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ABSTRACT Accurate and stable prediction of NOx emissions from diesel vehicles plays a crucial role in the
establishment of virtual NOx sensors and the development and design of diesel engines. This paper presents
a method for estimating transient NOx emissions by complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) and a long- and short-term memory neural network (LSTM). First,
the CEEMDAN algorithm is used to reduce the non-stationarity and volatility of the transient NOx emission
data to obtain multiple subseries with different frequencies. Secondly, a predictive model is developed for
each subsequence using an LSTM neural network. Finally, the results of each subsequence prediction are
summed to obtain the final prediction. The proposed model uses NOx emission data generated by an EU IV
diesel bus during real road driving. The results show that (1) The use of CEEMDAN can effectively improve
the smoothness of NOx transient emission data, as well as facilitate more effective extraction of internal
characteristics and variations of the raw data. (2) LSTM has better learning and prediction capability for
transient changes in NOx emissions. (3) The results of CEEMDAN-LSTM for RMSE, R2, MAE andNRMSE
are 46.11,0.98, 29.82 and 2.71, respectively, which are better than the other model with improved prediction
performance.

INDEX TERMS Diesel engine, NOx emissions, long short-term memory network, empirical mode decom-
position, machine learning.

NOMENCLATURE
NOx nitrogen oxide
LSTM long short-term memory neural network
RES residual
RMSE root mean square error
MAE mean absolute error
PEMS portable emission measurement system
CFD computational fluid dynamics
BPNN back propagation neural network
NSGA-II non-dominated sequencing genetic algorithm
EGR exhaust gas recirculation
GPRS general packet radio service
KNN k-nearest neighbor
RF random forest
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EEMD ensemble empirical mode Decomposition
NRMSE normalized root-mean square Error
ANFIS adaptive neuro-fuzzy inference system
CEEMDAN complete ensemble empirical mode

decomposition with adaptive noise
IMFs intrinsic mode functions
EU IV Euro IV
R2 determination coefficient
MLP multi-layer perceptron
NO nitric oxide
OBD on board diagnostics
ANN artificial neural network
DNN deep neural networks
SVM support vector machines
XGBoost extreme gradient boosting
CART categorical regression tree
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EMD empirical mode decomposition
RNN recurrent neural networks
GBRT gradient boosted regression tree

I. INTRODUCTION
Diesel engines offer high fuel economy and thermal effi-
ciency and are widely used in heavy vehicles and Non-road
machinery. At the same time, the NOx emissions from diesel
engines, due to their higher compression ratio and high
combustion temperatures in the cylinder, are much higher
than gasoline engines. Excessive NOx emissions severely
affect the environment and human health, which motivates
the researchers to conduct critical studies on NOx emissions
from diesel engine and design of the diesel engine. On the
other hand, the calibration of NOx emissions put forward
higher requirements, therefore, the study of instantaneous
NOx emissions from diesel engines and the establishment
of accurate emission model, plays an important role in the
design and development stage of automotive powertrain.

There are significant differences between transient
and steady-state operating conditions of the engine [1].
Steady-state data are usually obtained from standard driving
cycle tests, using engine chassis-dynamometer platforms to
obtain the pollutant emission data, and the results of these
tests do not reflect changes in the emissions under real
driving conditions, especially when the engine is overloaded
from part load to full load. Transient data can be collected
by a portable emission measurement system (PEMS) to
investigate the emissions from vehicles during actual road
operation [2], and such data encompasses the changes in the
emissions due to transient changes in the vehicle operating
conditions. Although transient data can reflect the changes
in vehicle emissions during actual road operation, yet such
data are non-stationary and non-linear in nature, making it
difficult to develop accurate predictive models.

To study the NOx emissions, various authors have pro-
posed the models based on physical and chemical rela-
tionships such as a previously conducted study, in which
Egnell [3] developed a combustion diagnostic method to
calculate the nitric oxide (NO) formed during combus-
tion through multi-zone heat release. Provataris et al. [4],
in an experimental study, investigated the formation of NOx
emissions in the combustion chamber based on the data
obtained from the engine operation and combustion analysis.
Guardiola et al. [5] adopts a semi-empirical model based on
heat release rate and the adiabatic flame temperature with
NOx correction considering the combustion mechanism and
shows good transient NOx prediction performance, but the
time to complete the prediction is long. Bhave et al. [6]
implemented a stochastic reactor model, based on a prob-
abilistic density function, to describe the turbulent mixing
and further, used a rotational clustering model to predict the
range of NOx emissions. Rosero et al. [7] created a grid
engine diagram to obtain the engine data from the OBD
system and measured the NOx data by PEMS to reproduce
the results in terms of fuel consumption and NOx emissions.

