IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 30, 2020, accepted January 1, 2021, date of publication January 8, 2021, date of current version January 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3050174

Federated Intelligence for Active Queue
Management in Inter-Domain Congestion

CESAR A. GOMEZ", (Member, IEEE), XIANBIN WANG “, (Fellow, IEEE),
AND ABDALLAH SHAMI ", (Senior Member, IEEE)

Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada

Corresponding author: Cesar A. Gomez (cgomezsu@uwo.ca)

ABSTRACT Active Queue Management (AQM) has been considered as a paradigm for the complicated
network management task of mitigating congestion by controlling buffer of network link queues. However,
finding the right parameters for an AQM scheme is very challenging due to the dynamics of the IP networks.
In addition, this problem becomes even more complex in inter-domain scenarios where several organizations
interconnect each other with the limitation of not sharing raw and private data. As a result, existing
AQM schemes have not been widely employed despite their advantages. Therefore, we present a solution
that tackles the challenges of tuning the AQM parameters for inter-domain congestion control scenarios
where the network management goes beyond an organization’s domain. We then introduce the Federated
Intelligence for AQM (FIAQM) architecture, which enhances the existing AQM schemes by leveraging the
Federated Learning approach. The proposed FIAQM framework is capable of dynamically adjusting the
AQM parameters in a multi-domain setting, which is hard to achieve with the conventional AQM solutions
working alone. To this end, FIAQM uses an artificial neural network, trained in a federated manner, to predict
beyond-own-domain congestion and an intelligent AQM parameter tuner. The evaluation results show that
FIAQM can effectively improve the performance of the inter-domain connections by reducing the congestion
on their links while preserving the network data private within each participating domain.

INDEX TERMS Active queue management (AQM), AQM tuning, congestion control, congestion prediction,

federated learning, inter-domain communication, machine learning.

I. INTRODUCTION

Communication over the Internet relies on data packet trans-
mission across a selected network path, while involved over
the complex interconnected network elements. To achieve
this, different network elements of the Internet, e.g. routers,
usually first place the received data packets in queues, where
they wait their turn to be transmitted over the next deter-
mined link. When there are too many queued packets awaiting
transmission, the buffers of the network element’s interface
may overflow and the involved link is said to be congested.
Therefore, determining the proper buffer size is deemed as a
key component to evade packet losses along network paths
when congestion appears. While a large buffer could reduce
packet losses, excessive buffering could lead to increased
latency, as packets have to wait longer in the queues. This
phenomenon is known as bufferbloat and causes poor per-
formance at bottleneck links of today’s Internet [1]. This
effect can be tackled by the network elements through Active
Queue Management (AQM) methods, which are designed to

The associate editor coordinating the review of this manuscript and

approving it for publication was Long Wang

10674 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

control the flow of the arriving packets and avoid network
congestion. To achieve so, AQM schemes determine whether
there is incipient congestion on the involved link and choose
either dropping specific packets or marking them with “expe-
rienced congestion” labels. The main advantage of drop-
ping packets with AQM rather than with tail-drop queues,
i.e. non-AQM buffers, is to eliminate the unnecessary global
synchronization of flows when a queue overflows. In this
way, an AQM scheme can decide to drop packets when
the network experiences incipient congestion in a controlled
fashion. As a result, packets experience shorter delays,
as their flows are regulated by the AQM mechanism in
use, and the throughput is improved. Despite the advan-
tages of AQM, it is not widely adopted on the network
elements of the Internet Service Providers (ISPs), since the
AQM mechanisms have parameters that might be difficult
to tune in dynamic environments. Also, network elements
with more memory available in the market have created the
misconception that the larger the buffers, the better.
Accordingly, we proposed an intelligent method for imple-
menting AQM in our previous work [2] by exploiting the stan-
dardized Explicit Congestion Notification (ECN): a process

VOLUME 9, 2021

https://orcid.org/0000-0002-2666-947X
https://orcid.org/0000-0003-4890-0748
https://orcid.org/0000-0003-2887-0350
https://orcid.org/0000-0001-6695-6054

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

IEEE Access

Border Router Border Router
AS1 AS2

N |
/]

Domain 1 Domain 2

Domain 3 Domain 4

Border Router Border Router
AS3 AS4

—— Inter-domain Links

FIGURE 1. Example of an inter-domain communication scenario.

