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ABSTRACT Due to its high power densities and compact dimensions, the axial flux coreless permanent
magnet synchronous generator (PMSG) is used in a wide range of areas such as wind turbines and
electric vehicles. It is extremely important to detect magnetization faults that occur in these generators.
The occurrence of such faults in these machines with a wide range of areas of use affects their operation
negatively. In this study, an effective method has been proposed to detect the demagnetization fault occurring
in axial flux coreless PMSGs. The relevant method proposes an effective texture analysis-based feature
extraction method, which is an original method in contrast to conventional methods used in the literature.
It has been revealed that it is a method that can be used instead of conventional methods such as time-
frequency analysis, frequency spectrum analysis, and motor current signature analysis (MCSA) methods.
Using the finite element method, current and voltage signals were taken from the healthy and axial flux
coreless PMSG with 3% and 6% demagnetization fault. Besides, these signals were retaken at different
speeds and loads. After the signals were converted into images, using the features obtained from the images
with LBP, fault diagnosis processes were carried out with Knn. It was tested both at different fault rates and
under different load and speed conditions to test whether the proposed method worked properly. The success
rate of this method was observed as 97.16% and 100%. With the proposed method, it has been revealed that
the demagnetization fault can be detected in axial flux coreless PMSGs.

INDEX TERMS Image texture analysis, demagnetization, fault detection, permanent magnet machines.

I. INTRODUCTION
The axial flux coreless PMSG has many advantages. Thus,
it is commonly used. As the generator has no core, there are
no core losses in the stator part. The axial flux coreless PMSG
has been the center of attention with many advantages such as
being more efficient than other generators, high torque, high
power density, and ease of control [1]–[3]. Also, it is pre-
ferred by manufacturers in electric vehicles, industrial robots,
and aviation [4], [5]. It is extremely important to diagnose
machines with a huge number of application areas. Faults
that may occur in these machines may affect the sensitivity.
Therefore, the pre-diagnosis of faults becomes important in
the axial flux coreless PMSG.
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Faults that occur in permanent magnet machines can
be classified into three categories as stator faults, bearing
faults, and rotor faults. The stator fault includes a short cir-
cuit between windings, phase-to-phase short circuit, phase-
to-ground short circuit, and open circuit faults. Bearing
faults include inner bearing faults, outer bearing faults,
and ball faults. Rotor faults include eccentric and demag-
netization faults. In addition, due to the permanent mag-
nets that are used, the fragility and magnetization effect of
the magnets decrease depending on the time and operating
conditions [6]–[8].

Since the rotor used in radial flux permanent magnet
machines is made of a permanent magnet, it is easy and flex-
ible with an additional improved power factor. However, this
type of machine poses great risks in real operating situations
due to the faults in magnets. Therefore, monitoring magnetic
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faults is essential. Demagnetization faults in Permanent Mag-
net Machines are usually caused by load situations that
require high starting torque. Armature reaction occurs during
rapid transitions from a non-stationary state to a stationary
state. Backward magnetic fields caused by currents pass-
ing through the stator windings and high temperatures that
occur in winding fault cause demagnetization fault [9]–[11].
Also, if the temperature in the machine exceeds the curie
temperature, the effect of the permanent magnet decreases.
However, even below the curie temperature, overloading,
faults in the inverter, and stator windings can lead to demag-
netization [12]–[15]. When the machine runs, the total flux
linkage decreases depending on the increase in temperature.
The total flux is considered stable in permanent magnet
machine designs. However, in the flux fluctuation here, the
output torquemay also cause instability. The demagnetization
fault occurs when the permanent magnet exceeds the critical
temperature, and unless the flux density reaches its actual
value. This demagnetization causes the machine to have a
fault and to show low performance [16], [17]. Another reason
is fractures and cracks in permanent magnets. This situation
consists of unsuitable production conditions and is likely to
create negative effects such as noise, vibration, and magnetic
pull on the machine [18]. For these reasons, it is necessary to
detect the demagnetization faults thatmay occur in permanent
magnet synchronous machines. It is important to fix these
faults for a better performance of the machine.