Reitz and Rutland [8] improved the prevailing computa-
tional fluid dynamics (CFD) models for multicomponent
fuel vaporization and small-flame combustion to accurately
predict the trends in NOx emissions and NOx-soot balance.
Moreover, a number of researchers have also made accurate
predictions of NOx emissions through CFD models [9]–[11].
Although these models are capable of estimating NOx by
calculating the local temperature and chemical composition,
however, certain drawbacks related to these methods such as
high computational cost, high computational time, increased
computational power and high calibration requirements, hin-
der the application of these models in practice.

In the last few years, machine learning algorithms such
as artificial neural network (ANN), support vector machine
(SVM), random forest (RF), extreme gradient boosting
(XGBoost), and deep neural network (DNN) have devel-
oped rapidly. Compared to physical and chemical relationship
models, machine learning can quickly establish non-linear
relationships between diesel vehicle operating parameters
and emissions, and has been widely used in the engineering
field [12]. Wang et al. [13] estimated NOx emissions using a
back propagation neural network (BPNN) by mutual infor-
mation reducing the need for experts in feature selection.
Alcan et al. [14] used the most significant engine charac-
teristic parameters for nonlinear prediction and reduced the
secondary characteristic variables to obtain a more stable
model for NOx emission prediction. Bhowmik et al. [15]
analyzed the results of error and correlation matrices and
the statistical analysis of artificial neural network(ANN) to
predict the NOx emissions with ternary blended fuels with
good accuracy. Lotfan et al. [16] investigated engine speed,
intake temperature, and output power as variable inputs to
obtain optimal values for NOx emissions using artificial neu-
ral network and non-dominated sequencing genetic algorithm
(NSGA-II). Arsie et al. [17] introduced a virtual sensor,
developed based on neural networks, for estimating NOx
emissions from diesel locomotives, with good adaptability
achieved on diesel engine test bench. Wang et al. [18] pro-
posed a method by combining neural networks and nonlinear
dynamic systems to replace NOx sensors, but due to the
limitations of artificial neural networks, a room was avail-
able for improvement in accuracy. In the previously con-
ducted studies, few scholars have used deep neural networks
to develop diesel engine NOx emission prediction models.
Moreover, most of the above-mentioned studies was obtained
from the experiments performed on the engine test benches
under steady-state load conditions, which cannot be applied
to study the real road conditions.

Signal processing algorithms can extract features of
transient data more efficiently, and have been widely used
in conjunction with machine learning in areas such as stock
prices, power loads, andwind speed prediction. Cao et al. [19]
developed a stock market price prediction model using
CEEMDAN combined with long- and short-term mem-
ory (LSTM) for linear regression analysis of major global
stock market indices and outperformed SVM, multilayer
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perceptual machine (MLP), and other hybrid models.
Li et al. [20] combined the improved CEEMDAN with a
Multi-Kernel Extreme Learning Machine (MKELM) to opti-
mize the weights and parameters of each kernel in the extreme
learning machine using Gray Wolf Optimization (GWO)
and showed excellent prediction performance for short-term
power load prediction. Lu et al. [21] used CEEMDAN
pre-processing of raw wind data to make the data smoother,
combined with an improved grey box model to predict wind
energy, which made accurate predictions of Belgian offshore
wind farms and had higher prediction accuracy and stability
than six benchmark models. Du et al. [22] used CEEMDAN
to decompose the rawwind speed data into a finite set of com-
ponents, and then used multi-objective ant lion optimization
to optimize the initial weights between layers and thresholds
in the Elman neural network, and the prediction accuracy was
much higher than that of the comparative model. CEEMDAN
can effectively enhance the stability of transient data. How-
ever, the signal processing method has not yet been applied
to diesel engine NOx transient emission prediction. In this
research, a model combining CEEMDAN and LSTM for
predicting NOx emissions from diesel engines is proposed to
effectively address the non-stationarity and non-linearity of
real road emission data. The contributions are as follows:

1) Application of the decomposition algorithm CEEM-
DAN to the instantaneous prediction of diesel NOx to
reduce the non-stationarity and complexity of the raw
data.

