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ABSTRACT In this paper, to increase the attack success rate, we analyzed the distribution of all collected
keyboard data based on the distance of time and keyboard scancode data, which presents the crucial data from
the previous study. To achieve this, we derived time-distance based features that have higher attack success
rates than in previous studies. The proposed attack method defines 6 features, and evaluates the performance
based on 18 datasets. For performance evaluation, the accuracy, precision, recall, F1-score, and AUC of
Datasets (1 to 3) were compared, and two experiments showed improved overall performance by at least
10.6% and up to 16.1% compared to previous studies in terms of the performance evaluation for each feature,
comparison of variations inmaximum performance, comparison of variations in performance of each feature,
and comparison of variations in overall performance. Moreover, the best accuracy, which represents the
probability of password exposure, was 96.7 %, which suggests that our proposed attack method has a higher
accuracy than the previous study (96.2 %). In conclusion, we demonstrated that password authentication is
neutralized by stealing the user password more effectively. For future research, we will focus on improving
the attack success rate with respect to accuracy and overall performance numbers, using not only machine
learning, but also deep learning.

INDEX TERMS Offensive security, vulnerability analysis, password authentication, user authentication,
machine learning.

I. INTRODUCTION
IoT refers to a technology in which various things with sen-
sors are connected to the Internet or network, and the data
collected by the sensors are shared and utilized via the con-
nected Internet or network [21]. With the advent of the fourth
industrial revolution, the importance of IoT has triggered an
exponential increase in the number of IoT devices, and with
it, security problems have also emerged [22]. These prob-
lems caused by exposure and manipulation of data collected
from sensors with regards to integrity, confidentiality of data
transmitted via the network, and security of sensor data and
privacy information that is stored in a centralized server [23].

The associate editor coordinating the review of this manuscript and
approving it for publication was Patrick Hung.

Since the data transmitted from users and sensors is stored
in the server, its security is particularly important. Among the
security technologies in the server, the user authentication
technology is crucial, since both the sensor and the user
require authentication in order to access the server. The major
user authentication technologies include; password authen-
tication method, a one-time password (OTP) [24], and bio-
metric authentication using iris and fingerprint [25]. Among
them, the password authentication is most widely used due
to its ease of deployment [3]. However, when authentication
information such as ID and password are exposed to an
attacker, the attacker takes over the server, which in turn poses
a threat to the entire IoT [4]. In other words, authentication
information such as ID and password is input from a keyboard
device, and hence when the keyboard data is stolen by the
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attacker, the authentication information is also stolen with
it [1].

Consequently, an attacker can take over the IoT server
using the stolen authentication information and control var-
ious IoT applications and devices that communicate with the
server. For instance, the attacker can use the stolen authenti-
cation information to connect to the IoT server of the victim’s
smart home, and then manipulate all home devices connected
to the server in order to cause damage [26]. Specifically, the
attacker connects to the victim’s smart home IoT server with
stolen authentication information and access a smart home
CCTV connected to the server to pry into the victim’s privacy.
Particularly, this attack poses a security threat that exposes the
privacy.

There are various user authentication methods, such as
password and OTP, in which sensitive information is input
from the keyboard [1]. Although password authentication is
an old method, it is widely used, due to its easy-to-deploy
advantages [2]. In IoT, most PC platforms, such as servers,
use password authentication [3]. For this reason, if a user
password is exposed, core systems in IoT are taken over by
an adversary, causing a serious problem that may lead to
malfunction of control systems or sensors [4]. In other words,
when a password, which is data input from the keyboard
device, is exposed, password-based user authentication is
neutralized.

From an attacker’s point of view, neutralizing user authen-
tication is exceedingly attractive, and various attack tech-
niques have been designed to steal keyboard data. Keyboard
data attack technologies have emerged for the PS/2 interface
keyboard, such as attack using keyloggers [5], direct polling
attack [4], C/D bit exploitation vulnerability attack [6], and
RESEND command utilization attack [7]. Keylogger is key-
board data recording tool that is easily available in the inter-
net. The direct polling attack preempts the acquisition of
keyboard data by periodically checking whether keyboard
data is input or not. C/D bit exploitation vulnerability attack
uses the C/D bit, which is the information for recognizing
random keyboard data generated by a defense tool, to steal the
real keyboard data input from the user [6]. Finally, RESEND
command utilization attack is a replay attack that requests the
keyboard data last sent from the keyboard, and is the most
powerful attack technique [7].

The direct polling attack, C/D bit exploitation vulnerability
attack, and RESEND command utilization attack are cate-
gorized as hardware-level attack techniques. Recent state-of-
the-art attack technologies have resulted into attacks caused
by vulnerabilities in hardware, such as hardware architecture,
i.e. meltdown [16], [17]. This study is also based on a vul-
nerability in which an attacker preempts the keyboard data
input from a user as a result of structural vulnerability in the
keyboard controller as a hardware-level attack. In particular,
we proposed an attack technique that utilizes the latest attack
technology, hardware attack and machine learning [18]–[20].

The attack techniques described above steal user pass-
words by perfectly preempting keyboard data. However,

attack tools used to carry out these attacks cause an overload
on the system, such as CPU usage [8], i.e., abnormal behav-
ior caused by attack tools can be detected by the defender.
Moreover, a keyboard data security technique that prevents
the disclosure of user-input real keyboard data by generat-
ing fake keyboard data has been proposed [8]. Therefore,
the attacker needed improved attack techniques to steal key-
board data input from the user by classifying the fake key-
board data without causing abnormal behavior; accordingly,
a machine learning based keyboard data attack technique was
designed [8]. This attack technique classifies the two data
using machine learning models based on the collected fake
keyboard data and real keyboard data, and the features used in
this technique are the elapsed time and scancode. Namely, the
keyboard data is classified based on the difference between
the elapsed time by the user inputs, and the elapsed time
generated by the defender, and the best accuracy was 96.2 %.