An accurate demagnetization analysis is required for the
detection of the demagnetization fault that may occur in
the machine. Many researchers have examined these fault
features from different perspectives. Permanent magnet total
flux (flux linkage) estimates are reported for the analysis of
rate hormones under different loads, speeds, and temperatures
in [19]. When using these methods, the use of information
about only one characteristic may not be sufficient for fault
detection [20]. For fault detection, characteristic information
including magnetic flux, current, voltage, acoustic sounds,
temperature, vibration, and moment is needed. Many meth-
ods are recommended in the literature for demagnetization
fault detection. There are successful methods suggested in the
literature that are used for fault detection.

Although the literature contains a wide range of infor-
mation about the detection of demagnetization faults from
radial smart machines, it has a limited number of studies on
faults in the axial flux coreless PMSG. In Reference [21],
an analytical method was presented to fix the fault in AFPM.
In Reference [22], a new structure was proposed by model-
ing the three-dimensional AFPM demagnetization fault with
static and dynamic eccentric defects and by comparing the
experimental results with the finite element method. In addi-
tion, the zero-sequence voltage component (ZSVC) spec-
tra of the AFPM machine were investigated by using the
stator current and torque three-dimensional finite element
method [23].

MCSA demagnetization is a widely used method in fault
detection using torque, speed, current, and voltage data. The

demagnetization fault detection in the multiphase PMSM
using the MCSA-based technique was made by applying a
wavelet transform (WT). The results obtained provided an
effective solution [24]. Stator currents were analysed with
Fast Fourier Transform (FFT) and applied to the demag-
netization fault detection by analysing certain harmonics.
However, they cannot be applied to non-stationary signals
and cannot distinguish harmonics caused by demagnetization
from harmonics caused by eccentric [25], [26]. In another
study that used TheHilbert-Huang Transform (HHT)method,
digital signal processing (DSP) fault diagnosis and fault
detectionwere facilitated. TheHHT algorithm provides infor-
mation about operating status and changes apart from fault
detection [27]. Its effects on the machine depending on the
demagnetization fault were discussed. In this study, given the
effects of this fault on machine voltage and current, it was
determined that it produces harmonics.

In the demagnetization fault detection, Zhu et al. first
proposed a torque wave model taking into account the elec-
tromagnetic noise in a study. Then, taking the electromag-
netic disturbances into account, the data were processed with
wavelet transform. Vold–Kalman was introduced to monitor
the torque fluctuation sequence of the PMSM to extract the
torque wave characteristic that reflects the changes in magnet
state with filtering order tracking. Finally, it was used to train
the Dynamic Bayesian Network (DBY) for detecting and
predicting demagnetization during machine runtime. With
this method, the demagnetization fault was detected very well
in a wide speed range [28]. Demagnetization diagnosis was
attempted by using continuous wavelet transforms (CWT)
and gray system theory (GST). By using CWT, the effect of
electromagnetic interference was eliminated. Demagnetiza-
tion rates using GST and torque fluctuation caused by demag-
netization made it easier to detect the energy vibrations. With
this method, the demagnetization fault detection was per-
formed in different operating conditions and real-time [29].
In a study conducted with the texture analysis method, it was
observed that high success was achieved in the detection of
bearing fault. [30]–[35]. In a wind turbine application, fault
detection and classification were made by using the texture
analysis method. High accuracy was obtained [36].