2) LSTM algorithm has more stable and accurate perfor-
mance in time series prediction compared to traditional
machine learning algorithm, which can be used for
sub-series prediction of CEEMDAN.

3) The predictive performance of the proposed
CEEMDAN-LSTM model has been demonstrated in
an experimental case, using seven models to verify
accuracy and validity.

4) Amachine learning algorithm for fillingmissing values
is proposed for time series data.

The paper is structured as follows: section 2 describes the
methodology used to build the model. Section III describes
the sources of data and how they were processed. Section IV
discusses and analyzes the experimental results. Section V
summarizes the conclusions.

II. RESEARCH METHODOLOGY
A. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION WITH ADAPTIVE NOISE
CEEMDAN is essentially an improvement on the deficiencies
of EMD and EEMD, as it addresses the modal overlap defect
of EMD [23] and the incomplete white noise cancellation of
EEMD additions. CEEMDAN adds adaptive white noise to
each decomposition in order to achieve the decomposition
of the original sequence with fewer averaging times and a
reconstruction error of almost zero.

Suppose the i-th decomposition sequence is denoted as
si (n) = s (n) + vi(n), where si (n) denotes the original

sequence and vi(n) denotes the white noise added during the
i-th (1,2. . . , I ) decomposition. Assuming that the kth modal
component by EEMD and CEEMDAN is denoted by Ek (·)
and IMFk , respectively, the specific steps of the CEEMDAN
algorithm are as follows;
Step 1: For the time series si (n), the I decomposition is

performed using the EEMD method to obtain the 1st modal
component as shown in Eq. (1).

IMF1 (n) =
1
I

∑I

i=1
IMF i1(n) (1)

Step 2: Calculation of the residual sequence after decompo-
sition by CEEMDAN can be written as Eq. (2):

r1(n) = s(n)−IMF1(n) (2)

Step 3: The ith (1,2,. . . , I ) decomposition of r1 (n) +
ε1E1

[
vi (n)

]
yields the secondmodal component as described

in Eq. (3).

IMF2(n) =
1
I

∑I

i=1
E1[r1(n)]+ε1E1[vi(n)] (3)

where εk denotes the noise amplitude.
Step 4: After, all the IMFk (n) are obtained, calculate the

k(2, 3 . . .K ) sequence of residual quantities, and then cal-
culate the k + 1 modal components according to Step 3,
as depicted by Eq. (4) and (5):

rk (n) = rk−1(n)−IMFk (n) (4)

IMFk+1(n) =
1
I

∑I

i=1
E1{rk (n)+ εkEk [vi(n)]} (5)

Step 5: Repeat step 4, when the sequence of residuals is no
longer decomposable, i.e., when the extreme point of the
residuals is at most 2, stop the decomposition, and obtain the
k modal components. The final result of the residuals can be
evaluated by Eq. (6):

R(n) = s(n)−
∑K

k=1
IMFk (6)

At this point the sequence is decomposed into k IMF and
an R(n).

B. LONG SHORT-TERM MEMORY
Long short-term memory can be known as a variety of recur-
rent neural networks (RNN), which cannot handle long time
spans. As the time-series span increases, the learning ability
of the RNNs will be lost, resulting in the models, that cannot
be trained [24]. Therefore, LSTM adds a state c to the hidden
layer h of the original RNN to save the information about
the state of the historical time and the current state, as shown
in Fig. 1(a). Expanding Fig. 1(a) by time dimension as shown
in Fig. 1(b), at time t , the input of LSTM is increased from 1
to 3 from RNN, including the current network input value xt ,
the output value of LSTM at the previous moment ht−1 and
the cell state ct−1 at the previous moment, while the output
value of LSTM cell includes the current moment ht and the
cell state ct at the current moment. The state c that saves
the history information is updated on the cell state by the
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FIGURE 1. RNN to LSTM. (a) RNN change to LSTM. (b)LSTM unfold.

FIGURE 2. Internal unit structure of LSTM.

control operation of three gates (input, forgetting, and output
gates) [25]. The internal cell structure of LSTM is shown
in Fig. 2.

