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ABSTRACT To solve the problems of the difficult feature extraction, poor feature credibility and low
recognition accuracy of coal and gangue, this paper utilizes the difference in the dielectric properties of
coal and gangue and in combination with a support vector machine (SVM) to propose a recognition method
based on the dielectric characteristics of coal and gangue. The influence rule of the edge effect of the electrode
plate on the capacitance value is analyzed when the thickness of the electrode plate changes. By changing
the frequency and voltage of the excitation source, curves of the dielectric constant of coal and gangue
versus frequency and voltage are obtained. Combined with the Kalman filter, the adaptive noise complete
set empirical mode decomposition (CEEMDAN) denoising method is improved, which results in a signal
with a higher signal-to-noise ratio and lower root mean square error after denoising. The effective value and
frequency of the denoised response signal are extracted to construct the feature vector set to form the training
set and test set. The data of the training set are input into the SVM to train the intelligent classification
model, the test set is used to test the SVM classification effect, and the classification accuracy is 100%.
Unlike these of the probabilistic neural network (PNN) intelligent classification model and the learning
vector quantization (LVQ) neural network classification model, the recognition and classification accuracies
of the three can reach 100%, but the classification speed of SVM is the fastest, only taking 0.007916 s,
which fully reflects the feasibility and efficiency of the capacitance method in identifying coal gangue.
In this paper, the capacitance method and SVM are applied to identify coal and gangue, and accurate and
efficient identification results are obtained, providing a new feasible solution for research on coal gangue
identification.

INDEX TERMS Coal gangue, edge effect, dielectric constant, feature vector, support vector machine.

I. INTRODUCTION
A large amount of coal gangue is produced during coal
mining. Coal gangue is a kind of solid waste with a low
carbon content, and accounts for 10%-15% of raw coal. The
main components of coal are hydrocarbon active organic
molecules, while the main components of coal gangue are
Al2O3 and SiO2. Coal gangue mixed with coal will not
only reduce the quality of coal combustion, but also increase
the emission of waste gas. To improve the quality of coal
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combustion and reduce the emission of poisonous and harm-
ful gases, the separation of coal gangue from raw coal is an
important problem in coal mine engineering.

Coal gangue recognition is the key technology of coal
gangue separation. Hou et al. [6]–[8] analyzed the differ-
ence data between coal and coal gangue in terms of the
surface texture and grayscale characteristics, and combined
them with a classification algorithm to study coal gangue
recognition. Because the texture and grayscale characteristics
of coal and coal gangue are greatly affected by light, the
recognition accuracy is not high. Liu et al. [9]–[13] stud-
ied the morphological differences between coal and coal
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gangue on the basis of studying texture and gray features,
and introduced multifractal to extract the geometric features
of coal gangue, but the extraction process of multifractals
geometric features is complex and has poor adaptability.
Alfarzaeai et al. [14]–[20] studied the near infrared spectrum,
thermal infrared spectrum andmultispectral characteristics of
coal and coal gangue, and obtained high recognition accuracy
in a laboratory environment using a neural network algorithm.
However, this technology is not mature, and it is difficult
to apply in practice because of the influence of ambient
temperature and light. Zhao et al. [21], [22] studied the radi-
ation characteristics and attenuation characteristics of X-rays
and γ -rays in coal and coal gangue. Coal gangue can be
identified in essence through the attenuation characteristics of
X-rays and γ -rays; however, the radiation produced by rays
will cause physical harm to workers, and the maintenance
cost of equipment is also high. Wang et al. [23] proposed
a method of measuring volume by 3D laser scanning tech-
nology, which was combined with dynamic weighing tech-
nology to identify coal gangue. Because the volume is an
estimated value, the measurement error is relatively large.
Yang et al. [24], [25] studied the vibration signals of coal
and coal gangue particles colliding with metal plates, and
extracted the eigenvalues of the signals in combination with
a machine learning algorithm to identify coal gangue, but
damage identification, can reduce the quality of coal. Finding
a recognition feature with high reliability, easy extraction and
few side effects has become a difficult task in the current
recognition of coal and coal gangue. Nelson et al. [26]–[29]
studied the dielectric properties of pulverized coal, and found
that the dielectric constant of pulverized coal decreases reg-
ularly with increasing frequency, which provides a reference
for studying the dielectric properties of coal and coal gangue.
Muhammad et al. [30]–[33] conducted cutting-edge and pio-
neering studies in signal desiccating, signal decomposition
and machine learning, with strong references. In this paper,
the differences between the dielectric properties of coal and
coal gangue are studied, and a recognition method of coal
and coal gangue based on dielectric properties is proposed.
This method can realize nondestructive testing of coal and
coal gangue. X-ray and γ -ray identification equipment, has
high radiation intensity; the internal features of coal and coal
gangue that cannot be perceived by image recognition can be
obtained.