To effectively increase the attack success rate, we ana-
lyzed the distribution of keyboard data based on the dis-
tance with respect to time and keyboard scancode. As a
result, we derived that the real keyboard data has a clustering
feature according to the distance between time-scancodes.
Therefore, in this paper, we defined the distance according
to time-keyboard data for each feature, and features were
derived with a higher attack success rate than in the pre-
vious study that defined only elapsed time and scancode
as features [8]. Finally, we analyzed the distance between
time and scancode by analyzing the distribution of data from
the previous study [8], which extends the knowledge of the
previous study to enhancing the classification performance
of real keyboard data from fake keyboard data. Therefore,
we expected that the performance would be improved if
features that apply the algorithm for measuring distance were
defined. The experiment results showed that the features
defined in this paper have higher accuracy than the existing
attack techniques.

The contributions of this study are as follows:
• The proposed attack method has a higher attack success
rate than the existing attack method. Having a high
attack success rate means effectively stealing keyboard
data input from a user, i.e., the proposed method can
neutralize authentication by effectively stealing the user
password in password authentication.

• We analyzed the distribution of collected data to derive
the characteristics of fake keyboard data generated by
the defense tool and real keyboard data input from the
user, and found that there is a new feature that clusters
according to distance between time difference and scan-
codes.

• Using the features defined in this paper, the proposed
attack technique has a higher accuracy (96.7%) than the
existing attack techniques (96.2%).

• When comparing the average of all performance evalua-
tion results, such as accuracy, precision, recall, F1-score,
and AUC, between the existing attack technique and
the proposed attack technique, the overall performance

10926 VOLUME 9, 2021



K. Lee et al.: Offensive Security of Keyboard Data Using Machine Learning for Password Authentication in IoT

numbers of the two features increased by at least 10.6 %,
and up to 16.1 %. In other words, this paper is novel,
in that it proposed an improved attack technique.

This paper is organized as follows. Section 2 describes
the configuration of the attack system and the defined fea-
tures, and Section 3 describes the dataset configuration and
the experiment results for each defined feature. Finally,
Section 4 concludes the paper.

II. SYSTEM CONFIGURATION AND FEATURE DEFINITION
This section presents the overall configuration of the attack
system applying the proposed attack technique, and describes
the features defined to effectively classify fake data and real
data.

A. ATTACK SYSTEM CONFIGURATION
Fig. 1 shows an attack scenario using the proposed attack
technology. The system for the attack scenario consists of an
attack server, victim home environment, and victim terminal.
The attack server provides features such as malicious code
that an attacker installs in the victim’s terminal, a server that
connects to install malicious code, and a mail server used
for sending spam mails. Through these features, the attacker
attempts to penetrate the victim’s terminal. The victim’s
smart home environment and terminal consists of a smart
home environment that the victim connects to and uses a
terminal associated with the environment. The victim’s smart
home environment is composed of home IoT devices, such
as CCTV cameras, air conditioner, heating device, and a
central server that connects and manage all the devices. The
victim terminal is a device associated with the victim’s smart
home IoT server, and its role in this paper is to input the
authentication information.

The attack scenario was derived as in the environment con-
figured above, and it is shown in Fig. 1. The attack scenario
is a smart home attack scenario that deploys the proposed
attack technology, and consists of system penetration and
stages including; the attack tool installation stage, stealing
information stage, and information abuse stage.
Step 1. System penetration and attack tool installation
We assumed that the attacker prepares an attack tool in

advance in order to steal the victim’s keyboard data input,
as in the proposed method. The attacker establishes an attack
environment that use phishing sites or spam mails to installs
an attack tool in the victim’s terminal in order to penetrate
the victim’s system. Consequently, when the victim connects
to the phishing site created by the attacker or opens the spam
mail, the attack tool to steal keyboard data is installed on the
victim’s terminal or system. This process consists the system
penetration and attack tool installation stage.
Step 2. Stealing information
An attacker can access the victim’s terminal through the

system penetration process highlighted in Step 1 and take
over the system. While that attacker takes control of the sys-
tem, malicious actions, and the attack scenario are performed

FIGURE 1. Smart home attack scenario composition deployed attack
technology.

as highlighted in this paper and can be used to steal important
information input by the victim. From this important informa-
tion, authentication information, used by the victim to interact
with his or her smart home environment could be contained.
Therefore, when the victim accesses the smart home server
and devices, all information that is input from the keyboard
is transmitted to the attacker. This is because the attacker has
already penetrated the victim’s system as Step 1 and installed
attack tools such as a keylogger to steal the victim’s keyboard
data input. This process is the stealing information stage.
Step 3. Information abuse
An attacker steals the victim’s authentication information,

and abuses this information by using it for authentication
as a victim in a smart home IoT server or device. The
attacker invades the server and the device using the victim’s
authentication information stolen as in Step 2, which means
that he/she can access all smart home devices connected to
the server. Finally, the attacker invades the server and the
devices using the victim’s authentication information, posing
a security threat since he/she can perform malicious actions
such as controlling or manipulating the victim’s smart home
environment through the server with these privileges. This
process is termed as the information abuse stage.