The LSTM neural network can be calculated by Eq. (7-11)
as follows:

it = σ (Wxixi +Whihi−1 +Wcici−1 + bi) (7)

ft = σ (Wxf xt +Whf ht−1 +Wcf ct−1 + bf ) (8)

ct = ftht−1 + it tanh(Wxcxt +Whcht−1 + bc) (9)

ot = σ (Wxoxt +Whohht−1 +Wcoct + bo) (10)

ht = ot tanh(ct ) (11)

where, xt is the input; ft , it , ot are the forgetting gate, input
gate and output gate, respectively; ct is the cell unit state after
time t passing through the input gate and forgetting gate;
ht are all output states of LSTM unit; tanh is the activation
function of double tangent; δ is sigmoid function. Wxi, Whi,
Wci, Wxf , Whf ,Wcf , Wxc, Whc,Wxo, Who, and Wco are the
input weight coefficients. bi, bf , bc and bo is the offset vector.
The LSTM can selectively retain valid information based

on the state of the cell unit and the structure of three gates: the
input gate, the forgetting gate and the output gate. The input
gate handles the input of the current sequence position and
determines the input information, whereas, the forgetting gate
determines the discarding of historical information based on
the activation function. The output gate determines the final
output and the retention of information.

C. DEVELOPMENT OF THE CEEMDAN-LSTM NOX
PREDICTION MODEL
The data series of diesel engine NOx emission concentration
is a non-stationary signal, that can be affected by many

FIGURE 3. Prediction flow chart based on CEEMDAN-LSTM model.

factors. Since CEEMDANpossesses a capability to smoothen
the non-stationary time series, so in the current effort CEEM-
DAN and LSTM were combined to establish a prediction
model based on CEEMDAN-LSTM to predict diesel engine
NOx emission concentration. The flowchart for establishing
the CEEMDAN-LSTM prediction model is shown in Fig. 3.
The major steps are described as follows:

1) CEEMDAN decomposes the NOx concentration series
data by generating multiple IMFs and a RES.
At the same time, it decomposes the non-stationary,
non-linear NOx concentration series into data compo-
nents of different simultaneous frequencies.

2) LSTM modeling is carried out by using the sub-series
generated by CEEMDAN. The measurements of the
parameters such as engine speed, accelerator pedal
opening, instantaneous fuel consumption, percentage
of engine load and speed were obtained from the vehi-
cle exhaust monitoring platform and were used as input
variables. Whereas, the sub-series decomposed by the
CEEMDAN were considered to be output to build n
LSTM models. Of the data, 90% were used as training
data and 10% were used to validate model accuracy.
Adjusting the model parameters not only allows the
LSTM to learn more about the variation pattern of

VOLUME 9, 2021 11005



Y. Yu et al.: Novel Deep Learning Approach to Predict the Instantaneous NOx Emissions From Diesel Engine

TABLE 1. Basic parameters of diesel engine.

each series but also improves the accuracy of the NOx
concentration prediction.

3) The predictions obtained from each LSTM model in
the previous step are added together to obtain the final
results of the CEEMDAN-LSTM model in order to
predict the concentrations of NOx emission.

III. DATA SOURCES AND PROCESSING METHODS
A. DATA SOURCES
In the current study, the data was derived from an online
motor vehicle exhaust monitoring platform [26], which was
employed to monitor dynamic real-time vehicle emission
data using general packet radio service (GPRS) technology.
It consisted of NOx sensor, an OBD data reader and a wireless
data transmission unit. The NOx sensor is a high-precision
sensor that can accurately measure NOx emissions of diesel
vehicles per second, the OBD port obtained vehicle and
engine information, and the collected data was transmitted to
the terminal platform through the wireless data transmission
unit. The online monitoring platform collected and managed
the data including exhaust gas monitoring parameters, basic
vehicle information with strict management and control. The
parameters of the diesel engine of a bus were monitored
as shown in Table 1. With a sampling interval of 1s, the
10,000 transient emission data were obtained from the online
monitoring platform. The selected samples included the data
in idling, acceleration, constant speed, deceleration and stop-
ping conditions of the bus.

B. DATA PRE-PROCESSING
Tail gas data pre-processing was employed to eliminate
the errors related to missing and abnormal data caused by
equipment failure, human error or sensor abnormality during
the data collection. Moreover, it helped to make the data
more standardized and complete, which is convenient and
inevitable for the research and development of diesel engine
exhaust emission model.

