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ABSTRACT Weed identification in vegetable plantation is more challenging than crop weed identification
due to their random plant spacing. So far, little work has been found on identifying weeds in vegetable
plantation. Traditional methods of crop weed identification used to be mainly focused on identifying weed
directly; however, there is a large variation in weed species. This paper proposes a new method in a contrary
way, which combines deep learning and image processing technology. Firstly, a trained CenterNet model was
used to detect vegetables and draw bounding boxes around them. Afterwards, the remaining green objects
falling out of bounding boxes were considered as weeds. In this way, the model focuses on identifying
only the vegetables and thus avoid handling various weed species. Furthermore, this strategy can largely
reduce the size of training image dataset as well as the complexity of weed detection, thereby enhancing the
weed identification performance and accuracy. To extract weeds from the background, a color index-based
segmentation was performed utilizing image processing. The employed color index was determined and
evaluated through Genetic Algorithms (GAs) according to Bayesian classification error. During the field
test, the trained CenterNet model achieved a precision of 95.6%, a recall of 95.0%, and a F1 score of 0.953,
respectively. The proposed index −19R + 24G −2B ≥ 862 yields high segmentation quality with a much
lower computational cost compared to the wildly used ExG index. These experiment results demonstrate the
feasibility of using the proposed method for the ground-based weed identification in vegetable plantation.

INDEX TERMS Weed identification, deep learning, image processing, genetic algorithms, color index.

I. INTRODUCTION
Vegetable is considered one of the most nutrient-dense food
all around the world due to its sufficient vitamins, minerals
and antioxidants. Raising living standards boosts the con-
sumption of green vegetables, which makes them a substan-
tial part of our lives and possess great commercial value.
Weeds compete with vegetables for water, sunlight and
nutrients, leaving them prone to insect and disease infesta-
tion [1], [2]. The yield of vegetables decreased by 45%-95%
in the case of weed-vegetable competition [3]. Excessive use
of chemical herbicides results in over-application in areas of
low or no weed infestation and causes environmental impacts
including soil and ground water pollution [4]. Moreover,
organic production of vegetables requires non-chemical weed
control. Thus, hand weeding is still the primary option for
weed control in vegetable plantation at present [5]. With the
labor cost substantially increased, development of a visual
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method of discriminating between vegetable and weed is an
important and necessary step towards ecologically sustain-
able weed management.

A considerable amount of research has been conducted
on various machine vision techniques for weed detec-
tion [2], [3], [6], [7]. Ahmed et al. [8] used Support Vector
Machines (SVMs) to identify six weed species in a database
of 224 images, they achieved 97.3% precision with the best
combination of extractors. Herrera et al. [9] constructed
a weed-crop classifier using shape descriptors and Fuzzy
Decision-Making, and classification accuracy of 92.9% was
obtained in a set of 66 images. Crop is usually much higher
than weed at early growth stages. This height feature was
used by Chen et al. [10] to establish a crop and weed dis-
crimination method using a binocular stereo vision system.
The discrimination between crop and weed was done by a
height-based segmentation method using the depth dimen-
sion analysis. For the relative higher weeds, plant spac-
ing information was utilized to distinguish weed from the
crops.

10940 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5087-6877
https://orcid.org/0000-0003-2143-2438


X. Jin et al.: Weed Identification Using Deep Learning and Image Processing in Vegetable Plantation

In recent years, deep learning has demonstrated remarkable
performance in extracting complex features from images
automatically [11]–[13]. It has been widely employed as a
promising method to image classification and object detec-
tion. There are two categories of methods found in deep learn-
ing for image detection [6]. The first is classifying the object
and then draw bounding boxes around images to make the
object classified. Second category is classifying object pixels,
also known as semantic segmentation [14]. Olsen et al. [15]
used the benchmark deep learning models to classify images
of sixteen different types of weed, with an average clas-
sification accuracy of 95.1% and 95.7%, respectively. dos
Santos Ferreira et al. [16] performed weed detection in
soybean crop images and classified these weeds among grass
and broadleaf by Convolutional Neural Networks (CNNs).
Asad and Bais [17] made performance comparison of
deep learning meta-architectures like SegNet and UNET
and encoder blocks like VGG16 and ResNet-50 on
high-resolution color images of canola fields. Textural feature
analysis and morphological scanning were applied to sugar
beet plant by Khurana and Bawa [18], and then a KNN
classifier was used to classify weed plant from field crop.
Veeranampalayam Sivakumar [19] evaluated and compared
two object detection models, namely, Faster RCNN and the
Single Shot Detector (SSD), over UAV imagery for weed
detection in soybean fields. Faster RCNN was found to be
the best model in terms of weed detection performance using
mean Intersection over Union (IoU) and inference speed.
Osorio et al. [20] presented three methods for weed estima-
tion based on deep learning and image processing in lettuce
crops. One method was based on support vector machines
(SVM), the second method was based on YOLOV3 (you only
look once V3) and the third one was based on Mask R-CNN.
The performances were compared with the estimations of
a set from weed experts and they found that these methods
improved accuracy on weed coverage estimation and mini-
mized subjectivity in human-estimated data.