Explaining the security threat related to CCTV specifically,
an attacker connects to the victim’s smart home IoT server
and then connects to the victim’s smart home IoT server,
thereby the attacker could perform malicious action, such as
triggering a fire by forcing an air conditioner to extremely
run or prying into the victim’s privacy by stealing images
transferred from CCTV cameras. Finally, when the attacker
steals the victim’s authentication information, all smart home
applications or devices that are connected to the smart home
server are exposed, resulting in a chain of security threats.

Fig. 2 shows the configuration of the proposed attack
technique. The system consists of data acquisition phase,
feature extraction phase, pre-processing phase, dataset con-
figuration phase, machine learning phase, and classification
phase. In the data acquisition phase, both fake keyboard
data and real keyboard data are collected in a situation
where keyboard data protection technology by generating
fake keyboard data is applied in the real-world. In the feature
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FIGURE 2. Configuration of the whole attack system applying the proposed attack technique.

extraction phase, features are extracted to construct a dataset
for learning in machine learning models for data analysis.
In the pre-processing phase, distance is calculated based on
elapsed time and scancode data to use as features. The dataset
configuration phase is a step for constructing datasets for
machine learning by defining features based on the results
of the pre-processing phase. The machine learning phase is a
step for learning data using various machine learning models
based on the configured datasets. Finally, the classification
phase is to determine fake keyboard data and real keyboard
data, by classifying collected keyboard data based on the
learned results.

The experimental design is represented by the attack sys-
tem constructed as shown in Fig. 2, and we verified the
possibility of classifying the keyboard data input by the user
using machine learning models. To achieve this, the exper-
imental design of the attack system consists of data acqui-
sition phase, extraction phase, pre-processing phase, dataset
configuration phase, machine learning phase, and classifi-
cation phase. Conversely, the factorial design is represented
by 7 datasets in dataset configuration. The collected data
possessed the characteristics of clustering data according
to time and distance. Accordingly, using time and distance
as features, various datasets were constructed in order to
enhance the attack success rate. Consequently, the defined
features are dependent variables of the factorial design, which
have a very close relationship with the attack success rate.
However, no interaction exists between them.

B. PROCESS OF EACH STEP
1) DATA ACQUISITION
In the data acquisition phase, both fake keyboard data gener-
ated by the defense tool, and real keyboard data input from the
user are collected for data analysis. The defense tool sends a
0xD2 command to the keyboard controller to generate a scan-
code, which is the keyboard data, and a scancode to be gener-
ated is then passed to the keyboard controller. The keyboard
controller that received the command and the scancode passes

the scancode to the operating system, where the attack tool
collects it (the scancode). On the other hand, the user inputs
a key to the keyboard device, and the keyboard device passes
the scancode corresponding to the input key to the operating
system. The attacker then collects the scancode input from
the user. In this phase, both fake keyboard scancode and real
keyboard scancode are collected by repeating these collection
steps, and we construct a dataset based on the entire collected
data.

To collect keyboard data, we constructed an attack sys-
tem in real-world, collected all data generated and input by
implementing attack tool and defense tool, and utilized them
as datasets. For example, the attack system collects the scan
code input from the keyboard, A1, A2, A3. . .An. In this pro-
cess, defense tool periodically generates random scan code,
B1, B2. . .Bn, to deceive attackers. As a result, the attack tool
collects both the scancode input from the user and the scan
code generated by the defense tool, A1, A2, B1, A3, B2, B3,
A4, B4, B5, A5, . . . , Bn, An. The objective of this paper is to
verify the feasibility of stealing keyboard data using machine
learning. Namely, the attacker steals a password input from
user, which means that the user’s consent is not required.
Therefore, this paper is based on the attack technique, where
the user’s consent is not required.

2) FEATURE EXTRACTION
In the feature extraction phase, features are extracted from
the keyboard data collected in the data acquisition phase for
data analysis. Information that can be used as a feature in the
collected data are the elapsed time (collected time) and the
scancode (keyboard data). The elapsed time denotes the time
when the fake keyboard data is transferred from the keyboard
controller, and the timewhen the user inputs the real keyboard
data from the keyboard device. The scancode denotes fake
keyboard data and real keyboard data. Finally, we define a
binary label for the decision to classify each data.

To analyze the use of elapsed time and scancode as fea-
tures, we analyzed the characteristics based on the distribu-
tion of all data, and Fig. 3 shows the distribution results.
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FIGURE 3. Distribution between elapsed time and scancode of fake
keyboard data and real keyboard data.

In detail, fake keyboard data has no distribution close to zero,
whereas real keyboard data has a distribution close to zero.
Consequently, we can measure these distances by converting
these values into coordinates, and we hypothesized that it is
possible to classify fake data and real data based on distance.

3) PRE-PROCESSING
In the pre-processing phase, distances are measured based on
elapsed time and scancode to extend the feature and improve
the performance of machine learning classification. In this
paper, we used the Manhattan distance and the Euclidean
distance to measure the distance. This phase preprocesses
the collected data to obtain these distances, which are the
distances between the time-scancodes. Namely, we measure
the Manhattan distance and the Euclidean distance between
time-scancodes.

4) DATA CONFIGURATION
In the dataset configuration phase, datasets are configured
for machine learning based on datasets that define the time
difference and the scancode as features by extending the fea-
tures based on the distance obtained from the pre-processing
phase, to compare the performancewith previous studies. The
Manhattan distance involves coordinates according to time
and scancode, and the feature defines the Manhattan distance
between previous and current coordinates.

Euclidean distance is calculated in two ways: one is by
measuring the distance from coordinate (0, 0) to the cur-
rent coordinate, and the second one is by measuring the
distance between the previous and the current coordinates.
Therefore, based on time and scancode, six datasets were
constructed by defining six features of Manhattan distance
between time-scancodes and Euclidean distance between
time-scancodes.