1) OUTLIER HANDLING
In the recent study, a box plot was used to determine the
dispersion of the data distribution, and to identify, whether

the data was outlier based on the degree of aggregation,
or not [27]. As shown in the box diagram in Fig. 4a, the data
distribution was evaluated in terms of the minimum, first
quartile (Q1), median (Q2), third quartile (Q3), maximum
values of the data set andQ3-Q1=IQR (defined as the quartile
distance). The 1.5×IQR was used to be the outlier judg-
ment boundary to remove the data less than Q1-1.5×IQR
and greater than Q3+1.5×IQR, leaving the null values in
the data. Fig.4b shows that the outliers are mainly part of
the data out of the actual value range and are concentrated
between 2000-3200, which is due to occasional anomalies in
the NOx sensor causing data acquisition errors.

2) MISSING VALUE TREATMENT
Mostly, due to the measurement errors or equipment failures,
the missing or incomplete data can negatively affect the
analysis of emission data and the results of predictive mod-
els. Researchers have proposed various interpolation meth-
ods and demonstrated their applications in practice, such
as mean interpolation, k-nearest neighbor (KNN) interpola-
tion, hot card interpolation, multiple interpolation and others,
however, these interpolation methods only consider a single
attribute. A machine learning prediction model, based on
extreme gradient boosting (XGBoost) [28], was used to fill in
the missing values for the multi-attribute diesel engine emis-
sion data. Considering the correlation between the features of
the experimental samples, the XGBoost model was generated
based on the training of the complete dataset, and the training
model was used to predict the filling specialties of themissing
data. The method was insensitive to the input data, which can
effectively prevent the overfitting of the data. Furthermore,
it helped to reduce the influence of undetected anomalies
in the data on the filling of missing values, and effectively
improve the accuracy of the filled data.

XGBoost is an integrated learning algorithm, that works on
the basic idea to integrate several weak classifiers together
to form a strong classifier with a categorical regression
tree (CART) that is capable of splitting the category and
continuous variables [29]. XGBoost can automatically utilize
multiple threads of the CPU for parallel operations, while
improving the algorithm with increased accuracy.
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FIGURE 4. Outlier judgment charts. (a) Box diagram to judge the distribution of outliers. (b) Outlier frequency
statistics.

FIGURE 5. Comparison of filling results with different missing ratios. (a)engine speed. (b)gas pedal percentage.
(c)speed. (d) instantaneous fuel consumption. (e) torque percentage. (f) NOx concentration.

The process of using XGBoost regression learning to fill
the missing values idea is the same as machine learning to fill
the predicted values to the missing values. The process is as
follows.
Step 1: Count the number of missing values for each char-

acteristic variable in the missing data set A.
Step 2: (2) To avoid that the feature variables entered into

the XGBoost model are missing values, make a copy of the
raw data B and prepopulate the missing parts using the mean
value of each feature.
Step 3: Dataset A is used as the output of the XGBoost

model in descending order of missing values, and the remain-
ing features of Dataset B are used as input variables. The
complete part of data set A is used as the training set and
the missing part as the prediction set. The XGBoost model is
trained to use the trained model to predict missing values and
complete a feature fill.
Step 4: Fill the completed feature data to replace the corre-

sponding feature in dataset B. Repeat step (3) until all feature
replacements are complete.

Due to a strong correlation between various features of the
data used, a regression model was built through the complete
data set to consider the size of the missing values with the
perspective of attribute correlation to construct more effective
data information and enhance the credibility of the informa-
tion and stability of the prediction model.

To verify the accuracy of XGBoost filling, 500 complete
datasets were selected from the experimental data in the
current paper, and 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, and 50% of the data were randomly excluded to form
different proportional missing value datasets. The KNN fill
and random forest (RF) fill were used to compare the test
results with XGBoost fill. The mean absolute percentage
(MAE) was selected as the evaluation criterion, and the result
pair is shown in Fig. 5.