There is no obvious row spacing and plant spacing in
vegetable cultivation. Vegetables and weeds grow randomly,
which makes weed identification in vegetable plantation
more challenging than crop weed identification. Moreover,
weeds in vegetables will also be mixed in vegetables dur-
ing mechanized harvesting and need to be sorted manually.
A variety of labor costs have pushed up sales prices. So far,
little work has been found on identifying weeds in vegetable
plantation, and previous crop weed identification used to
be mainly focused on identifying weed directly, however,
there is a large variation in weed species, but limited in veg-
etables. Therefore, we proposed methods to firstly identify
and segment the vegetable using deep learning, in particu-
lar the architecture of Convolutional Neural Networks, then
the remaining green objects in the segmented image were
considered as weeds. This strategy can largely reduce the
size of training image dataset as well as the complexity of
weed detection, thereby enhancing the weed identification
performance and accuracy.

The main objective of this research is to develop a weed
identification algorithm based on deep learning and image
processing for robotic weed removal in the vegetable plan-
tation. The specific objectives were to 1) train a model using
deep learning approach that capable of detecting the bound-
ing boxes of vegetables. 2) extract and segment vegetation
falling out of bounding boxes, in this case, weeds by image
processing utilizing color feature.

II. MATERIALS AND METHODS
A. THE PROPOSED METHOD
The approach proposed in this research for the identification
of weeds is composed of two stages. The first stage consists
of the state-of-art CenterNet algorithm [21] for detecting bok
choy in this study. Images of bok choy are collected and used
as input data for training the neural network. The trained
neural network is used for detecting bok choy and draw-
ing bounding boxes around them, which generates bounding
box coordinates and associate class probabilities as the out-
put. In the second stage, a color index-based segmentation
is performed on vegetation (pixels) outside the bounding
boxes using color information, returning visual classification
regarding the presence of weeds in the image. The employed
color index was determined and evaluated through Genetic
Algorithms (GAs) according to Bayesian classification error.
Procedural steps of the proposed method are shown in Fig. 1.
Rest of this section provides details of each step.

CenterNet model training and testing were performed in
the PyTorch deep learning environment using a graphic pro-
cessing unit (NVIDIAGeForce RTX 2080 SUPER, NVIDIA;
Santa Clara, USA). Genetic algorithm was developed and
implemented using the Python language with OpenCV
library. Both algorithms were operated from a computer with
an Intel(R) Core (TM) i9-9900K CPU @ 3.60GHz central
processing unit (CPU).

B. IMAGE ACQUISITION
Images of bok choy or Chinese white cabbage (brassica
rapa spp. chinensis) were acquired using a digital camera.
The vegetable plantation where the images were acquired
is located under the geographical coordinates of latitude
32◦12′38.172′′N and longitude 118◦48′51.87′′E, Nanjing,
China. The original dimensions of the images were
3024 × 4032 pixels. Bok choy images were taken under
various conditions, such as varied illumination conditions
(Fig. 2a; Fig. 2b), complex backgrounds (Fig. 2c), various
growth stages (Fig. 2d).

C. VEGETABLE DETECTION USING DEEP LEARNING
1) IMAGE AUGMENTATION
The training dataset contained 1150 images, these images
were then expanded to 11500 images using data augmen-
tation methods for the purpose of enhancing the richness
of the experimental dataset. The collected images were
pre-processed in terms of color, brightness, rotation, and
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FIGURE 1. Flow diagram for proposed weed detection methodology.

FIGURE 2. Bok choy images taken under various conditions: (a) low brightness, (b) high brightness, (c) complex background, (d) various
growth stages.

FIGURE 3. Image augmentation methods: (a) original image, (b) 180◦ clockwise rotation, (c) horizontal mirror, (d) color balance processing,
(e-g) brightness transformation, and (h) blur processing.

image definition, and the dataset was augmented as shown
in Fig. 3.