of making incipient congestion visible by exposing the pres-
ence of congestion on a path to network and transport layers
through codepoints and flags in both IP and TCP headers. Our
goal was to boost the alleviation performance that AQM tech-
niques provide at bottlenecks by dynamically adjusting the
AQM parameters and considering the specific network con-
ditions. Therefore, we introduced a Machine Learning-based
solution that comprises a Recurrent Neural Network to pre-
dict congestion and an AQM parameter tuner based on the
Q-learning algorithm. The proposed scheme, however, was
delimited to scenarios where only one router performs the
intelligent AQM process (IAQM). For instance, a setting
where an edge router predicts the congestion ahead, based
on the ECN feedback that it receives from the core network,
and then tunes its AQM parameters. As a result, the IAQM
scheme dynamically reduces the Round-Trip Time (RTT) and
increases the throughput of the connections being handled by
the edge router.

In this work, we address the problem of congestion control
by significantly enhancing existing AQM methods and taking
into account the routers involved in inter-domain communi-
cations. This problem turns out to be even more challeng-
ing than a single-domain communication scenario, as each
border router may not be able to receive ECN feedback in
order to predict the congestion ahead. Additionally, a kind
of cooperative mechanism is needed to achieve an effective
Machine Learning solution where the privacy is paramount:
an inter-domain link involves routers at several organizations
or geographical regions, which means the possibility of hav-
ing one or more domains not willing to share their data. That
is why these domains are also known as Autonomous Systems
(ASes), which consist of ISPs or Content Providers (CPs)
communicating each other through an Internet Exchange
Point (IXP), as depicted in Figure 1.

Managing congestion is an essential factor for an IXP and
its connecting ASes. However, despite experiencing signifi-
cant and persistent congestion at multiple peering links, both
ASes and IXPs have no primary means of controlling conges-
tion. That is, as the traffic sources and destinations are beyond
its domain, a border router or an IXP cannot rely on the
traditional congestion notification mechanisms such as ECN
[3]. On the other hand, understanding the performance of

VOLUME 9, 2021

the network elements requires measuring several parameters,
such as utilization, loss rates, and variation in latency. Oper-
ators that control IXPs could measure such parameters for
their links, although accurate assessment of these parameters
may require cooperation of the operator at the other end of
the links [4]. Moreover, the operators do not usually share this
kind of information with their counterparts. For these reasons,
we propose to apply the Federated Learning (FL) paradigm
to intelligently address the inter-domain congestion problem.
FL is an approach where multiple entities collaborate in
solving a Machine Learning problem, under the coordination
of a central server or service provider [5]. To achieve the
learning objective, each entity participates without exchang-
ing private raw data, which are stored locally. The original
emphasis of FL was on cross-device settings, i.e. mobile and
edge devices applications [6], but FL has been applied to an
increasing number of scenarios where a few and relatively
reliable entities, such as the data centers of several organiza-
tions, collaborate to train a model. These kinds of scenarios
are known as cross-silo settings. The main difference between
the cross-device and cross-silo settings is that, in the former,
a very large number of devices participate in the learning and
their participation is likely to occur once in a task. On the
other hand, in cross-silo settings only a small number of ele-
ments (typically, 2 to 100) contribute to the learning process
by training a model on siloed data. In both cases, the data are
generated locally and remain decentralized. At the same time,
a central entity orchestrates the training process and receives
the contributions of all entities. These characteristics make
FL conceptually different from the decentralized and dis-
tributed learning approaches. A more detailed comparison of
the FL settings versus the distributed and peer-to-peer learn-
ing can be found in [5]. It is also important to highlight that,
different from many Machine Learning approaches, in FL
the data are usually considered as unbalanced and not inde-
pendently or identically distributed (non-i.i.d.) because each
entity has different amount of local data to train on and these
data rely on particular entities’ behaviours [6]. Furthermore,
depending on the distribution characteristics of the data,
FL can be categorized as horizontal or vertical. In horizontal
FL scenarios, the local datasets have the same feature space,
but may have different sample ID space. In contrast, vertical
FL refers to those cases where the datasets have the same
sample ID space, but dissimilar feature space [7], [8].