In this study, coal and gangue were obtained from the
Huainan mining area, and the SVM intelligent classifica-
tion model was trained by combining the dielectric constant
characteristics of coal and gangue with the SVM. The test
results show that the capacitance method has high accuracy
and strong timeliness in identifying coal and gangue, and has
great research prospects.

II. SYSTEM IDENTIFICATION PRINCIPLE
Coal and gangue have different chemical compositions,
which leads to their different dielectric constants. In a time-
varying electromagnetic field, the dielectric constants of coal

FIGURE 1. Schematic diagram of the identification system.

FIGURE 2. RC series circuit.

and gangue tend to decrease with increasing frequency and
voltage. Based on the difference in the dielectric constants
of coal and gangue, a capacitance identification system of
coal and gangue is designed. A schematic diagram of the
identification system is shown in Figure 1. The capacitor is
composed of upper and lower electrode plates and a movable
medium in its middle region, which can be coal or coal
gangue. The signal generator adds applies a high frequency
signal to the circuit, and changing the medium into coal
or gangue will cause the response signals at both ends of
the resistance to change. A data recorder is used to collect
the response signals, which are sent to a PC to preprocess,
denoise the response signals, extract eigenvalues and con-
struct feature vectors, and then, the feature vectors are input
into the SVM intelligent classification model to identify and
classify the medium.

A. ACQUISITION OF A RESPONSE SIGNAL
The schematic diagram of the identification system can
be abstracted into a standard RC series circuit, as shown
in Figure 2. In an RC series circuit, when the standard sinu-
soidal AC voltage US is applied, the resistor R and capacitor
XC will divide the voltage. The excitation voltage source was
set as follows:

Us = A
√
2 sin (2π ft + ϕ) (1)

where A is the amplitude of the AC voltage, f is the frequency
of the AC voltage, t is time, and ϕ is the initial phase angle,
with ϕ = 0.
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FIGURE 3. Improved CEEMDAN noise reduction flow chart.

In this RC series circuit, the effective value phasor of the
input voltage US is

U̇ = Aejϕ (2)

When ϕ = 0 at the standard sinusoidal AC voltage,
U̇ = A. In the circuit, the impedance of the resistor is R,
and the impedance of the capacitor is

ZC = −jXc (3)

WithXc = 1/(2π fC), we know that ZC = −j 1
2π fC , and that

effective value phasor of the voltage at both ends of resistor
is

U̇R =
R

R− j 1
2π fC

U̇ (4)

By substituting the value of U̇ into the formula and sorting
it out, we obtain

U̇R =
A2π fRC√

1+ (2π fRC)2
ej[arctan(

1
2π fRC )] (5)

The effective voltage values at both ends of the resistor are
as follows:

UR =
A2π fRC√

1+ (2π fRC)2
(6)

B. RESPONSE SIGNAL PROCESSING
The response signals collected by the data recorder contain
radio wave noise. To facilitate the later data analysis and
feature extraction of the collected response signals, it is
necessary to denoise the collected response signals [34].
CEEMDAN noise reduction has a good effect on nonlinear
and nonstationary signals. The traditional CEEMDAN noise
reduction method processes the IMF component dominated
by high-frequency noise with a wavelet-like threshold, pro-
cesses the IMF component dominated by useful signals with

mathematical morphology filtering, and finally reconstructs
the IMF and residual components after each processing
step. Because of wavelet threshold processing, it is neces-
sary to select the wavelet and set the threshold in advance,
which is not adaptive and will lead to signal distortion [35].
In this paper, the Kalman filtering algorithm is introduced
to improve the CEEMDAN denoising method. The IMF
component dominated by high frequency noise is processed
by Kalman filtering, and the IMF component dominated by
useful signals is processed by mathematical morphology fil-
tering. Finally, the IMF and residual components after each
processing step are reconstructed. The improved CEEMDAN
noise reduction process is shown in Figure 3.