2) IMAGE ANNOTATION
Manual annotation was applied by drawing bounding boxes
onto the vegetable (in this paper, bok choy) in the input
images using a custom software LabelImg. Corresponding
XML format label files were generated to train the CenterNet.
80% and 20%of the dataset were used for training and testing,
respectively.

3) TRAINING AND TESTING

The CenterNet [21] model is a cutting edge and brand-new
object detector, which is anchor-free and depends on the
key points estimation. In CenterNet, objects are repre-
sented as a single point, and heatmap is used to predict
the centers of objects. Heatmap is created using a Gaus-
sian kernel and an FCN, estimated centers are derived
from the peak values in the heatmap [22]. Based on
the center localization, object properties such as size and
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TABLE 1. Individual loss definition.

FIGURE 4. Detection model of CenterNet.

dimension can be regressed directly without any prior
anchor [23].

CenterNet is a single-stage detection model, and it does
not require the non-maximum suppression (NMS) as the
post-processing step, thus it provides much faster detec-
tion. For the feature extraction, Hourglass was selected as
backbone architecture in this study. To train the network,
each ground truth key point is transformed to the lower size
of key-point heatmap using a Gaussian kernel, with focal
loss Lk . In addition, CenterNet also predicts the local offset
to reduce the error caused by the size resample from input
image to key-points heatmap. The offset is trained with an
Loff loss. Finally, the object size is regressed from the center
points with loss Lsize. Hence, the loss function (Ldet ) is made
up of three components: key-point loss (Lk ), offset loss (Loff )
and object size loss (Lsize):

Ldet = Lk + λsizeLsize + λoff Loff (1)

where λsize and λoff are constants for loss weighting. In this
paper, we used λsize = 0.1 and λoff = 1 as suggested by the
author. The equations of each individual loss and its meaning
were presented in Table 1.

At inference time, each key point location is given by
an integer coordinate (xi, yi). Afterwards, CenterNet uses
key-point values as a measure of its detection confidence, and
produces a bounding box at location

(x̂ i + δx̂i −
ŵi
2
, ŷi + δŷi −

ĥi
2
,

x̂i + δx̂i +
ŵi
2
, ŷi + δŷi +

ĥi
2
) (2)

where
(
δx̂i, δŷi

)
is the offset prediction and

(
ŵi, ĥi

)
is the size

prediction.
The state-of-art CenterNet was proved to be simpler, faster,

andmore accurate than traditional bounding-box based detec-
tors [21]. In this study, we adopted and implemented the
CenterNet model as the vegetable detector.

The CenterNet detection model is shown in Fig. 4. All
images in the training set are resampled to a fixed size. While
detecting the object, it predicts bounding boxes as well as
their confidence scores.

During the detection process, objects are represented as
a single point - the center point of its bounding box, which
is then obtained from key-point estimation. This anchor-free
strategy used by CenterNet to only detect the object from
the center point and regress the object size enables it to
work more accurate and efficiently, and thereby making it
outperforms most of the detection methods.

D. WEED IDENTIFICATION UTILIZING IMAGE
PROCESSING
Once the vegetable was found, the remaining green objects
falling out of the bounding boxes were marked as weeds.
To extract weeds from other elements of the scene (i.e. soil,
straws, stones, and other residues), color index-based seg-
mentation using a binary-coded genetic algorithms (GAs)
identifying weed in RGB color space for the outdoor field
conditions was studied and implemented. Evaluation was
then carried out by comparing the output of the segmen-
tation result with the widely used excess green (ExG)
index [24].
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FIGURE 5. Image pixel distribution in RGB color space: (a) image pixel distribution of Fig. 2a, (b) image pixel distribution of Fig. 2b,
(c) image pixel distribution of Fig. 2c, (d) image pixel distribution of Fig. 2d.

FIGURE 6. Procedures of a genetic algorithm.

1) COLOR INDEX-BASED SEGMENTATION
Image pixel distribution in RGB color space is shown
in Fig. 5. Segmentation refers to the process of finding a
plane that intersect the RGB color cube, thereby classifying
image into vegetation and non-vegetation pixels. The plane is
defined by the equation:

xR+ yG+ zB = T (3)

In order to separate vegetation from the background, the value
of x, y, z and T need to be determined.

2) GENETIC ALGORITHMS
Genetic Algorithms (GAs) are a family of adaptive search
methods based on the mechanics of natural selection
and natural genetic evolutionary system, which are par-
ticularly efficient in dealing with difficult combinato-
rial search problems without being trapped by local
optima through their parallel exploration of the search
space [25].