Accordingly, in this work we propose an intelligent scheme
for AQM where the inter-domain congestion is predicted
based on the horizontal FL approach. That is why we
introduce our solution as the Federated Intelligence for
AQM (FIAQM), whose key contributions are summarized as
follows:

o A proof-of-concept study on non-static AQM.
We demonstrate how the idea of dynamically tuning
AQM parameters may boost the adoption of AQM
mechanisms to mitigate the Internet’s bufferbloat effect.

o An intelligent congestion control framework that
is compatible with other solutions. Our proposed

10675

IEEE Access

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

Learning
Orchestrator

,/ >
Domain 1 Domain 2
- 7 N
Border Router Border Router
AS1 AS2
Intra-domain Inter-domain ___ Aggregated Model
Links Traffic Link Traffic Parameters Transfer

FIGURE 2. Typical scenario for the proposed FIAQM scheme.

FIAQM leverages the benefits of using existing AQM
mechanisms to control congestion over inter-domain
links, which are not managed by a single party.

« A multi-domain learning approach in which local
network data remains private. As in inter-domain sce-
narios privacy is a major concern, FIAQM allows the
cooperation of two or more ASes to achieve common
goals in terms of congestion by avoiding the sharing of
raw data.

o A practical application of Deep Learning and FL
in networking. We propose an adaptation of the FL
algorithm that, along with a tailored neural network,
effectively learns congestion levels of the link queues
involved in cross-domain connections.

« Anopensource environment for real-time evaluation.
Finally, we evaluate the performance and feasibility
of the FIAQM scheme in a setting that emulates a
realistic inter-domain network communication, whose
code is publicly available for further research and
development.

Overall, a typical scenario for FIAQM comprises two bor-
der routers, which belong to different ASes, and an IXP. Each
border router has intra-domain link buffers corresponding to
the interfaces that connect them to other network elements
within their own domains, as depicted in Figure 2. Both bor-
der routers exchange the aggregated parameters of the model
to be trained with a central server, known as the Learning
Orchestrator in our solution. We propose to place the Learn-
ing Orchestrator at the IXP premises, since it is supposed to
be a neutral player. In this way, FIAQM applies FL to predict
the IXP congestion based on the buffer statistics of the intra-
domain links of the border routers involved (denominated as
the Local Learners). The predicted IXP congestion is then
used for the AQM parameter tuning of the inter-domain link
buffers, similar to the tuning process introduced in [2].

The remainder of this paper is, then, organized as follows.
We review the related work on inter-domain congestion in
Section II. In Section III, we provide further details about the
FIAQM architecture, whose evaluation performance results
are discussed in Section V. Conversely, we explain the details
of our experimentation design in Section IV and, finally,
the conclusions and future work are presented in Section VI.

10676

Il. RELATED WORK

The inter-domain congestion control problem has been
addressed from different perspectives. One common
approach is to tackle the routing bottlenecks. These bottle-
necks are inevitably caused by the Border Gateway Protocol
(BGP), since the border routers tend to forward packets along
the path with minimal routing cost. As a result, routing
bottlenecks concentrate on a few links and happen to be
asymmetrical, i.e. the inbound congestion does not corre-
spond to the outbound one on the same link [9]. Therefore,
the solutions for routing bottlenecks proposed in the literature
mainly rely on dynamic load balancing, which can operate
either on inter-domain or intra-domain links.

To this end, authors in [10] present a system to improve the
ISPs network throughput by jointly optimizing intra-domain
routes and inter-domain routes. Their solution provides an
ISP and its neighbor CPs with a network abstraction on
a virtual switch that allows to program requirements in a
collaborative way. Conversely, an architecture for an efficient
inbound traffic control based on the Software Defined Net-
working (SDN) paradigm is proposed in [11]. This archi-
tecture exploits the features of the OpenFlow protocol for
network traffic engineering tasks in inter-domain routing.
Similarly, Chiesa et al. describe the benefits of using the
SDN approach for traffic engineering at IXPs. The authors
explain how SDN enables such a network programmability
that permits the members of an IXP to optimize their traffic
load balancing and overcome the limitations of BGP [3]. Con-
sidering the privacy preservation in SDN-enabled scenarios
for inter-domain traffic, authors in [12] propose a solution
to avoid incorrect forwarding behaviours without exposing
private routing information among domains. Likewise, [13]
presents a mechanism for a dynamic end-to-end Quality of
Service (QoS) coordination in multi-domain scenarios. This
mechanism processes information in a distributed manner
at the domain level and optimizes the routing by adaptively
learning the results of past QoS requests.