5) MACHINE LEARNING
The machine learning phase learns data to classify fake
keyboard data and real keyboard data using machine
learning models based on six datasets configured in the
dataset configuration phase. However, there are various
machine learning models, which are difficult to differen-
tiate in terms of which model has the best performance.
Therefore, before the experiments, we pondered on the

following question: Which machine learning model has the
best performance? To achieve this goal, we used machine
learning library known as the scikit-learn library. We used
various machine learning models, such as K-Nearest Neigh-
bors (KNN) [9], Logistic Regression [10], Decision Tree [11],
Random Forest [12], gradient boosting regression tree [12],
Support Vector Machine (SVM) [13], and Multi-Layer Per-
ceptrons (MLP) [14] to derive a machine learning model with
the best performance. To learn the data, six datasets were
trained in each training set, and performances were verified
in each validation set.

6) CLASSIFICATION
In the classification phase, the classification performance of
fake keyboard data and real keyboard data are evaluated using
test sets of six datasets, based on the results learned in the
machine learning phase. The indicators for evaluating the per-
formance are accuracy, precision, recall, F1-score, and AUC;
and the performance evaluation results of the six features
defined in this study are compared with the elapsed time
and scancode defined only as features from previous studies,
in terms of the increase and decrease rates. To compare
the performance, we derive the feature with the best overall
performance based on the totals, and averages of increased
and decreased performance indicators.

C. FEATURE DEFINITION
This subsection describes the features defined in this paper.
Previous studies have defined only the elapsed time and
scancode as features, while we define at least four, and
up to six, features. Defined features include the scancode,
elapsed time, scancode difference, time-scancode Manhattan
distance, time-scancode Euclidean distance (i=1), and time-
scancode Euclidean distance (i=2).

1) SCANCODE FEATURE
The scancode feature is all collected data, both fake and
real keyboard data, where the collected keyboard data is a
hexadecimal 1-byte scancode transmitted from the keyboard
device, not letters or numbers. Since the range of single-byte
numbers in hexadecimal is from (0 to 255), we preprocess it
to have a range between (0 and 1) to facilitate the learning
of data in the machine learning models. Real keyboard data
input from a user is manually input by the authors. Fake key-
board data generated by the defense tool generates a random
1-byte value corresponding to the keyboard scancode using
a random number generation function, and the fake data is
generated periodically by a timer that is called every 50 ms.

2) ELAPSED TIME FEATURE
The elapsed time feature is the time difference between when
the scancode is collected, and the time when the scancode
is acquired, in ns units. Since time has an increasing charac-
teristic, it is not suitable to define a feature as a time value.
Therefore, we define the difference between the time when
the previous keyboard data was obtained, and the time when
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the current keyboard data was obtained, as a feature as shown
in (1), and use it as the elapsed time feature. The time dif-
ference is in ns units, and this feature has a value between
(0 and 1), because fake keyboard data is generated every
50 ms.

elapsed time = TC − TP (1)

3) SCANCODE DISTANCE FEATURE
The scancode distance feature is the distance between the pre-
viously collected scancode and the currently collected scan-
code. It is obtained by subtracting the previously collected
scancode value from the currently collected scancode value.
The distance value has a value between (0 and 1) because
the scancode value has a value between (0 and 1). The value
is expressed as a negative number, therefore, to facilitate the
data learning for machine learning models, an absolute value
is obtained, as shown in (2), to have a positive number, and
used as a scancode distance feature. The reason for using
this feature is assumed to be to classify data, because the
scancodes in the keyboard layout are sequential.

scancode distance = |SC − SP| (2)

4) TIME-SCANCODE MANHATTAN DISTANCE FEATURE
The time-scancode Manhattan distance feature is based on
characteristics that the scancode generated by the defense tool
is relatively fixed at 50 ms, while the scancode input from the
user is non-periodic in nature. In other words, the scancode
generated by the defense tool has a time range of about
50 ms, unless the user inputs the key, therefore, this feature
has a specific range for classifying the scancode input from
the user. Moreover, the scancode according to the keyboard
layout has a characteristic that has a sequential value. There-
fore, if these two features are combined and expressed in
one location, it is assumed to have a range for classifying
fake keyboard data from the real keyboard data. To do this,
the elapsed time and the scancode are expressed as X and
Y coordinates, respectively, and the distance between the
previous coordinate and the current coordinate is measured
as the Manhattan distance, as shown in (3) [15]:

Manhattan distance (T, S) =
∑n

i=1
|Ti− Si| (3)

5) TIME-SCANCODE EUCLIDEAN DISTANCE FEATURE
The time-scancode Euclidean distance feature is similar to
the time-scancode Manhattan distance feature, however, uses
the Euclidean distance as an algorithm for measuring the
distance. To measure the Euclidean distance, we calculated
the distance in two ways. One way is by measuring the
elapsed time and scancode as X and Y coordinates, and
calculating the Euclidean distance (i=1) from (0, 0) to the
current coordinate. The other way is bymeasuring the elapsed
time and scancode as X and Y coordinates, and calculating
the Euclidean distance (i=2) from the previous coordinate to
the current coordinate. Therefore, the distance between the

previous coordinate and the current coordinate is expressed
as Euclidean distance, as shown in (4) [15]:

Euclidean distance (T, S) =

√∑n

i=1
|Ti− Si|2 (4)

III. EXPERIMENT RESULTS
This section describes the datasets by defining the features
described in Section 2, and the experimental results of the
performance evaluation by using them for the machine learn-
ing models. In order to demonstrate the superiority of the
proposed attack method, we compare the performance of
the proposed method with the performance of the previous
studies based on the domains for performance evaluation such
as accuracy, precision, recall, F1-score, and AUC.