The three parameters x, y and z are in the range
(−255, 255), while T is limited to [0, 1024) [26]. This will
lead to 510 × 510 × 510 × 1024 possible combinations.
Thus, an efficient searching algorithm is necessary to solve
this problem. GAs behave well in exploiting accumulated
information of an initially unknown domain in a highly effi-
cient way. Therefore, GA was selected to design a search
engine in this work. Procedures of a genetic algorithm is
shown in Fig. 6. To start the algorithm, an initial population
was generated randomly.

3) CHROMOSOME
An 88-bit binary string, or a chromosome, was used to
represent parameters in Eq. 3 that encoded by permutation
method. The relative locations of the Bytes in chromosome
are crucial because of how GAs choose better combinations
of parameters. Based on the length and range of parameters,
the string was organized with the sign as the first byte in
the chromosome, where 0 means negative, while 1 indicates
positive. The next bytes were binary values of the parameters.
Table 2 shows the structure of chromosome string.

4) POPULATION SIZE
The basic element of a GA is called individual, which is char-
acterized by a set of parameters (variables) known as Genes.
Genes are then joined in a string to form a Chromosome. A set
of individuals is referred to as a population. In this work,
a population size of 200 was used to generate color index
parameters.

5) SELECTION
The probability of an individual is selected for reproduction is
(directly or inversely) proportional to its fitness relative to the
rest of the population. Roulette wheel selection, which selects
the individual with the highest fitness randomly picked indi-
viduals, was chosen and implemented in GA.

6) CROSSOVER AND MUTATION
Crossover exchanges information between the selected chro-
mosomes and generates a new offspring population for the
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TABLE 2. Structure of chromosome string.

next population, which is implemented by cutting individ-
ually the two parent bit strings into two or more-bit string
segments. Offspring bit strings are created from combin-
ing the two-bit string segments undergoing crossing over.
A crossover probability of 0.8 was selected. Mutation pro-
vides random alternation on bit strings in the crossover oper-
ation by shifting, inverting or rotating one or more genetic
elements during reproduction. The mutation rate of 0.2 was
used in this application.

7) EVALUATION
Bayesian classification error (BCE) was applied for function
evaluation. For each given color, BCE (r, g, b) was defined
as:

BCE (r, g, b) =

{
0.5× p2 (r, g, b) , xR+ yG+ zB ≥ T
0.5× p1 (r, g, b) , xR+ yG+ zB < T

(4)

where p1 (r, g, b) and p2 (r, g, b) are the distribution prob-
abilities of weed and background in the color space,
respectively

p1(r, g, b) =
Cw
Ct

(5)

p2(r, g, b) =
Cb
Ct

(6)

where Cw is the number of occurrences of color (r, g, b) in
weed pixels. Cb is the number of occurrences of color (r, g,
b) in background pixels. Ct is the total number of pixels in
the reference images.

Obviously, the theoretical minimum value of BCE (r, g, b)
is:

BCE (r, g, b)min=min (0.5× p1 (r, g, b) , 0.5×p2 (r, g, b))

(7)

Thereby, the definitions of BCE and its corresponding the-
oretical minimum value BCEmin with respect to the reference
images are:

BCE =
Iu∑
i=0

BCE(ri, gi, bi) (8)

BCEmin =
Iu∑
i=0

BCE(ri, gi, bi)min (9)

where Iu is the number of unique pixels in the reference
images.

8) STOPPING CRITERION
The algorithm terminates whenever one of the two conditions
was satisfied:

(a) if the iterations number reached 2000.
(b) if the best fitness value which is equal to the prede-

fined threshold (theoretical minimum error) of acceptance
was located.

When any one of the above conditions was met, the best-fit
chromosome string according to Table 2 was decoded as the
parameters of the color index.

III. RESULTS AND DISCUSSION
A. PERFORMANCE OF THE VEGETABLE DETECTION
In order to adapt the input required for the Hourglass frame-
work, the input images were resized to 512 × 512 pixels.
Batch size was set to 4 and 24 maximal number of epochs
were used for the purpose of better analyzing the train-
ing process. Other parameters (momentum, initial learning
rate, weight decay regularization, etc.) referred to the default
parameters in the CenterNet model. In the training stage,
we followed the training process of the original paper on
CenterNet and the model was trained after setting the training
parameters. To optimize the training loss, the optimization
algorithm Adam was used to update network weights itera-
tive based in training data. The initial values of the training
parameters are shown in Table 3.

