 1 shows one taxi group ride stand in
New York City (NYC) and its corresponding regulations. The
TGRS is different from the dynamic taxi ride sharing defined
in [1] that can pick up anywhere along one route.

In this study, we mainly focus on taxi stand deployment
of TGRS while planning. The basic problem discussed is
to identify frequent taxi group rides and locate correspond-
ing stands in a large-scale taxi system with the mixture of
traditional street-hail taxi service and TGRS. The study is
developed based on the following key observations:

o Compared with dynamic taxi ride sharing, TGRS is eas-
ily regulated and implemented. Street-hail taxi service
mixed with TGRS can also meet various demand for
taxi services and perform at comparative level of service
even without dispatching/recommender system. More-
over, gaps in techniques (e.g. communication, informa-
tion, and computation) and substantial budget impede
explosive growth in dynamic taxi ride sharing. Thus,
TGRS may be a better option for improving street-hail
taxi service;
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FIGURE 1. A typical taxi stand and corresponding regulations in NYC.

« In big cities, it is more likely to have frequent taxi flows
within downtown areas especially during peak hours
(see Figure 2). This is an important concern for develop-
ing TGRS for large-scale taxi systems. Taxi systems may
serve more passengers during peak hours, save passen-
gers’ trip cost, improve drivers’ revenue, reduce traffic
flows on corresponding routes, and possibly decrease
congestion and emissions by grouping similar taxi trips.
Both NYC and Beijing, China proposed initiatives on
TGRS and implemented testing programs around few
hotspots. The positive effects of TGRS may encourage
cities to develop large-scale TGRS programs; and

o The availability of pervasive data, such as GPS-based
taxi trip information, provides a new perspective on
exploring distribution of taxi demand and supply, mining
frequent taxi trips, and measuring the potential of TGRS
in a large-scale taxi system. Various characteristics of
taxi movements have been obtained based on similar
datasets, which are impossible to apply for traditional
datasets [2]-[10].

In recent years, given the interest in improving the effi-
ciency of taxi services, ride sharing is a topic of growing
interest. However, most studies focused on dynamic taxi ride
sharing, not on TGRS [1], [7]. Furthermore, three limitations
in the studies limit the value of past studies. First, previous
work does not fully consider the slugging form of ridesharing
(i.e. passengers walk a distance to nearest pickup location,
take the group ride, and walk to the destinations from drop
off location). Zhan et al. [7] made a preliminary discussion
on ridesharing and proposed k-matching model to simu-
late ridesharing behaviors. However, the ridesharing system
is dynamic one which is different from the slugging one.
Ma and Wolfson [4] focused on the slugging form of
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ridesharing, but mainly addressed the efficiency of this form.
Second, the computation while addressing the large-scale
problem is demanding, regardless of the method in [1] and
graph-based approach in [7].

The study contributes towards a fast approach for
large-scale TGRS stand deployment from traditional
street-hailing taxi trips. To process the spatial and temporal
characteristics of taxi trips in this problem, a two-stage mod-
eling structure is proposed including a spatiotemporal clus-
tering to identify trip clusters and an agglomerative clustering
method for merge trip clusters. One-month (September,
2015) taxi trips in NYC is introduced to validate proposed
modeling structure. The following sections are organized as
follows: section II presents the modeling structure, defini-
tions, and equations; section III shows the case study and
results; section IV concludes this study and points out future
study.

Il. METHODS

A. MODELING STRUCTURE

The street-hailing taxi trip x, is a time-stamped record of
5-tuples (Ouar» Otong Diat Diong: T),,» Where Ot Olong rep-
resent the latitude and longitude of origin, Dy, Diong TEp-
resent the latitude and longitude of destination of each taxi
trip, and T represents departure time. The problem is to
deploy the TGRS stands with enough taxi rides in most days.
Hence, a modeling structure with two stages (see Figure 3)
are proposed to process spatial and temporal clustering and
large-scale issue:

o Cluster street-hail taxi trips with similar origins, des-
tinations, and departure time that may match together
for a group ride. In this step, we view each existing
street-hail trip as a point with both spatial and temporal
attributes (i.e. origin, destination, and departure time).
A spatial-temporal density-based spatial clustering of
applications with noise (ST-DBSCAN) is proposed to
cluster points; and

o Identify placement of TGRS stands by merging
street-hail taxi trip clusters. The agglomerative clus-
tering method is applied for trip clusters from
ST-DBSCAN at spatial scale to identify the spatial
location of TGRS stands. Then the same method is
applied at the temporal scale to identify the schedule
of TGRS stands (i.e. all day, peak hours, morning peak,
and evening peak).