From Fig. 5, it can be found that the accuracy of the
XGBoost filling is higher than KNN filling and random
forest filling, and it can also achieve better filling in the
case of higher missing rate. KNN filling is more sensitive
to missing rate such as with an increase in missing rate, its
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TABLE 2. Pearson coefficient analysis of correlations between variables.

accuracy decreases. Random forest and XGBoost belong to
the same integrated learning, the difference is that the random
forest uses bagging algorithm and XGBoost uses boosting
algorithm. In bagging algorithm-based learning process, each
training set is independent of each other such as the previous
learning results do not have an impact on the subsequent
results whereas, in boosting algorithm each learning depends
on the previous learning results, therefore XGBoost is more
suitable for populatingmissing data in continuous time series.

In this approach, data features with non-missing values
were used to predict the missing data for each feature, exper-
iments were conducted at missing rates from 10% to 50%,
and by comparing with KNN filling and random forest fill-
ing, XGBoost was able to achieve better filling results for
continuous-type time series at 50% data missing rate.

IV. RESULTS AND DISCUSSION
To evaluate the performance of the model, the root-mean
square error (RMSE), the coefficient of determination (R2),
mean absolute error (MAE) and normalized root-mean square
error (NRMSE) were evaluated using the Eq. (12-15) as
follows;

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)

2 (12)

R2 = 1−

∑(
y− ŷ

)2∑
(y− ȳ)2

(13)

MAE =
1
n

∑n

i=1

∣∣ŷi − yi∣∣ (14)

NRMSE =
RMSE

ymax − ymin
∗ 100 (15)

Here, y represents the experimental value, ŷ shows the pre-
dicted value of the model, ymax denotes the maximum NOx
concentration, ymin represents the minimum NOx concentra-
tion, and n reflects the number of samples in a test set.

Furthermore, the proposed model was compared with the
four basic models including random forest [30], support vec-
tor regression [31], XGBoost [28] and LSTM [32].

A. FEATURE VARIABLE SELECTION
The selection of input parameters is critical for the model to
obtain accurate predictions. Pearson’s correlation coefficient

is widely used to measure the degree of correlation between
two variables, and its value is between -1 and 1, the closer
it is to 1, the higher the positive correlation between the
two variables, and the closer it is to -1, the higher the neg-
ative correlation between the two variables. In this paper,
the correlations between variables and NOx emissions are
analyzed according to Pearson’s phase relationship, and the
correlation coefficients between selected variables and NOx
are greater than 0.15. The Pearson coefficients are shown
in Table 2. As mentioned before, 90% of the data was treated
for training purpose and 10% of the data was considered
as test model results. The subsequences obtained from the
decomposition of the CEEMDAN algorithm were input to
the LSTM neural network for training. The input variable
parameters were 5 whereas the output result was 1. The
grid search was performed by the number of hidden layers,
the number of neurons, the number of iterations and the batch
size. The final determination of the number of hidden layers
is 2, the first hidden layer is 12 neurons, the second hidden
layer is 20 neurons, the number of iterations is 400, and the
batch size is 8 can obtain the best results. The learning rate
is adjusted by the optimizer ’Adam’, which can effectively
solve the problems of vanishing learning rate, slow conver-
gence or large fluctuations of the loss function.

B. ANALYSIS OF CEEMDAN RESULTS
The CEEMDAN algorithm was used to decompose the NOx
concentration series data due to the strong non-linear and
non-stationary characteristics of NOx emission concentra-
tions of diesel vehicles. The added white noise was 0.4,
the average magnitude of the white noise was 10,000, and the
decomposition yielded 14 IMF values and 1 RES, as shown
in Fig. 5. It was observed that with the increase of decom-
position times, the stability and regularity of the subse-
quences were obviously enhanced. The fluctuation of IMF1
to IMF6 was violent and the change of frequency was high
with a certain degree of random disorder. This reflected the
uncertainty and randomness of NOx concentration change in
diesel engine. The change in the IMF values from IMF7 to
IMF9 was relatively moderate and more stable overall, but
still there were points where the magnitude of change is large
and the volatility cycle is unstable. The range from IMF10 to
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FIGURE 6. Sequential decomposition results of NOx concentrations based on
CEEMDAN decomposition.

FIGURE 7. Regression analysis of predicted results and measurements from different models. (a) RF. (b) SVR.
(c) XGBoost. (d) LSTM. (e) CEEMDAN-RF. (f) CEEMDAN-SVR. (g) CEEMDAN-XGBoost. (h) CEEMDAN-LSTM.

RES was observed to be changing in a flat manner which can
be obviously understood as per periodic rule.