A. DATASET CONFIGURATION
We constructed six datasets that defined features for each
distance combination based on time difference and scan-
code difference. The defined features are scancode, time
difference, scancode difference, time-scancode Manhattan
distance, time-scancode Euclidean distance (i=1), and time-
scancode Euclidean distance (i=2). Moreover, we also
defined features using the datasets used in [8], which used
three datasets.

Dataset 1 collected 3,522 pieces of data; the number of real
keyboard data was 392, while the number of fake keyboard
data was 3,129. Dataset 2 collected 10,022 data; the number
of real keyboard data was 1,422, while the number of fake
keyboard data is 8,599. Dataset 3 collected 15,046 data; the
number of real keyboard data was 2,281, while the number
of fake keyboard data was 12,764. Accordingly, we demon-
strated six experiment results except for Experiment 1, which
was the previous study that defined only elapsed time and
scancode as features, hence, 18 datasets were used for exper-
iments. Table 1 shows all the configured datasets.

B. PERFORMANCE EVALUATION FOR EACH FEATURE
In this subsection, we describe the performance evaluation
results (Experiments 2-7) of the datasets consisting of six fea-
tures we defined, including Experiment 1, which is the result
from previous study. For performance evaluation, we com-
pared the results of accuracy, precision, recall, F1-score, and
AUC from Datasets (1 to 3). Fig. 4 shows the performance
evaluation results for each feature.

Specifically, in Dataset 1, KNN significantly lowered all
performance results compared to previous studies, while
Decision Tree significantly lowered the performance of
AUC only. On the other hand, all other models have
either similar or higher performance. The accuracy, pre-
cision, F1-score, and AUC have significantly the largest
performance improvements with Random Forest, while the
recall has significantly the largest performance improve-
ment with Gradient Boosting Regression Tree. The accu-
racy, precision, F1-score, and AUC have the largest
significant performance improvements with Random Forest,
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FIGURE 4. Performance evaluation results from Experiments 1 to 7.

while the recall has the largest significant performance with
Gradient Boosting Regression Tree. In Dataset 2, KNN had
lower accuracy, recall, F1-score, and AUC performances
than in the previous studies, except for precision, which
significantly decreased in Decision Tree and Gradient Boost-
ing Regression Tree. On the other hand, accuracy signif-
icantly improved in Logistic Regression, Random Forest,
and SVM, while precision significantly improved in Random
Forest. Recall significantly improved in Logistic Regression,
Decision Tree, Gradient Boosting Regression Tree, SVM,
and MLP, while F1-score significantly improved in Logistic
Regression, Random Forest, Gradient Boosting Regression
Tree, SVM, and MLP. AUC, the last performance indicator
of Dataset 2, shows the biggest improvement in random
forest performance. In Dataset 3, KNN has lower accu-
racy, recall, F1-score, and AUC performance than in the

previous studies, except for precision, which improved in
all performances compared with previous studies. Accu-
racy significantly improved in Random Forest, Gradient
Boosting Regression Tree, SVM, and MLP, and precision
greatly improved in Decision Tree, Random Forest, Gradi-
ent Boosting Regression Tree, SVM, and MLP. Recall and
F1-score significantly improved in Logistic Regression, Ran-
dom Forest, Gradient Boosting Regression Tree, and SVM,
and AUC greatly improved in Decision Tree and Random
Forest.

To prove the superiority of the proposed method, we com-
pared the performance of Experiment 1, experiment from
previous study, with the performance of proposed method,
based on the increase and decrease rates of best performance.
Table 2 shows the comparison results in Dataset 1. The best
performance of Experiment 1 in Dataset 1 was 0.957 for
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TABLE 1. Configured datasets for the experiments.

accuracy, 0.972 for precision, 0.738 for recall, 0.798 for
F1-score, and 0.975 for AUC.

In detail, the accuracy showed the highest improvement
in all the other experiments except Experiment 3, and the
performance of Random Forest in Experiment 6 is greatly
improved. Precision showed the best performance in all
experiments, and the performances of MLP in Experiments
4, 6, and 7 showed the greatest improvement. Recall had
the best performance improvement in all the other experi-
ments except Experiment 5, and the performance of Ran-
dom Forest in experiments showed the best improvement.
F1-score had the best performance in all experiments, and the
performance of Random Forest in Experiment 6 was greatly
improved. Finally, AUC showed decrease in performances
in all other experiments except Experiments 5 and 6, and

the performances of Gradient Boosting Regression Tree in
Experiments 5 and 6 showed the best performance improve-
ments. Overall, the ratios of the Random Forest model are
the highest in accuracy, recall, and F1-score, while precision
and AUC have high ratios of MLP and Gradient Boosting
Regression Tree models, respectively.

Table 3 shows the comparison results in Dataset 2. The best
performance of experiment 1 in Dataset 2 has an accuracy of
0.956, precision of 0.952, recall of 0.791, F1-score of 0.833,
and AUC of 0.968.

Specifically, accuracy has the best performance improve-
ments in all of the other experiments except Experiments
2 and 3, and the performance of Random Forest in Experi-
ment 6 was greatly improved. Precision showed the best per-
formance in all the other experiments except Experiment 4,
and the performances ofMLP in Experiments 2 and 5 showed
significant improvements. Recall had the best performance
improvements in all the other experiments, except Experi-
ments 4 and 6, and the performance of Gradient Boosting
Regression Tree in Experiment 2 was greatly improved.