C. FEATURE EXTRACTION
The denoised sample data are imported into the feature
extraction program of MATLAB. When the input excitation
voltage and frequency are fixed, formula (13) shows that
the dielectric constant is only related to the change in UR,
but to calculate the value of the dielectric constant, multiple
constant parameters need to be input. In future experiments,
the structure of capacitors may vary with the size of coal and
gangue samples. To simplify the process of feature extraction,
onlyUR and excitation frequency F representing the dielectric
constant of each sample are extracted to form the feature
vectors:

x = [UR, f] (7)

D. SVM INTELLIGENT CLASSIFICATION MODEL
When it is necessary to identify and classify many samples
in real time, an intelligent classification model needs to be
established. The SVM takes a classification hyperplane as
the decision surface to maximize the isolated edge between
two classification objects. The SVM intelligent classification
model to be established in this paper belongs to the SVM
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FIGURE 4. SVM model structure diagram.

linear dichotomy, and the structure of the model is shown
in Figure 4.

SVMhas good learning generalization ability in the pattern
recognition of small sample data processing, and the algo-
rithm itself is targeted at the dichotomy problem [36]. The
specific form of the model is as follows:

Construct a training set of samples:

T = {(x1, y1) , · · · , (xl, yl)} ∈ (X × Y )l (8)

where xi ∈ X = Rn, yi ∈ {1,−1} (i = 1, 2, · · ·, l) , and xi is
the feature vector.

Select the linear kernel function K
(
x, x ′

)
and suitable

parameter C , and construct and solve the optimization
problem:

min
α

1
2

∑j

i=1

∑l

j=1
yiyjαiαjK

(
xi, xj

)
−

∑l

j−1
αj∑l

i=1
yiαi = 0

0 ≤ αi ≤ C

(9)

Obtain the optimal solution:

α∗ = (α∗1 , · · · , α
∗
l )
T (10)

Select a positive component of α∗, 0 < α∗j < C , and then
calculate the threshold:

b∗ = yi −
∑l

i=1
yiα∗i K

(
xi − xj

)
(11)

Build a decision function:

f (x) = sgn
(∑l

i=1
α∗i yiK (x, xi)+ b

∗

)
(12)

III. STRUCTURAL DESIGN AND SIMULATION ANALYSIS
OF THE POLAR PLATE
The dielectric constant of the material can be reflected in the
capacitance calculation, and the noncontact measurement of
the material can be made by using the capacitance method.
According to physics, if the edge effect of a capacitor com-
posed of two flat metal plates is not considered, the electric
field distribution of the capacitor is shown in Figure 5-a, and
the ideal calculation formula of its capacitance is

C0 =
εrS
4πkd

(13)

where εr is the relative dielectric constant of the medium
between two plates, S is the relative effective area of two
polar plates, k is the electrostatic force constant, and d is the
distance between two polar plates.

In practical applications, the phenomenon of a divergent
electric field at the edge of a capacitor is called the edge effect
of the capacitor, and the thickness of the plate is an impor-
tant factor affecting the edge effect of the capacitor [37].
Figure 5-b shows the electric field distribution when the edge
effect of the plate is considered.

Formula (13) of the parallel plate capacitor is obtained by
simplifying the derivation formula of the infinite round plate
capacitor, and the real capacitance value also includes the
stray capacitance caused by the edge effect.

C = C0 + C∗

= ε0εr

{
πr2

d
+

[
ln

16π
d
+ 1+ f

(
h
d

)]}
=
ε0εrπr2

d
+ ε0εr

[
ln

16π
d
+ f

(
h
d

)]
(14)

where h is the thickness of the polar plate, and ε0 is the
relative dielectric constant of a vacuum. The neglected stray
capacitance value generated by the edge effect of capacitance
is

C∗ = ε0εr

[
ln

16π
d
+ f

(
h
d

)]
(15)

Deviation (ξ ) caused by ignoring the edge effect of capac-
itance is

ξ =
C∗
C
=

ln 16π
d + f

( h
d

)
πr2
d + ln 16π

d + f
( h
d

) (16)

To study the influence of the edge effect of the electrode
plate on the capacitor, three-dimensional modeling of the
electrode plate and the medium to be measured is carried
out in Maxwell software, and the electromagnetic simulation
analysis of the model is carried out, as shown in Figure 6.