B. ST-DBSCAN

1) REVISIT ON DBSCAN

Let X ={x1,x2,---,x,} be the object set and d (-, -) is a
metric distance.

Definition 1 (Core Object): The object x,, is a core object if
its e— neighborhood contains at least num many objects. That
is, Ng (xp) = {y e X|d (y, xp) < 8} and |N8 (xp)| > num.

Definition 2 (e¢—Reachable): Two core objects are
&— reachable if each core object is in e— neighborhood of
another core object. That is, x, € N¢(x4) and x4 € Ng(xp).
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Low: 0 High: 9,795,264

(a) taxi trip origin density on 9/10/2015

Low:0 High: 8,924,088

(b) taxi trip destination density on 9/10/2015

Low: 0

High: 10,666,985

(c) taxi trip origin density on 9/20/2015

FIGURE 2. The trip density between 18:00 and 19:00 in NYC.

Definition 3 (Density Connected): two core objects
are density connected if they are directly or transitively
&— reachable.

Definition 4 (Cluster): A cluster C is a non-empty maximal
subset of X such that every pair of objects in C is density
connected.

2) ST-DBSCAN

The DBSCAN cannot process both spatial and temporal dis-
similarity (i.e. metric distance) simultaneously. To improve
this weakness, we introduce one more & for temporal
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Low:0 High: 9,307,519

(d) taxi trip destination density on 9/20/2015

dissimilarity [11]. Thus, the e— neighborhood of object x,
is:

Ne (x ) = {y € X|dspatial (y, xp) = Espatial}
N {y € Xldiemporal (y, xp) = etemporal} (D

The spatial distance can be estimated by the Manhattan dis-
tance. The temporal distance is the difference between depar-
ture times. To accelerate computation of metric distance,
the spatial distance is derived by Manhattan distance if one
object x, is in a certain range of another object x,. The object
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GPS-based Street-
Hail Taxi Trips
(0.0, 1)

Spatial-Temporal Clustering
Identify taxi trip clusters using
ST-DBSCAN

Stage I: Find Clusters ¢

/ The taxi trip cluster set /
C

Deplovment of TGRS Stands
Merge taxi trip clusters using
Agglomerative Clustering at the both spatial
and temporal scale

Stage 1I: Merge Clusters

Taxi Group Ride
Stands,
D

FIGURE 3. The two-stage approach for TGRS stand deployment.

X, is the centroid of a cube with origin difference 2km, desti-
nation difference 2km, and departure time difference 10 min.
Or the spatial distance is set as a big value M.

C. AGGLOMERATIVE CLUSTERING

To improve computational load, the spatial centroid of each
trip cluster is utilized to represent all trips in the cluster
and the range of departure time is introduced to replace the
departure time of each trip in the cluster.

The next step is to merge the trip clusters by the complete
linkage method at the spatial scale, as well as temporal scale.
Two criterions are applied:

« Suppose each taxi stand can serve an area with radius
of 1km. Thus, we can merge the trip cluster based on
spatial distance till the spatial distance of any pair cen-
troid in the merged cluster is greater than 2km.

o The merged cluster should be presented at least 70%
of total days during test period. Or the merged cluster
may fail to provide enough group rides in most days.
In addition, this check will avoid temporary many trips
induced by events.

o

FIGURE 4. The illustration of cluster merge for taxi stand (each color
represents one subgroup of similar trips).

destination stand

* origin stand

FIGURE 5. The centroids of trip clusters from ST-DBSCAN.