F1-score had the highest performance improvement in all
other experiments, except Experiments 3 and 4, and the per-
formance of Random Forest in Experiment 6 had the biggest
improvement. Finally, AUC showed the highest performance
decrease in all other experiments, except Experiment 2, and
the performance of Gradient Boosting Regression Tree in
Experiment 2 was greatly improved. Overall, the ratios of
Gradient Boosting Regression Tree are the highest in accu-
racy, recall, F1-score, and AUC, and precision has high ratios
of MLP model.

Table 4 show the comparison results in Dataset 3. The best
performance of Experiment 1 in Dataset 3 had an accuracy of
0.962, precision of 0.969, recall of 0.801, F1-score of 0.863,
and AUC of 0.982:

In detail, accuracy showed the best performances in all
the experiments, and the performance of Gradient Boost-
ing Regression Tree in Experiment 2 showed the great-
est improvement. Precision had the highest performance
improvements in all the other experiments, except Exper-
iment 7, and the performances of Logistic Regression in
Experiments 2, 5, and 6 show the greatest performance
improvements. Recall and F1-score had the best performance
improvements in all experiments, and the performance of
MLP in Experiment 2 showed great improvement. Finally,
AUC showed decrease in performances in all other experi-
ments, except Experiment 3, and the performances of Gra-
dient Boosting Regression Tree in Experiments 2 and 6 had
the biggest improvements. Overall, the ratios of Gradient
Boosting Regression Tree were highest in accuracy, recall,
F1-score, and AUC; and precision had a high ratio in Logistic
Regression.

C. PERFORMANCE COMPARISON OF EACH FEATURE
ACCORDING TO INCREASE AND DECREASE
In this subsection, we describe the performance compar-
ison of the datasets with six defined features based on
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TABLE 2. Comparison of the best increase and decrease performances of previous research and the proposed method (Dataset 1).

TABLE 3. Comparison of the best increase and decrease of performances of the previous research and the proposed method (Dataset 2).

TABLE 4. Comparison of the best increase and decrease performances of the previous research and the proposed method (Dataset 3).

the previous research experiment results, and compare the
performance based on the number of increased items in
Datasets (1 to 3) based on accuracy, precision, recall,
F1-score, and AUC. Fig. 5 shows the results of the perfor-
mance increase and decrease for each feature.

Specifically, based on the Experiment 1 as the previ-
ous study, we marked the increasing items in blue, and
the decreasing items in red. Experiment 2 had the great-
est number of increased items while Experiment 3 had the
greatest number of decreased items. Comparing the perfor-
mance increase and decrease in accordance with the datasets,
except for Experiment 4, all other experiments had the small-
est decrease of items and the highest increase of items in
Dataset 3. Namely, the proposed method was most effective
in Dataset 3. The next best performance increase and decrease
dataset is Dataset 1, except for Experiment 4, while the worst
performance increase and decrease dataset was Dataset 2.
Finally, the most unchanged experiment was Experiment 3;
this presents that the number of items, which are marked in
yellow, is largest.

For a more detailed comparison of the performance
increase and decrease, Table 5 shows the number of items
according to the increase and decrease of the performance by
datasets consisting of six defined features. Experiment 2 had
74 increased items, and 27 decreased items, which mean

TABLE 5. Comparison results of the number of increased and decreased
performance items for each experiment.

that Experiment 2 had the best performance. On the other
hand, Experiment 3 had 52 increased items and 37 decreased
items, which mean that Experiment 3 showed the worst
performance.
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FIGURE 5. Performance increase and decrease comparison results for each feature.

Comparing the number of increased and decreased items
for each dataset, in Dataset 1, Experiments 2 and 6 both had

23 increased items, and 9 and 8 decreased items, respec-
tively, and were the best performances. On the other hand,
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Experiment 3 had 14 increased items and 12 decreased items,
which was the worst performance. In Dataset 2, Experi-
ment 2 had 23 increased items and 12 decreased items,
which was the best performance. On the other hand, Experi-
ments 6 and 7 had 19 increased items and 15 decreased items,
which were the worst performance. Finally, in Dataset 3,
Experiment 2 had 28 increased items and 6 decreased items,
which was the best performance. On the other hand, Experi-
ments 3 and 4 had 22 increased items and 10 decreased items,
which were the worst performance.

Evaluating the datasets according to the number of
increased and decreased items, Dataset 3 had 152 increased
items and 47 reduced items, which was the best performance.
On the other hand, Dataset 2 had 114 increased items and
84 decreased items, which was the worst performance.

D. OVERALL PERFORMANCE INCREASE AND DECREASE
COMPARISON RESULTS
In this subsection, we compare the overall performance of
datasets consisting of six features, based on the experiment
results of previous research. The performance was compared
based on the sum of the decreased scores, the sum of the
increased scores, the sum of the increased average, and the
sum of the decreased average. Fig. 6 shows the compari-
son results of the overall performance increase and decrease
according to each experiment.

Specifically, we described the comparison results of the
overall performance increase and decrease of the datasets
according to each feature. The experiment with the high-
est decrease in Dataset 1 was Experiment 7, with −0.866.
The experiment with the highest decrease in Dataset 2 was
Experiment 2, with−0.488. The experiment with the highest
decrease in Dataset 3 was Experiment 6, with -0.244. The
experiments with the highest average decrease in all datasets
were Experiments 6 and 7, both with an average of−0.51267.
Thus, Experiments 6 and 7 with the highest decrease average
showed the worst performance. The experiment with the
lowest decrease in Dataset 1 was Experiment 2, with−0.623.
The experiment with the lowest decrease in Dataset 2 was
Experiment 3, with -0.294. The experiment with the lowest
decrease in Dataset 3 was Experiment 5, with −0.136. The
experiment with the lowest average of decrease in all datasets
was Experiment 3, with an average of 0.399. Therefore,
Experiment 3, which had the lowest average of decrease,
showed the best performance.