It is important to highlight that a routing bottleneck is
essentially different from a bandwidth bottleneck. The latter
refers to the link with the smallest available bandwidth on
a route, while the former is related to the number of routes
carried by a link regardless the provisioned link capacity [14].
Even though they do not necessarily imply each other, routing
bottlenecks can derive in bandwidth bottlenecks, which are
the ones that ultimately cause the congestion that affects
the networks’ communication performance. For this reason,
we address the inter-domain congestion problem with a focus
on the bandwidth bottlenecks. This does not mean that our
method cannot be used along with some of the described solu-
tions for routing bottlenecks. Nevertheless, how to combine
both approaches is beyond the scope of this paper.

With regards to our learning setting based on buffer statis-
tics, there is some literature about the use of queue mea-
surements for congestion control improvement. For instance,
authors in [15] propose a fine-grained queue measurement
solution in the data plane for immediate control actions,

VOLUME 9, 2021

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

IEEE Access

Border Router Domain 2
| Federated | link buffers
Training ‘
!
Stats | Congestion K bl Congestion Stats.
Collection Prediction Prediction Collection

Inter-domain link § § Inter-domain link
AQM Tuning AQM Tuning

FIGURE 3. The FIAQM architecture for inter-domain congestion control.
Main modules are replicated within each border router.

Border Router Domain 1

Intra-domain
link buffers

IXP

which can support the deployment of new and more sophis-
ticated AQM schemes. Using In-band Network Teleme-
try (INT) and traffic snapshots (fixed-sized time windows of
traffic on a queue), their solution can determine the flows
that consume large portions of a queue. Similarly, Li ef al.
propose a High Precision Congestion Control mechanism,
which leverages the INT metadata reported by the routers
along the path [16]. The metadata includes egress port met-
rics such as timestamp, queue length, transmitted bytes, and
link bandwidth capacity to avoid congestion in high-speed
networks. Although we acknowledge the value of the INT
framework and its metadata, we consider not using INT in
this work because it aims to monitor the performance of a
core network within a single domain. However, we believe
that the application of the INT metrics for the solution of an
inter-domain problem, like the one presented in this paper,
could be a promising direction for a future work.

Ill. ARCHITECTURE OF FIAQM

In this section, we describe our solution in detail. Primarily,
FIAQM consists of two principal modules: a congestion pre-
dictor and an AQM parameter tuner, like the TAQM solution
presented in [2]. In FIAQM, however, the congestion ahead
is predicted by means of the FL approach. This prediction
is then utilized for the AQM parameter tuning of the inter-
domain link buffers in both directions. Figure 3 depicts the
overall architecture of FIAQM and the following subsections
explain each component, respectively.

A. FEDERATED CONGESTION PREDICTOR

The first of the main components of the FIAQM architecture
is a congestion predictor based on a Long Short-Term Mem-
ory (LSTM). An LSTM is a type of Recurrent Neural Net-
work and deemed as an effective tool for time-series forecast.
Its inputs include both the current sample and the previous
observed sample, such that output at time step t — 1 affects the
output at time step 7. Each neuron of the LSTM has a feedback
loop that returns the current output as an input for the next step
[17]. For these reasons, FIAQM employs an LSTM to predict
congestion in a federated manner by considering drop rates at
each queue per time interval as inputs. Hence, the drop rate x
in a time interval i is calculated as follows:

D,
1
Xp=—"

=P, ey

VOLUME 9, 2021

g LST™M g LSTM d LSTM >
Dropout Dropout
20% 20%
Linear

FIGURE 4. LSTM network structure for the FIAQM'’s congestion predictor.

where D is the number or dropped packets and P the total
packets arriving at the queue within each time interval. Addi-
tionally, we rearrange the vector of drop rates as an input
matrix X corresponding to ten time steps and an output vector
y of one time step, such that:

Xto Xpo 0 X Xt1o
Xty Xy 0 Xy Xty

X=)) . o Yy=| . 2
Xiv—o Xiv—o T Ky Xin

where N is the total number of local samples. The ratio-
nale behind rearranging the samples in ten time steps is to
improve the performance of the predictive model by having
additional context. In this way, the estimation of drop rates
contemplates more prior observations. Note that this data
rearrangement is performed with the available samples of
each queue participating in the FL training.