Studies have shown that texture-based analysis can be
successful in fault detection. Therefore, this method has been
used for demagnetization fault detection. There are studies
using current and voltage data for demagnetization fault
detection. It is noteworthy that this data is easier to record and
process than data such as vibration. It has also been revealed
that recording this data is less costly. In this study, an effec-
tive fault detection method has been proposed by using cur-
rent and voltage data. A great success was achieved in the
fault detection with the effective texture-based analysis-based
method. With this method, current and voltage signals were
analyzed in the time domain and the feature was extracted.
Thus, faster results were obtained. The features obtained
in this study provided a success rate between 97.16%
and 100%.
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FIGURE 1. Axial flux coreless PMSG test model with three rotors and two
stators [1].

TABLE 1. Parameters of the Test Generator.

II. TEST BENCH SETUP
In order to diagnose the demagnetization fault that may occur
in the machine, current and voltage fault signals were com-
pared with healthy signals. Analyses were made using the
finite element method to obtain current and voltage signals
for healthy and faulty situations at different speeds and loads.
One of these generators was healthy, while 3% and 6%
demagnetization fault was given to one of them and the other
of them, respectively. In the analysis made with the finite
element method, 3D views are given in the machine used
in Figure 1.

Parameters of the generator are given in Table 1 [1].

III. METHOD
A. PROPOSED METHOD
This study proposes a completely different approach from
previous studies for the fault detection from the signals
obtained under different speed and load conditions from
axial flux coreless PMSGs. A block diagram of the proposed
method is given in Fig.2.
Blok 1: It indicates raw signals obtained at different loads

and speeds from axial flux coreless PMSGs with different

fault severities. These are signals measured at different
speeds, loads, and fault rates.
Blok 2: The pixel values of two-dimensional gray images

vary between 0-255. To convert the signals to images, the
signal values must be converted to values in this range. The
following equation is used to indicate values on the signal Xi
and to convert the signals to values between 0-255. There is
no change in the appearance of the signal after the conversion.
A sample conversion is given in Fig.3.
Blok 3: At this stage, the signals obtained from the magnet

motors are converted to images. Depending on the length
of the signals, these signals are converted to images of size
NxM. A sample conversion process is shown in Figure.
Block 4: It is the step during which the LBP method is

applied to the gray images obtained. Section B describes how
the LBP method is applied to images.
Block 5: After the LBP method is applied to gray images,

LBP features are obtained from new images. These feature
vectors are used as input features for classification methods.
Block 6: It is the classification step. In this study, the

Knn- (K nearest neighbor)machine learningmethodwas used
as a classifying method. The classification was performed
according to the 10-fold cross-validation test. Block 7: It is
the step of decision and fault detection.

NewXi = round
([

xi −min(x)
Max(x)−Min(x)

]
× 255

)
(1)

The sample conversion of a signal to a gray image is shown
in Fig.5. As seen from the figure, a textural image is obtained.
The conversion in Figure 5 belongs to the current signals
obtained from the single phase of the faulty and healthymotor
by 3%, which are running at 0 loads and 300 rpm.

B. LOCAL BINARY PATTERN
The local binary pattern (LBP) texture analysis operator is a
gray-level independent texture measure method. The original
LBP operator creates a label for each pixel of the image. This
label is a binary number that is obtained by comparing the
central pixel to the pixels in the 3 × 3 neighborhood. Each
pixel from the image is obtained by binarizing the difference
between itself and its neighbors with the step function. The
LBP operator characterizes the relationship between the pix-
els in the image (Xp, Xc). This operator is expressed by the
following equation [37].

Where Xc indicates the centre pixel, Xc is, the centre pixel’s
neighbors, R is, the distance of the neighbors from the centre
pixel, and P is the number of neighboring operands. This
structure shows that various circular neighborhoods can be
used. Thus, it is possible to perform the analysis of textures
of different sizes with LBP. [38]. Fig. 6 gives an example of
tagging pixels with the LBP operator.

LBPP,R (xc) =
∑p−1

p=0
µ
(
xp − xc

)
2p,

µ (y) =

{
1, y ≥ 0
0, y < 0

(2)
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FIGURE 2. Block diagram belonging to the proposed method.