The experiment with the highest increase in Dataset 1 was
Experiment 6, with 0.556. The experiment with the highest
increase inDatasets 2 and 3was Experiment 2, with 0.564 and
0.661, respectively. The experiment with the highest average
of increase in all datasets was Experiment 2 with an aver-
age of 0.568. Thus, Experiment 2 with the highest average
of increase showed the best performance. The experiment
with the lowest increase in Dataset 1 was Experiment 7,
with 0.332. The experiment with the lowest increase in
Datasets 2 and 3 was Experiment 3, with 0.213 and 0.291,
respectively. The experiment with the lowest average of

TABLE 6. Overall increase and decrease IN numbers.

increase in all datasets was Experiment 3, with an average
of 0.327. Therefore, Experiment 3, which had the lowest
average of increase, showed the worst performance.

The experiment with the highest average decrease in
Dataset 1 was Experiment 6, with an average of −0.106.
The experiment with the highest average decrease in
Dataset 2 was Experiment 2, with an average of −0.04.
The experiment with the highest average decrease in
Dataset 3 was Experiment 7, with an average of−0.033. The
experiment with the highest average decrease in all datasets
was Experiment 6, with an average of−0.054. Thus, Experi-
ment 6 showed the worst performance. The experiment with
the lowest average decrease in Dataset 1 was Experiment 3,
with an average of −0.057. The experiment with the lowest
average decrease in Dataset 2 was Experiment 3, with an
average of −0.019. The experiment with the lowest average
decrease in Dataset 3 was Experiment 4, with an average of
−0.018. The experiment with the lowest average decrease in
all datasets was Experiment 3, with an average of −0.032.
Therefore, Experiment 3 showed the best performance.

The experiment with the highest average increase in
Dataset 1 was Experiment 6, with an average of 0.025. The
experiment with the highest average increase in Dataset 2 was
Experiment 5, with an average of 0.024. The experiment
with the highest average increase in Dataset 3 was Experi-
ment 2, with an average of 0.023. The experiment with the
highest average increase in all datasets was Experiment 2,
with an average of 0.022. Thus, Experiment 2 showed the
best performance. The experiment with the lowest average
increase in Dataset 1 was Experiment 4, with an average
of 0.016. The experiment with the lowest average increase
in Datasets 2 and 3 was Experiment 3, with an average of
0.013. The experiment with the lowest average of increase
in all datasets was Experiment 3, with an average of 0.014.
Therefore, Experiment 3 showed the worst performance.

Fig. 7 and Table 6 compare the results of the total increase
and decrease numbers based on the sum of the increased
scores, the sum of the increased average, and the sum of the
decreased average.

Finally, we derived the feature with the best performance
by comparing the overall increased and decreased numbers
of datasets according to each feature. The experiment with
the highest total decreased numbers in Dataset 1 was Exper-
iment 7, with −0.534. The experiment with the highest total
decreased numbers in Dataset 2 was Experiment 7, with
−0.098. The experiment with the highest total decreased
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FIGURE 6. Comparison results of the overall performance increase and decrease according to each experiment.

numbers in Dataset 3 was Experiment 3, with −0.077. The
experiment with the highest decreased average in all datasets
was Experiment 7, with an average of −0.08. Therefore,
Experiment 7, which defined all the six features, namely,
scancode, elapsed time, scancode distance, Manhattan dis-
tance between time-scancode, Euclidean distance between
time-scancode (i=1), and Euclidean distance between time-
scancode (i=2), showed the worst performance.

On the other hand, the experiment with the highest total
increase in Dataset 1 was Experiment 2, with -0.144. The
experiment with the highest total increase in Dataset 2 was

Experiment 5, with 0.093. The experiment with the highest
total increase in Dataset 3 was Experiment 2, with 0.512. The
experiment with the highest increase average in all datasets
was Experiment 2, with an average of 0.148.

Therefore, Experiment 2, which defined four features,
namely, scancode, elapsed time, scancode distance, andMan-
hattan distance between time-scancode, showed the best per-
formance. The second-best experiment was Experiment 5,
with an increase average of 0.093. Experiment 5, which
defined five features, namely, scancode, elapsed time, scan-
code distance, Manhattan distance between time-scancode,
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FIGURE 7. Comparison results according to the total increase and
decrease in numbers.

and Euclidean distance between time-scancode (i=1), had
improved overall performance, compared to previous studies.
In conclusion, only two of the six features defined in this
paper increase the overall performance. This means that using
our proposed attack technique, we can more effectively steal
user passwords.

The limitations of the proposed attack technique are as
follows. In terms of internal validity, the proposed attack
technique needs to access the keyboard controller as hardware
to collect keyboard data, and also, a device driver running in
kernel mode is required for this access. In terms of external
validity, an attacker must transmit data to the outside in order
to learn the collected data.

Finally, we compare and evaluate the performance of the
proposed attack method with the latest attack technologies
using hardware attack and machine learning. One of the
recent studies that compares to the proposed attack goal is
acoustic side channel attack, one of the side-channel attacks.
This attack technique is used when the victim inputs a key
using a keyboard device, and then an attacker guesses the
pressed key based on sound information. One of the methods
for collecting sound information is through a microphone of
attached devices, such as PC, laptop, and smartphone, while
using VoIP such as Skype [28] or Hangout. Various machine
learning models are used to enhance the accuracy of pressed
key information based on the collected sound information.
Therefore, we showed the results of the performance com-
parison between the proposed attack technology and the latest
attack technologies as in Table 7. The following indicators are
presented for purposes of performance comparison; accuracy,
accuracy increase/decrease (+/−), and the required condi-
tions and the attacker’s knowledge.