For object detection task, the results of testing can be
divided into four types, including true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
In this context, TP represents the bounding boxes containing
target vegetables that are correctly identified; FP means the
bounding boxes without target vegetables that are incorrectly
identified as target vegetables; and FN indicates target veg-
etables not identified as vegetables and no bounding boxes
were drew. The precision, recall and F1 score [27] are used
as the performance indices of predictive ability. Precision and
recall are defined as follows:

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)
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TABLE 3. Initialization parameters of CenterNet.

TABLE 4. Evaluation of different confidence scores.

TABLE 5. GA parameters and performance results.

The F1 score is also one of the significant measures to
evaluate the model. It is a harmonic means of the precision
and recall defined as follows:

F1 =
2× Precision× Recall
Precision+ Recall

(12)

Precision-recall curve (PRC) is made up of precision (ver-
tical axis) and recall (horizontal axis). It is a more objective
judgment criterion for the evaluation of the performance of
the model. Comparison results of the different Intersection-
over-Union (IoU) thresholding values on the integrated test
set measured by PRCs are shown in Figure 7. In this study,
0.5 was adopted as the IoU thresholding value.

In order to determine the thresholding value of the confi-
dence scores, 1580 ground truths bounding boxes from the
test set were used to evaluate the model (Table 4). Five
threshold values (0.5, 0.6, 0.7, 0.8 and 0.9) were used and
tested. 0.6 was found as the optimal value as it yielded a
precision of 95.6% and a recall of 95%.

FIGURE 7. Precision-recall curve with different IoU thresholding values.

Fig. 8 shows the trained model worked on images
acquired under various conditions (Fig. 2). The result images
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FIGURE 8. Detection of vegetables under various conditions using the CenterNet detection model. (a) detection result of Fig 2a,
(b) detection result of Fig 2b, (c) detection result of Fig 2c, (d) detection result of Fig 2d.

demonstrated that the CenterNet detection model can provide
high classification accuracy. Hence, it is feasible to identify
the vegetable using the proposed deep learning model.

Detection of vegetables in the presence of broadleaf weed
is given in Fig 9. It can be seen from the result that the trained
CenterNet model can also distinguish between vegetables
and broadleaf weed. It is also worth mentioning that there
is a large variation in weed species. The traditional way is
to identify weed directly. Therefore, deep learning models
need to be trained with different types of weed dataset for
classification. If there is an unknown type of weed that has
not appeared in the training dataset, then the detection is
most likely to fail. In contrast, the proposed method trains
the model to detect only vegetables. In this way, there is no
need to handle various weed species. Even if we encounter
unknown weeds, it is unlikely to result in misidentification.

Examination of the detection cases also revealed that
a vegetable may be missed due to occlusion (Fig. 10).
In Fig. 10, several vegetables were planted too close and
were completely occluded. Encountering such cases in the
field would result in missing identification. However, this
case can be further improved or solved by adding more
occluded images into the training dataset. Moreover, better
result should be obtained with a more advanced growth stage
due to the fact that at this stage vegetables tend to have smaller
canopies and their leaves do not extend very much [10].

B. WEED SEGMENTATION PERFORMANCE
During the GA experiments, 20 images under various condi-
tions were selected as reference images.Meanwhile, the same
set of four selected unsegmented-images in Fig 8 was used as
test images to evaluate GA color index segmentation results.
The theoretical minimum value BCEmin of the reference
images was 0.113% calculated by Eq. 9. GA parameters and
performance results are shown in Table 5.

Fitness of 0.21% was the best value achieved with BCE
function for all population sizes under 2000 generations.
There was no substantial improvement of the best fitness
when increasing the population size or iterations number.
Thus, the corresponding result of the color index is:{

−19R+ 24G− 2B ≥ 862, weed
−19R+ 24G− 2B < 862, background

(13)

FIGURE 9. Detection of vegetables in the presence of broadleaf weed.

FIGURE 10. The yellow dashed boxes enclose missed vegetable cases.
(a-b) occlusion.

Figure 11 represents the results when the proposed index
was applied to the images in Figure 8, which shows that
weeds were effectively segmented from backgrounds for
images taken under natural conditions. To further verify seg-
mentation performance, evaluation was carried out by com-
paring the segmentation result with the excess green index
(ExG) index.

The ExG index has been widely used and has performed
well in separating plants from background [2], [24]. ExG
index converted color image into greyscale image, which was
easy to transformed into a black-and-white image to derive a
binary image using the method of Otsu [28].