FIGURE 3. Conversion of signals to values ranging between 0-255.

Not all the LBP values created are used in the texture
analysis. The uniform patterns used in the identification are
those having 2 or less 0-1 or 1-0 transitions in the binary LBP
code. For example, the patterns 000000 and 111111 are uni-
form as they contain 0 transition and the patterns 011000 and
110011 are uniform as they have 2 transitions. However,
the patterns 010100 with four transitions and 010101 with
five transitions are not uniform. Studies have shown that a
large proportion of the surfaces of the texture investigated
consist of uniform patterns [39]–[42].

As uniform patterns are used when extracting the LBP
histogram, all non-uniform patterns are used as a feature
while it refers to a feature for each uniform pattern in
the histogram. When all patterns are examined, 256 dif-
ferent codes are formed for 8 neighborhoods, and 58 of
them are uniform. In this case, the LBP histogram has
59 partitions.

The LBP has two important parameters. The first parame-
ter of the LBP is P, which specifies the number of neighbors.
Large values of P in the creation of the LBP image both
enlarge the feature histogram and increase the transaction
cost. Small values of P can cause a significant amount of
information loss. The second parameter of the LBP is the

scale (R) parameter. R indicates the distance of neighboring
pixels from the center pixel [43], [44].

IV. RESULTS
In this study, an effective approach of axial flux coreless
PMSG has been proposed to determine whether the gen-
erator is faulty or healthy from the signals obtained from
the healthy and faulty generator under different speed and
load conditions, and from the current and voltage signals.
In this method, firstly the signals obtained from the generator
are transformed into two-dimensional gray-scale images. The
signals in the time domain can be converted into images in
desired MxN dimensions. The dimension of the image can
be adjusted according to the length of the signals. However,
the dimensions of the image must be of a dimension that
includes meaningful expressions. In sample transformations
in this study, the signals were transformed into 100 × 100
grayscale images.

The tables in the findings section show the results of the
fault detection using current and voltage signals obtained
during the operation of the axial flux coreless PMSG under
different speed and load conditions. The tables obtained
here show separate results for each current and voltage
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FIGURE 4. Conversion of signals to image: (A) A sample signal piece, (B) The image generated from signals.

FIGURE 5. Conversion of a signal to a gray image of 100 × 100: (A) Faulty, (B) healthy single-phase current signals.

value. It has been demonstrated that axial flux coreless
PMSGs can be used in the detection of current and voltage
signals.

A. FAULT DETECTION USING CURRENT SIGNALS
Fig.7 includes the textural images formed as a result of the
process of transforming the faulty and healthy axial flux

coreless PMSG into images of the faulty and healthy signals
belonging to 3 phases of no-load current signals taken at
600 rpm with 3% fault rate.

Fig.7 shows that the images of healthy and faulty signals
are separated from each other. The texture is a property of the
surface of an image. It can be expressed as a regular repetition
of a texture or pattern on the image surface.
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FIGURE 6. A sample computation of the LBP operator [39].

FIGURE 7. Conversion of single phase current signals to gray-level images. The signals were taken under 0 load at a speed of 600 rpm. (A)
Faulty signals of 3% fault rate, (B) Healthy signals of 3% fault rate.

After the images of the signals were created by hand,
the features were obtained from these images through the
LBP. By using these feature vectors, the classification with
Knn, in other words, the separation of healthy and faulty
signals from each other, was performed. Procedures of the
proposed fault diagnosis system were carried out for signals
obtained under different fault, speed, and load conditions. The
success rates obtained for each phase of the 3-phase current
signals are given in Table 2-4.

In Table-2, success rates for 3% and 6% fault rates at
different speeds and loads for the 1st phase current are given.
It was understood that as the speed and loading rate increase
at 3% fault rates, the fault detection rate also increases. The
success rate achieved here was found to be approximately

98.34%. At the 6% fault rate, it was determined that the faults
were separated depending on the speed and loading, and the
success rate was 98.83%. When the loading rate was 35%,
the faulty and healthy signals were observed to be completely
separated from each other.