Accuracy, which is a performance evaluation indicator,
refers to the best accuracy for each research, targeting the
lowercase alphabetic key (a to z) for all existing attack tech-
nologies, and the increase or decrease (+/−) refers to the
increase or decrease of the proposed method, and condition
and knowledge mean the attacker’s knowledge such as typing
style.

In [27], it is based the accuracy using the time-frequency
technique according to the typing styles. The highest accu-
racy of the hint and peck typing style is up to 64%, and the
best accuracy of the touch-typing style is up to 40%. Both
figures are less accurate than the proposed attack method.

TABLE 7. Performance comparison and evaluation results with the latest
keyboard data stealing researches (Alphabet keys (a-z)), Single key
classification).

In [28], only Logistic Regression, which is the model with
highest accuracy among various machine learning models
such as Logistic Regression, Linear Discriminant Analysis,
Support Vector Machine, and Random Forest, is shown,
to have the highest accuracy of about 91.7%. This accuracy is
not significantly different from the proposed attack method,
but there are requirements for this attack method. [28]
assumes that the attacker knows all of the victim’s typing
styles and keyboard models, and used Top-5 Accuracy as a
performance evaluation indicator. Top-5 Accuracy is mainly
used for image data, and is not suitable in a case of keyboard
data, since each key is important for keyboard information.

[29] is based on the transformed audio information using
three signal processing technologies, namely, time-domain
and frequency -domain distance estimates, FFT coefficients,
and MFCC, and the accuracy is derived using machine learn-
ing models such as J48, Random Forest, Linear Nearest
Neighbor Search, SMO, Simple Logistic Regression, and
Multinomial Logistic Regression. The best accuracy for each
signal processing technology is about 67.3% for time-domain
and frequency-domain distance estimates, 39.54% for FFT
coefficients, and 74.33% for MFCC. Among the three tech-
nologies, MFCC has the best performance, but the accuracy
of all three technologies is lower compared to that of the
proposed attack method.

Finally, in order to evaluate the performance of the pro-
posed attack method and the latest attack technologies,
the increase and decrease values were compared based on
the highest accuracy of the proposed method. Compared to
the study in [27], the proposed method improved the perfor-
mance of 32.70%, and 56.70%, respectively, and the average
of 44.7% improved the accuracy performance. Compared to
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the [29], the proposed method improved the performance of
29.40%, 57.16%, 57.81%, 22.37%, and 23.53%, respectively,
with the average improvement being 38.05%. Overall, the
attack method proposed in this paper has an average accuracy
of about 29.75%, which is an improvement from the existing
acoustic side channel attacks. When comprehensively com-
paring and evaluating all technologies, the results show a
performance improvement of at least 5.45% and a maximum
of 148.65%, which means that the proposed attack method
steals keyboard data more effectively compared to latest key-
board attack technologies. Moreover, latest keyboard attack
technologies have limitations in terms of their attack success
due to various conditions. In the case of acoustic side channel
attacks, physical access is required, in addition to the numer-
ous assumptions made, such as the victim’s typing style and
keyboard product model. In addition, since all technologies
use machine learning models, datasets make for important
researches, but there are also limitations in dataset configu-
ration due to the variety of the attack target’s type styles and
keyboard product models.

IV. CONCLUSION
In this study, we evaluated the security of keyboard data,
which is authentication information in password authen-
tication, by defining features to improve the accuracy of
existing attack techniques using machine learning models.
Previous attack technology effectively classified fake key-
board data generated by the defender and real keyboard data
input from the user by defining the elapsed time and scancode
as features, with a best accuracy of 96.2 %. In this study,
we analyzed the distribution of data based on the distance
of time and scancode, which are core data of previous study,
to increase the attack success rate more effectively, and
derived features based on time-scancode distance with higher
attack success rate than previous studies. The proposed attack
method defined six features, and evaluated the performance
based 18 datasets.

We evaluated the performance by comparing the perfor-
mance of each feature, the best performance increase and
decrease comparison, the performance comparison of each
feature according to increase and decrease, and the overall
performance increase and decrease comparison. The per-
formance evaluation for each feature and the best perfor-
mance increase and decrease comparison result presented
improvements of performance, and the best performances
such as accuracy, precision, recall, F1-score, and AUC, for all
features defined in this paper.

The performance comparison result of each feature accord-
ing to the increase and decrease showed Experiment 2 with
the most increased items, and Experiment 3 with the most
decreased items. Experiment 2 had 74 increased items
and 27 decreased items, which was the best performance.
On the other hand, Experiment 3 had 52 increase items and
37 decreased items, which was the worst performance. Over-
all performance increase and decrease comparison results
showed that Experiment 2 had the best increase average in

all datasets, with an average of 0.148. Therefore, in our
approaches, Experiment 2, which defined four features,
namely, such as scancode, elapsed time, scancode distance,
and Manhattan distance between time-scancode, had the best
performance.

Moreover, compared with the previous studies, two of the
six features defined in this paper increased the overall perfor-
mance. This means that we can more effectively steal pass-
word input from users by using our proposed attack method
in terms of offensive security. Consequently, we consider that
this paper has the novelty of improving the performance of the
attack success rates.
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