Examination of Fig. 11 indicated that the result obtained
from ExG+Otsu method was corrupted by more noises, and
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TABLE 6. Comparison between ExG + Otsu and the proposed index.

FIGURE 11. Results when the proposed index and ExG + Otsu were applied to the images in Figure 8. (a) the proposed index applied to
Fig. 8a, (b) the proposed index applied to Fig. 8b, (c) the proposed index applied to Fig. 8c, (d) the proposed index applied to Fig. 8d,
(e) ExG + Otsu applied to Fig. 8a, (f) ExG + Otsu applied to Fig. 8b, (g) ExG + Otsu applied to Fig. 8c, (h) ExG + Otsu applied to Fig 8d.

FIGURE 12. Results after area filter (a) area filter applied to Fig. 11a, (b) area filter applied to Fig. 11b, (c) area filter applied to Fig. 11c,
(d) area filter applied to Fig 11d.

was not able to separate weeds from complex background
(Fig. 11g). The performance of ExG + Otsu method was
poorer than the proposed color index in this study as ExGwith
Otsu threshold tends to result in under-segmentation. On the
other hand, ExG segmentation increases in computation time
since it requires two steps.

Table 6 compares the proposed index with ExG + Otsu
and shows their BCEs and image processing times. Based on
BCE metric, it is evident that the proposed index yields high
segmentation quality with a much lower computational cost
compared to the ExG+Otsumethod, which render it suitable

to work in vegetable plantation under natural conditions for
intelligent robotic weed control.

In order to obtain a color index that capable of dealing
with different lighting, several images under various lighting
conditions were selected as reference images during the GA
searching. Fig. 11a, and Fig. 11b represent the segmentation
results when the proposed index was applied to the images
in Figure 8a (low brightness) and Figure 8b (high brightness),
respectively, which shows that weeds were effectively seg-
mented from background for images taken under different
lighting conditions.
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FIGURE 13. Final segmentation with vegetable regions marked with red box (a) vegetable regions marked to Fig. 12a, (b) vegetable regions
marked to Fig. 12b, (c) vegetable regions marked to Fig. 12c, (d) vegetable regions marked to Fig. 12d.

Due to the color similarities between weeds and back-
ground, some background pixels were misclassified as weeds
(noises). These noises generally were spread disjointedly
within the image. An area filter using a thresholding tech-
nique was employed to eliminate the relatively small noise
regions in the binary image. The area of each connected
regions was calculated. Objects smaller than a preset thresh-
old (derived through trial and error) were considered as noise
and filtered (Fig. 12a, Fig. 12b, Fig. 12c, Fig. 12d). Final
segmentation results with vegetable regions marked with red
box are shown in Fig. 13a, Fig. 13b, Fig. 13c and Fig. 13d.

The proposed GA method with fitness function of
Bayesian classification error can also be applied to calculate
color index for the segmentation of other vegetations in agri-
culture area. Likewise, this process can be easily reproduced
by simply replacing the reference images and counting pixel
distribution probabilities of the corresponding targets.

IV. CONCLUSION
In this study, we proposed an approach to identify weeds
in vegetable plantation using deep learning and image pro-
cessing. The algorithm was depicted in two steps. A Cen-
terNet model was trained to detect vegetables. The trained
CenterNet achieved a precision of 95.6%, a recall of 95.0%
and a F1 score of 0.953. Then the remaining green objects
in the color image were considered as weeds. To extract
weeds from the background, a color index was determined
and evaluated throughGenetic algorithms (GAs) according to
Bayesian classification error. In this way, the model focuses
on identifying only the vegetables and thus avoid handling
various weed species.

The contributions of this paper were to: 1) study and
present an approach to identify weeds in vegetable plantation
using deep learning and image processing 2) develop a visual
method of discriminating between vegetable and weed in a
novel and indirect way 3) propose a color index to extract
weeds from the background under natural conditions.

The proposed algorithm in this paper can be used for
robotic weeding, e.g. chemical weeding or mechanical weed-
ing, however, for organic vegetables, only mechanical weed-
ing can be applied. Given the high-level performance in
this work, it was demonstrated that the proposed method
is suitable for the ground-based weed identification in veg-
etable plantation under various conditions, including varied

illumination, complex backgrounds as well as various growth
stages and has application value for the sustainable develop-
ment of the vegetable industry. Future work will be conducted
to identify weeds in in-situ videos. Meanwhile, it would also
be interesting to evaluate the accuracy reached in the detec-
tion of vegetables by optimizing the deep learning model.
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