In the case when the plate distance of the capacitor is
determined, the deviation ξ is only affected by the thick-
ness h of the plates. The influence of plate thickness, h,
on capacitance can be simulated and analyzed by Maxwell
software. The thickness of the medium sample is 30 mm,
and the diameter is approximately 120 mm. In the simulation
experiment, the distance between plates is set to 30 mm;
the plates are 10 mm long and 30 mm wide; The excitation
voltage is set to 10 V; The plates are made of aluminum,
the intermediate filling medium is customized coal, and the
dielectric constant is 2.6; parametric scanning of the thickness
h of the plates is carried out from 0.5mm to 10mm. The curve
of error ξ changes with increasing f plate thickness, as shown
in Figure 7. The error ξ increases with the increasing plate
thickness. When designing capacitors, the thickness of plates
should be as small as possible if conditions permit, to reduce
the influence of the edge effect on capacitance. The actual
value of the corrected capacitor is

C =
C0

(1− ξ)
=

εrS
4πkd (1− ξ)

(17)
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FIGURE 5. Comparative diagram of the capacitance electric field distribution in two cases: (a) the electric field distribution diagram without
considering the edge effect of the plate; and (b) the electric field distribution diagram considering the edge effect of the plate.

FIGURE 6. Simulation diagram of the capacitor model.

FIGURE 7. The curve of error with the thickness of plate.

By combining formula (6) and formula (17), the relative
dielectric constant of the medium in the capacitor, the effec-
tive values of the voltage UR at both ends of the resistor R and
the relationship between the frequency of the response signal
can be obtained:

εr =
2kd(1− ξ)UR√

A2−U2
RfRS

(18)

Formula (18) shows that in the alternating RC series cir-
cuit, the effective values of the voltage at both ends of the

FIGURE 8. Recognition system.

resistor are measured. According to the structure parameters
and excitation source parameters of the capacitor, the rela-
tive dielectric constant of the dielectric capacitor at a given
frequency or voltage is calculated.

IV. DESIGN OF EXPERIMENT
A. PREPARATION OF EXPERIMENTAL MATERIALS
The coal and gangue samples used in this experiment were
collected from Zhujidong Coal Mine, Panji District, Huainan
City, Anhui Province. To facilitate the experiment, 15 coal
and gangue samples were cut and polished to form a round
pie-shaped specimenwith a diameter of 11 cm and a thickness
of 3 cm. As shown in Figure 8, the identification system
includes a signal generator, a computer, a data recorder,
a constant value resistor, a plate capacitor, a circuit board
and a number of Dupont lines. The parameters of the relevant
components are shown in Table 1.

B. THE INFLUENCE OF EXTERNAL CONDITIONS ON
DIELECTRIC AND DIELECTRIC CONSTANTS
The dielectric constants of coal and gangue are affected
by voltage and frequency in the AC circuit, and when the
ambient temperature changes, the dielectric constant is also
affected by temperature. Considering that a slow change in
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TABLE 1. Parameters corresponding to the components.

temperature is not a suitable inducing factor, the influence of
temperature on the dielectric constant is no longer considered,
a contrast experiment is carried out at normal temperature,
and only experiments studying the effect of voltage and fre-
quency on the dielectric constant are carried out.

1) EXPLORE THE INFLUENCE OF EXCITATION SOURCE
FREQUENCY ON DIELECTRIC CONSTANT
To reduce the requirement of capacitor insulation under AC
power excitation, the output frequency of the signal generator
is selected to be greater than 50kHz. The output voltage
amplitude of the signal generator is set to 10.00 V; the duty
ratio is 50.0%; and the initial phase is 0.00. Each group of
experiments takes 100 kHz as the starting frequency and
increases it by 100 kHz every time. The frequency of each
frequency point and the effective value UR at both ends of
resistor R at this frequency are recorded. When the input
frequency reaches 5 MHz, the single-group experiment ends.
Three kinds ofmedia, air, coal and coal gangue, aremeasured,
including one group of air media, three groups of coal media
and four groups of coal gangue media. Fifty sampling points
are collected for each group of specimens.