The structure of the LSTM is similar to the one described
in [2] and encompasses L = 3 hidden layers with 30 neurons
each. The output layer employs a linear activation function
while the hyperbolic tangent (tanh) is used as the non-linear
activation function at the hidden layers, since it provides
a three-state decision making (negative/neutral/positive) on
what information to add or remove to/from the hidden cells
[18]. Also, a dropout regularization of 20% is included at
the output of each hidden layer, except the last one, in order
to avoid model’s overfitting, as shown in Figure 4. More
specifically, each hidden layer I € [0, L) of the LSTM
network computes the following function for each element
in the input sequence [19]:

i = tanh (W + b5+ WRD +00))

where hgl) is the hidden state at time 7, Wi(h[) and bgl) represent
the weight and bias of the block input at layer /, and W}EQ
and bg}); are the weight and bias values of the hidden cells.

D)

Correspondingly, hg | is the hidden state of the layer at time

t — 1 and the input of the [-th layer, xl(l), is the hidden state
of the previous layer hﬁlil) multiplied by the dropout of the
previous layer, 8,(1_1) = 0.2. Conversely, each output in the
sequence is computed at the output layer through a linear
function, as follows:

e = Wo (B D40,))

where W, and b,, are the weights and bias of the output layer,
respectively, and hEL_l) is the state of the last hidden layer.
The Learning Orchestrator performs the global training of
the LSTM model, which is used for the congestion prediction
of the inter-domain link in each direction. In this way, the pro-
posed LSTM-aided Federated Congestion Predictor (FCP)

10677

IEEE Access

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

functions as follows: each router has a fixed local dataset
that differs from the other router’s dataset, since they might
have different number of intra-domain links with dissimilar
levels of queue drop rates. At the beginning of each learning
round, the Learning Orchestrator sends the current global
model state to the routers, also known as the Local Learners in
our solution. Next, each router performs a local computation
based on the global state and its local dataset and, afterwards,
sends an update to the orchestrator. Finally, the Learning
Orchestrator applies the updates received from the Local
Learners to its global state and the learning process repeats.

Due to the nature of our problem, we employ a cross-silo
FL since individual routers or group of routers might belong
to different proprietary networks. Our learning model is
intended to be trained across these silos without exchanging
raw data, which may represent ASes private information or a
single organization’s data that cannot be centralized between
different geographical regions. Additionally, we consider the
routers data as unbalanced and non-i.i.d., as well as the
synchronous model updates that proceed in rounds of com-
munication, as presented in [6]. The canonical FL problem
involves learning a single, global statistical model from data
stored on remote entities. For our problem, we aim to learn
this model under the constraint that border routers data are
stored and processed locally, with only intermediate updates
being periodically communicated to the Learning Orchestra-
tor. In particular, the goal is to minimize the objective function
for the global learning [8], as follows:

M
min F (w) :=) piFi (w) (5)
k=1

where w represents the model parameters, i.e. the weight and
bias values of the hidden and output layers of the LSTM net-
work. In our scenario, M is total number of queues involved in
the congestion prediction process and py is the relative impact
of each queue. On the other hand, F} is the local objective
function for the learning on the k queue, as follows:

Nk
Fi= o 2 fiwi) ®)
Jie=1

where ny is the number of samples available locally. To solve
this federated optimization problem, we adapt the Federated
Averaging (FedAvg) algorithm presented in [6]. Accordingly,
the algorithm combines a local stochastic gradient descent
computed with the data of each queue at each border router
and a model averaging performed by the Learning Orchestra-
tor. The adaptation of the FedAvg algorithm for our proposed
FCP is detailed in Algorithm 1, where 5 is the learning rate,
which is assumed to be the same for all the Local Learners.
It is important to highlight that dix contains the number of
data samples with non-zero values. The rationale behind this
idea is that queues with higher drop rates affect the parameter
averaging with higher values of relative impact pg. In this
way, the federated LSTM model learns more from those
queues with non-zero drop rates for the congestion prediction.