See Figure 4, the aforementioned merging process is illus-
trated in the dashed circle. The trip clusters in the circle are
with similar spatial locations, thus we can derive a taxi stand
(i.e. the red triangular) by finding centroid of the merged
cluster.

dspatial (xpa xq) =

R(xy) = 4(0,D,T)
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Manhattan (0(x,,), O(xq)) + Manhattan (D(x,,), D(xq))

if x, €R (xp)
otherwise )

Ot € [Oar(xp) — 0.008, Ojar (x) + 0.008]
Olong € [Oong(xp) — 0.005, Ojong(x) + 0.005]
Diar € [Diar(xp) — 0.008, Dyg (x,) + 0.008] 3)
Diong € [Diong(xp) — 0.005, Diong(x) + 0.005]
T € [T(xp) —5,T(xp) + 5]
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FIGURE 6. The TGRS taxi stands.

Next step is to process the temporal interval of trip clusters
and identify the schedule of each taxi stand. If two intervals
overlap, we can derive the union of two intervals as one new
interval (see the dendrogram on the time axis in Figure 4). Till
there are no overlaps of temporal intervals in each merged
cluster, we can summarize the percentage of covered times
in one day, the percentage of covered peak hours (including
morning peak 7am to 9am and evening peak S5pm to 7pm), the
percentage of covered morning peak hours, and the percent-
age of covered evening peak hours. The four types of schedule
(i.e. all day, peak hours, morning peak, and evening peak) are
determined based on the following criterions:

« If final temporal interval covers more than 50% of times
of one day, the TGRS stand can be operated in the whole
day; and

« If fail to operate in the whole day, we can check the peak
hours. If the temporal interval can cover more than 50%
of both peak hours or AM/PM peak hours, the TGRS
stand can operate during both peak hours, AM peak,
or PM peak, respectively.

IIl. RESULTS

We have collected 2015 GPS-based street-hail taxi trip
dataset from NYC taxi and limousine commission. How-
ever, only one-month trips in September, 2015 will be
extracted as a sample, considering the enormous taxi rid-
ership of 1.8 billion and comparative monthly distribution
of taxi demand in the large-scale taxi system. Unlike free
moving objects, the taxi movements are constrained by urban
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road network configuration. A general approach to match
all GPS records onto road network should be introduced to
measure exact spatial relationship between two points. How-
ever, the map-matching process is computationally expensive
with enormous locations in a large-scale taxi system. In the
case study, we estimate distance based on Manhattan distance
that is a good approximation of the real distance, instead of
map-matching.

TABLE 1. Summary statistics of all TGRS stands.

Type of TGRS stand No.
All-day 22
Peak hours 8
AM peak 0
PM peak 31
total 61

In the stage of ST-DBSCAN, we set &paiat = 2km,
Etemporal = Smin, and num = 10. For 10,718,718 street-hail
taxi trips, the ST-DBSCAN identifies 8,751 trip clusters cov-
ering 9,333,934 street-hail taxi trips. Only 13% of street-hail
taxi trips are measured as noise. Continuing to the second
stage of merging trip clusters, we can derive 271 merged clus-
ter, but only 61 out of which are with consecutive group rides
in more than 20 days (i.e. 70% of all days during test period).
Based on summary on merged temporal intervals, we can
determine the type of each TGRS stand, shown in Table 1.
The distribution of all 61 stands and corresponding types are
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shown in Figure 6. The stand deployments in three typical
regions (i.e. Manhattan midtown, Brooklyn downtown, and
JFK airport) are in details in subplots of Figure 6.

IV. CONCLUSION

This study mainly focuses on TGRS in a large-scale sys-
tem. Considering spatiotemporal characteristics and big data,
we develop a fast two-stage approach for TGRS stand deploy-
ment. This approach can reduce computational load by firstly
finding trip clusters and corresponding centroids. Then the
agglomerative clustering can efficiently identify the taxi stand
and corresponding schedule by merging trip clusters at both
spatial and temporal scale. The case study in NYC confirms
the performance and feasibility of proposed modeling struc-
ture. Furthermore, this study can be improved in two ways:
a) the sensitivity analysis on predefined input parameters; and
b) consider the number of street-hail taxi trips in each trip
cluster while finding the centroids of merged clusters.
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