Success rates for the 2nd phase current are given in
Table-3. It was found that as the speed and loading rate
increases in 3% fault rates, the fault detection rate also
increases. There is only a difference in the success rate at
0% loading. The success rate obtained was found to be
approximately 99.33%. At the 6% fault rate, it was revealed
that the faults did not differ significantly depending on the
speed and loading, and the success rate was 100% in all of
them.
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FIGURE 8. Conversion of voltage signals to gray-level images. The signals were taken under 0 load at a speed of 600 rpm. (A) Faulty signals
of 3% fault rate, (B) Healthy signals of 3% fault rate.

TABLE 2. Current Signal Success Rates for Phase 1.

Success rates for the 3rd phase current are given in Table-4.
It was found that as the speed and loading rate increases at 3%
fault rates, the fault detection rate also increases. There is only
0% loading at 3% fault and 76.67% success at 300 rpm. The
average success rate obtained was found to be about 97.16%.
High success rates were achieved at a fault rate of 6%.

TABLE 3. Current Signal Success Rates for Phase 2.

The success rate achieved here was determined as 98.33%.
Looking at Table-2-4, it cannot be said that the percentage of
success is directly related to speed, that is, no information
can be given about the success of fault detection with the
increase or decrease in speed. However, it is noteworthy that
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TABLE 4. Current Signal Success Rates for Phase 3.

TABLE 5. Voltage Signals Success Rates for Phase 1.

the success rate in fault detection depending on the load is
more proportional to the load. It is seen that fault detection
shows a higher success graph, especially when the load rate
rises above 0.

B. FAULT DETECTION USING VOLTAGE SIGNALS
Fig. 7 shows the textural images formed as a result of the pro-
cess of transforming the faulty and healthy axial flux PMSG
3-phase unloaded three-phase voltage signals at 600 rpmwith

TABLE 6. Voltage Signals Success Rates for Phase 2.

TABLE 7. Voltage Signals Success Rates for Phase 3.

3% fault rate to images of the faulty and normal signals of
3 phases.

Fig.8. shows that the textures contained in the images
of voltage signals for healthy and faulty axial flux coreless
PMSG are separated from each other. The operations of the
proposed fault diagnosis system are carried out for signals
obtained under different fault, speed, and load conditions. The

VOLUME 9, 2021 17445



M. R. Minaz, E. Akcan: Effective Method for Detection of Demagnetization Fault in Axial Flux Coreless PMSG

TABLE 8. Success Rates for Current Signals According to Different Radius Values for Phase 3.

TABLE 9. Success Rates for Voltage Signals According to Different Radius Values for Phase 2.

success rates obtained for each phase of the 3-phase voltage
signals are given in Table 5-7.

Table-5 shows success rates for 3% and 6% fault rates at
different speeds and loads for the 1st phase voltage. At 3%
fault rates, only the speed of 300 rpm and 0% loading had an
effect on the success rate, and the average success rate was
determined as 99.16%. At the 6% fault rate, it was revealed
that the faults did not decompose depending on the speed
and loading, and the success rate was 100% and decomposed
completely in all of them.

Table-6 shows success rates for 3% and 6% fault rates at
different speeds and loads for the 2nd phase voltage. At 3%
fault rates, only the speed of 300 rpm and 0% loading had an
effect on the success rate, and the average success rate was
98.5%. At the 6% fault rate, it was revealed that the faults did
not decompose depending on the speed and loading, and the
success rate was 100% and decomposed completely in all of
them.