The CEEMDAN algorithm was used to decompose diesel
NOx concentrations into subseries of different feature scales.
The IMF reflected, not only the local features of NOx concen-
trations at different frequencies, but also the hidden feature
changes that would not be identified by direct observation
of the data. The decomposed data was more regular than
the original data series. Although there was still varying
degree of non-stationarity between these components, yet
their interactions were isolated because they had different
characteristic scales. This isolation can reduce the difficulties
that non-stationary data bring to the prediction, thus reducing
the complexity and noise of the NOx transient emission data
and increasing the accuracy of the LSTM neural network
prediction.

C. PREDICTIVE RESULTS DISCUSSION ANALYSIS
Fig 7 shows the prediction results of the eight model-test
sets, with horizontal and vertical coordinates correspond-
ing to the test and model prediction values, respectively.
The linear function of the test and predicted values were

obtained by linear fitting. It can be witnessed that, the closer
the slope of the linear function to 1, the better the pre-
diction performance. The linear function slopes of RF,
SVR, XGBoost, LSTM, CEEMDAN-RF, CEEMDAN-SVR,
CEEMDAN-XGBoost and CEEMDAN-LSTM were 0.87,
0.88, 0.91, 0.92, 0.92,0.96,0.97 and 0.98, respectively, with
the CEEMDAN-LSTM model having the largest slope, indi-
cating the highest prediction accuracy. At the same time,
it can be noticed that the prediction results are uniformly
distributed on both sides of Y=X, indicating that the pre-
diction error was Gaussian, which means that the prediction
was relatively ideal. Compared to the four base models, the
CEEMDAN decomposed model predictions are closer to
Y=X, and the four base model predictions are more discrete.

Fig 8 presents a detailed comparison of experimental val-
ues and predictions for the RF, SVR, XGBoost, LSTM,
CEEMDAN-RF, CEEMDAN-SVR, CEEMDAN-XGBoost
and CEEMDAN-LSTMmodels. All of the eight models were
able to predict the trends of NOx emissions with reasonable
accuracy, with the largest error occurring during the transition
period, such as when engine conditions changed rapidly.
However, it was found from the endpoints of the Fig. 8a
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FIGURE 8. Comparative analysis of the predictions and measurements of different models. (a) RF. (b)SVR. (c) XGBoost.
(d) LSTM. (e) CEEMDAN-RF. (f) CEEMDAN-SVR. (g) CEEMDAN-XGBoost. (h) CEEMDAN-LSTM.

to Fig. 8d and the data-change intensive section that all the
four underlying models suffer from partial aggregation pre-
diction distortion and inability to accurately predict the high-
frequency components. From the plot, it can be observed that
the base model has more prediction deviation points under
high-load and high-speed conditions due to large fluctuations
in engine operation, resulting in larger or smaller predictions
than the experimental values. Observing Fig. 8e to Fig. 8h,
the four basic models are optimized by the CEEMDAN algo-
rithm, and the model fit is significantly improved, with a
30.50% reduction in RMSE for RF, a 24.86% reduction for
SVR, a 27.26 reduction for XGBoost, and a 40.66% reduc-
tion for LSTM. One of the major advantages of using the
CEEMDAN algorithm is that the predicted values can better
fit the experimental values at various extremes and points of
drastic changes, which is not true in the case of other base
models. Moreover, it has a substantial prediction effect on
NOx emissions, which also shows that CEEMDAN algorithm
is useful to improve the prediction accuracy of transient time
series. Meanwhile, CEEMDAN-LSTM boosts the most and
has the best predictive performance.

To make an accurate quantitative comparison between
all the models, the parameters such as RMSE, R2, MAE,
and NRMSE were evaluated for each model and pre-
sented in Table 3. The CEEMDAN algorithm processed
models that were superior to the four underlying mod-
els, with CEEMDAN-LSTM being the most effective. Due
to the wide range of NOx concentrations in the test data
(0–1701ppm), the RMSE values were relatively large, but
all the predicted values yielded good results. Also, in terms
of prediction accuracy, The CEEMDAN decomposition

optimized model is significantly improved over the base
model. CEEMDAN-RF improves R2, MAE and NRMSE
by 4.38%, 23.32% and 30.50%, respectively, compared to
RF. CEEMDAN-SVR improves R2, MAE and NRMSE by
3.19%, 27.98% and 24.86%, respectively, compared to SVR.
CEEMDAN-XGBoost improves R2, MAE and NRMSE by
3.19%, 27.98% and 24.86%, respectively, compared to SVR.
CEEMDAN-XGBoost vs. XGBoost improved R2, MAE, and
NRMSE by 2.11%, 18.69%, and 27.26%, respectively, com-
pared to LSTM. CEEMDAN-LSTM improved R2, MAE,
and NRMSE by 3.16%, 23.32%, and 37.69%, respectively,
compared to LSTM.