The curve showing the change in the effective value
of the voltage UR at both ends of the resistor is shown
in Figure 9 when the medium for each group of experiments
is excited at different frequencies. Given that the thickness
of the polar plate is 1 mm, we can obtain ξ = 0.163 from
the curve of the error versus the thickness of the polar plate
in the model simulation. By substituting the UR data and the
known parameter values into formula (18), the curve of the
dielectric constant εr versus frequency is obtained, as shown
in Figure 10. The characteristics of the curve conform to
the law that the dielectric constant of matter decreases with
the change in frequency. The observations indicate that the
permittivities of coal and air are close to each other, and
the change trends are similar. The permittivities of coal and
gangue are obviously different and change.

To determine the excitation frequency when the differ-
ence between the permittivities of coal and coal gangue is
the largest, the dielectric constants of the measured samples
from the same category at the same frequency are averaged.

FIGURE 9. The curve of UR versus frequency.

FIGURE 10. The curve of the permittivity εr versus frequency.

The curve of the differences in the ε∗ values, the average
dielectric constants of coal and coal gangue, versus frequency
is shown in Figure 11. The ε∗ value of coal and coal gangue
is the largest at a frequency of 100 kHz, and the identification
characteristics of coal and coal gangue are the most obvious
at this frequency.

2) EXPLORING THE INFLUENCE OF THE EXCITATION
SOURCE VOLTAGE ON THE DIELECTRIC CONSTANT
The output voltage frequency of the signal generator is set
as 100 kHz, the duty ratio is 50.0%, and the initial phase is
0.00◦. Each group of experiments takes 1 V as the starting
voltage, which increases by 0.5V each time. The value of each
input voltage and the UR at both ends of resistor R under
this voltage are recorded. When the input voltage reaches
20 V, the single-group experiment ends. Eight groups of
samples of the abovementioned three kinds of media, air, coal
and coal gangue, are measured, and 40 sampling points are
collected from each group of samples. The curves showing
the change in the dielectric constants of air, coal and coal
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FIGURE 11. The curve of the difference in the average permittivity versus
frequency.

FIGURE 12. The curve of dielectric constant versus the excitation voltage.

gangue with voltage are shown in Figure 12. The dielectric
constant tends to decrease with increasing voltage, but when
the voltage is greater than 5V, the dielectric constant is almost
no longer affected by voltage. Therefore, when the voltage
of the excitation source is greater than 5 V, the influence of
voltage on the dielectric constant can be ignored.

V. EXPERIMENTAL VERIFICATION AND DATA ANALYSIS
From the experiments studying the influence of voltage and
frequency on air, coal and coal gangue, it can be seen that the
dielectric constant characteristics of coal and air are similar
and obviously different from those of coal gangue. Therefore,
we only need to identify coal gangue to separate coal and
gangue, so only coal and gangue are considered in the fol-
lowing experiments. According to the characteristic curves
of the influence of frequency and voltage on the dielectric
constant obtained from the above experiments, the excitation
frequency of the excitation source is 100 kHz and the voltage

FIGURE 13. Modal component of a sample signal decomposed by
CEEMDAN.

is 10 V, and the identification system is used to sample 15 coal
samples and 15 coal gangue samples. Ten samples are taken
for each specimen, the specimen is sampled once every 36◦

around the rotation axis, 400 sample points are collected
every time, and the sample data are saved as CSV files.

Sample data are extracted from MATLAB software and
decomposed by CEEMDAN. The CEEMDAN decomposi-
tion result of a single sample signal is shown in Figure 13,
and IMF components are arranged in sequence according to
their frequency. According to the IMF components, IMF1,
IMF2 and IMF3 are high frequency components whose fre-
quencies are higher than those of the excitation source, and
the main radio wave noise is contained in the high frequency
components. The measurement amplitude and frequency will
be affected by high frequency noise, and then the recogni-
tion accuracy will be affected. A Kalman filter was used
to filter IMF1, IMF2 and IMF3 components dominated by
high-frequency noise, and a mathematical morphological fil-
ter was used to filter IMF components dominated by useful
signals.

Finally, the IMF and residual components after each pro-
cessing step are reconstructed. As shown in Figure 14,
the improved CEEMDAN noise reduction effect is compared
with the traditional CEEMDAN noise reduction effect.