Table-7 shows success rates for 3% and 6% fault rates at
different speeds and loads for the 3rd phase voltage. At 3%
fault rates, only the speed of 300 rpm and 0% to 100%
loading had an effect on the success rate, and the average

success rate was found to be 98.83%. At the 6% fault rate,
it was revealed that the faults did not decompose depending
on the speed and loading, and the success rate was 100%
and decomposed completely in all of them. In Table-5-7, it
was revealed that the percentage of success is not related
to speed. In the comparison of the faulty and healthy sig-
nals obtained in the axial flux PMSG, it was revealed that
the generator does not depend on the speed and loading
rate.

The LBP has two important parameters. The first parame-
ter of the LBP is P, which specifies the number of neighbors.
Large values of P in the creation of the LBP image both
enlarge the feature histogram and increase the transaction
cost. Small values of P can cause significant information
loss. The second parameter of the LBP is the scale (R)
parameter. R indicates the distance of neighboring pixels
from the center pixel. By using different R values, it is
possible to analyse texture of different scales. Features
according to different R values were obtained from the
images created from the current and voltage signals. The
success rates observed for the current signals containing
6% fault in Phase 3 and different values of R are given

17446 VOLUME 9, 2021



M. R. Minaz, E. Akcan: Effective Method for Detection of Demagnetization Fault in Axial Flux Coreless PMSG

TABLE 10. The Reported Studies on the Stator Fault.

in Table 8. The results observed for different values of R
and voltage signals with 6% failure in Phase 2 are given
in Table 9.

Tables show that high success rates were observed for all
values of R for both current and voltage signals. The value of
R should be decided after trials.

C. COMPARISON OF THE OBTAINED RESULTS
WITH LITERATURE
Table 10 gives information about studies on the detection of
machine faults. As can be seen from the table, fault detection
success rates ranged from 92.1% to 100%. In this study,
an effective method was proposed for the demagnetization
detection using solely the current and voltage data. This
study presents a high accuracy rate of fault detection with
the texture-based analysis method. Tests were conducted for
the signals of current and voltage obtained from the axial
flux coreless PMSM when operating under different speeds
and loads. According to the obtained results, high success
rates were obtained in the classification of demagnetization
faults by the proposed feature extractionmethodwith the Knn
classifier.

V. DISCUSSION
In this study, voltage and current signals were taken from
faulty and healthy axial flux coreless PMSGs at different
speeds and loading rates. A texture analysis-based approach,
which is an effective feature extraction approach, has been
proposed for the decomposition of these signals. Axial flux
coreless PMSG current and voltage signals were transformed
into two-dimensional grayscale images. Time-domain signals
can be converted into images in desired MxN dimensions.
Then, texture features are obtained from these images with
LBP. Fault detection was carried out with different machine
learning methods using these features.

A literature review shows that there are many studies that
are conducted using ready-made data sets for different fea-
ture extraction schemes and fault classification techniques.
Demagnetization of fault depending on the speed and the load
AFPMGmodels were created. An effective feature extraction
method based on texture analysis has been proposed for
current and voltage signals. Current and voltage signals were
first converted to grayscale images. It is understood from the
images that the signals of different faults form different tex-
tures. Then, texture features are obtained from these images

VOLUME 9, 2021 17447



M. R. Minaz, E. Akcan: Effective Method for Detection of Demagnetization Fault in Axial Flux Coreless PMSG

with the LBP. These features are classified using different
machine learning methods by current and voltage signals.

In the loading and speed trials carried out in axial flux
coreless PMSG, it has been revealed that the detection of
faulty and healthy signals does not depend on the load. It has
been seen that the success rate of the machine at 300 rpm and
0% loads slightly decreased. When comparing the success
of current and voltage signals in fault decomposition, it was
seen that the success in voltage signals is slightly higher than
current. However, when all the results are evaluated together,
it has been shown that neither the loading rate nor the speed of
the machine is effective in decomposing the faulty and solid
signals in the axial flux coreless PMSG.

It will be used in the classification of different fault types
with the approach suggested in our next studies. In addition,
it will be tested in the classification of signals with large
values of fault rates.
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