The results of the model stability and error analysis are
shown in Figure 9, and it is observed that the base models all
have some errors of more than 100 ppm, indicating that the
prediction values deviate from the experimental values. After
using CEEMDAN decomposition, the prediction errors of the
four basic models are significantly reduced, among which
CEEMDAN-RF is relatively poorer, but also significantly
improved than the RF basic model. CEEMDAN-LSTM has
the best prediction effect, only a very small part of the
error exceeds 100 ppm, indicating that CEEMDAN-LSTM
model has better prediction in transient prediction. Accuracy
and stability. Table 4 shows the results of some previously
conducted efforts related to the prediction of NOx transient
emissions from diesel vehicles.

Comparing the quantities enlisted in Table 4, it can be
observed that the CEEMDAN-LSTM model has higher pre-
diction accuracy in real road prediction, and the combined
CEEMDAN-LSTM model exhibits improved prediction per-
formance as compared to machine learning models (GBRT,
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TABLE 3. Statistical results of prediction results.

FIGURE 9. Error plot of NOx concentration prediction results.

TABLE 4. Comparison of the results of the NOx transient prediction paper.

MLP) and artificial neural networks. This is due to the fact
that CEEMDAN takes the original high-frequency-variation
time series and decomposes it into multiple subseries in
different frequency domains to reduce the effects of sudden
and multiple changes in NOx concentration. It provides better
prediction of non-stationary, non-linear NOx concentration
data for diesel vehicles, operating under multiple working
conditions and complex environmental surroundings.

V. CONCLUSION
In order to improve the NOx transient emission prediction
performance of diesel vehicles, amethod for estimating diesel
vehicle transient NOx emissions based on the combination of

signal processing CEEMDAN algorithm and LSTM neural
network is proposed. CEEMDANdecomposes the NOx emis-
sion transient data with the engine in an unsteady state into
more regular and smooth subseries, and uses LSTM to predict
each subseries. The proposed model is compared with seven
other models and the following conclusions can be drawn.

1) Among the models covered in the paper, the LSTM
model using deep learning algorithms has better pre-
diction performance. The LSTM neural network has
the best prediction performance among the four base
models and the four hybrid models, which indicates
that LSTM has a better learning ability for complex
time series.
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2) The model using signal processing has higher pre-
diction accuracy than the base model. CEEMDAN-
RF, CEEMDAN-SVR, CEEMDAN-XGBoost and
CEEMDAN-LSTM outperform RF, SVR, XGBoost
and LSTM, respectively, indicating that the decom-
position method is an effective way to improve NOx
transient prediction for diesel vehicles.

3) The CEEMDAN-LSTM model improved the RMSE
compared to RF, SVR, XGBoost, LSTM, CEEMDAN-
RF, CEEMDAN-SVR, and CEEMDAN-XGBoost by
53.08%, 45.58%, 42.48%, 40.66%, 32.50%, 27.58%,
and 20.92%, respectively. It demonstrates that the
CEEMDAN-LSTM proposed in this paper has good
applicability and reliability in the field of NOx transient
prediction in diesel engines.

Overall, the proposed hybrid model can provide more reli-
able and accurate prediction results for instantaneous NOx
emissions from diesel vehicles, thus providing a model basis
for replacing physical NOx sensors. On the other hand, accu-
rate NOx instantaneous emission prediction for diesel vehi-
cles can reduce the pollution emission level and improve the
development and design efficiency of diesel engines.

Although the model has a higher predictive performance
than the general basic model, such as temperature, atmo-
spheric pressure and humidity also have an impact on
emissions. Therefore, the effects of seasonal variation, alti-
tude change, etc. on emission prediction will be considered
in future studies and incorporated into the NOx transient
prediction.
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