Compared with that obtained by the traditional CEEM-
DAN denoising method, the signal obtained by the improved
CEEMDAN denoising method has a higher signal-to-noise
ratio (SNR) and lower root mean square error (RMSE). See
Table 2 for specific parameter values.
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FIGURE 14. Modal component of a sample signal decomposed by
CEEMDAN: (a) original signal; (b) CEEMDAN- wavelet threshold
denoising;and (c) CEEMDAN- Kalman filter.

TABLE 2. The denoising effect values.

TABLE 3. Partial training samples.

With the improvedCEEMDANdenoisingmethod adopted,
the complete useful signal can be obtained, and the noise
component in the signal can be removed more effectively,
which is helpful to improve the accuracy of the subsequent
analysis of the response signal.

Two classification modes of coal and gangue are defined,
and denoted as 2 and 1, respectively. Among the 300 samples
collected, the 1st-150th samples belong to the first category,

FIGURE 15. SVM intelligent classification model recognition results.

TABLE 4. Comparison of recognition effects.

and the 151st-300th samples belong to the second category.
A total of 120 samples from each category are selected to
form the training set, and the remaining 30 samples from each
category are selected to form the test set. Some samples of
the test set are shown in Table 3, and the samples of coal and
coal gangue are randomly arranged. The training set is input
into the SVM training function for training, and the SVM
intelligent classification model is constructed. The test set is
input into the created SVM intelligent classification model,
with 60 test samples of coal and gangue, and the classification
results are shown in Figure 15. The classification accuracy of
the SVM intelligent classification model is as high as 100%.
To prove the efficiency of the SVM intelligent classification
model, a comparative experiment between the PNN neural
network intelligent classification model and LVQ neural net-
work classification model is also carried out. The recognition
and classification effects of the three classification models
are shown in Table 4, and the recognition and classification
accuracy of the PNN neural network intelligent classification
model and LVQ neural network classification model can also
reach 100%. This fully shows that it is feasible to iden-
tify coal gangue by the difference in the dielectric constant
between coal and coal gangue. In terms of the processing time
of test sets, the SVM intelligent classification model takes
the shortest time, only 0.007916 s, with a higher real-time
performance.

VI. CONCLUSION
According to the differences in the dielectric properties coal
and gangue, the dielectric constants of coal and gangue
are first proposed as the identification characteristics, which

9852 VOLUME 9, 2021



Y. Guo et al.: Identification Method of Coal and Coal Gangue Based on Dielectric Characteristics

provides a new method to identify coal and gangue. In this
paper, a capacitance identification method based on coal and
gangue with regular shapes is conceived, and remarkable
recognition and classification results are obtained by com-
bining the SVM intelligent classification model. The main
contributions of this paper are as follows:

1) The capacitance identification model of coal and gangue
is established, and the finite element simulation analysis of
the capacitor model is carried out. The influence of the edge
effect caused by plate thickness on the calculation of the
capacitance value is obtained, and the calculation formula of
the capacitance value is modified to accurately calculate the
capacitance value of the capacitor when the medium changes.

2) The capacitance identification system of coal and
gangue is designed. The circuit of the identification sys-
tem is analyzed by the phasor method, and the relationship
between the dielectric constant and the structural parameters
of themodel and the electrical parameters of the identification
system is obtained by combining the modified calculation
formula of the capacitance. The change in the dielectric con-
stants of coal and gangue with changing in the frequency and
voltage of the excitation source is explored by using this iden-
tification system,which is used to guide select the frequencies
and voltages that cause obvious differences between coal and
gangue.

3) Combined with the Kalman filter, the traditional CEEM-
DANdenoisingmethod is improved, the sample signal is used
for verification, and a processing signal with a high signal-
to-noise ratio and low root mean square error is obtained.

4) The recognition and classification effects reach 100%.
The recognition accuracy of the SVM intelligent classifica-
tion model for 60 test samples is as high as 100%, and the
processing time is only 0.007916 s. The feasibility of iden-
tifying coal gangue by the capacitance method is ensured in
terms of accuracy and real-time, which provides a theoretical
reference for research on identifying coal and coal gangue
with irregular shapes by the capacitance method.
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