10678

Algorithm 1 Federated Congestion Predictor (FCP)
1: g < set of queues with non-zero drop rate data

2: foreachroundr =1,2,3,...,T" do

3: u <— random subset, u € g

4. for each queue k = 1,2, ..., M € uin parallel do

5: get w from Learning Orchestrator

6: Wi < W

7. di < count n;Vx;, # 0

8: for each local training iterationz = 1,2, 3, ..., Z do
9: W < wr — nVFy

10: return wy and di to Learning Orchestrator

11 pi edk/zﬁildk,‘v’k

12: w1 < Y00, pewk

On the contrary, the queues with a few or zero samples of
congestion data make a little or no contribution to the learning
process.

B. AQM PARAMETER TUNER

In general, the parameters of the AQM algorithms are set to
values that yield a reasonable performance for the typical net-
work conditions. However, AQM mechanisms are expected to
allow parameters adjustment depending on the specific char-
acteristics of a network and their interactions with other net-
work tasks over time [20]. Consequently, we embrace the idea
of adjusting the AQM parameters according to the network’s
changing circumstances, so that the performance is dynam-
ically improved, as well. Nevertheless, the achievement of
this goal can end up in a very complex job and that is the
main reason why network managers prefer not to use AQM
at all. Another point to consider is the right metric to eval-
uate the effectiveness of a resource allocation/configuration
in a network. The key metrics to be considered for queue
management are, usually, throughput and delay. Accordingly,
the objective is to minimize the delay and maximize the
throughput. It turns out that, trying to increase the throughput
by allowing as many packets into the links as possible, results
in a rising length of the queues and, therefore, longer delays.
As an alternative, a separate metric that combines throughput
and delay can be taken into account. That is why the ratio of
throughput, 7)., to measured RTT, mgrT, has been proposed
by network designers as a metric to evaluate the effectiveness
of a resource configuration, such as the AQM parameters.
This throughput-to-delay ratio is also known as the power
of the connection, P. = Ty / mRtT, and, even though this
metric has some limitations, it is widely accepted for eval-
uating the network resource configuration effectiveness [21],
especially the queue management for congestion control [22].
Maximizing P, is, however, a non-trivial task considering the
network dynamics.

For the reasons explained above, we model the AQM
parameter-tuning problem as a Markov Decision Process
(MDP). In the FIAQM scheme, the decision process is based
on the inferred congestion ahead, i.e. the output of the FCP

VOLUME 9, 2021

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

IEEE Access

Algorithm 2 AQM Tuner
. § < set of discretized values of predicted congestion
A < set of AQM target parameter values
0(S, A) < Q-table initialization
& < exploration/exploitation rate, ¢ € [0, 1]
s < get state from FCP, s € §
for each period T =1, 2,3, ... do
if random number < ¢
then a < select a random action, a € A
else a < argmax,0(s, A)

R AR R ol b

10: change parameters according to a
11: mRTT < measure delay

12: Tpur < measure throughput

13: R < P,

14: 5 < get state from FCP, 5 € §
15: update Q(S, A)

16: s <5

described in Section III-A. In this way, we define the states S
as a set of discrete levels of congestion that the inter-domain
link will be likely to experience, the set of actions A comprises
specific values of the target parameter of the AQM algorithm
in use, and the reward R depends on P.. In our scenario, each
border router acts as the agent that makes the decisions. This
way, our method can adjust the target parameter so that more
packets are dropped proactively and in a controlled manner at
the sending border router, as they will be likely dropped ahead
in the other domain. In other words, the AQM parameter
tuner is modelled as an MDP with the objective of finding
an optimal behavior that maximizes P.. To do so, we utilize
the Q-learning algorithm [23], which defines the function
Q(S, A), representing the quality of a certain action in a given
state, and that is defined by:

Q(S.4) :=0(s,a) +a[R+ ymaxgQ 5,a) — Q (s, a)]
(N

where @ € [0, 1] is the learning rate and the discount
factor y e [0, 1] describes the preference of the agent for
current rewards over future rewards. This equation charac-
terizes the maximum future reward of present state s and
action a in terms of immediate reward and maximum future
reward for the next state 5 and action a. In this manner,
the Q-learning algorithm iteratively approximates the func-
tion Q(S,A), as shown in Algorithm 2. More specifically,
our AQM parameter tuner observes current and next states as
levels of congestion, i.e. the predicted drop rates of the link
buffer at the router in the destination domain. Additionally,
both current and next states are discretized to delimit the
complexity of the environment. Finally, the actions are a set
of predefined values for the target parameter of the specific
AQM in use. As the agent does not know what action to take
at the beginning, there is an initial stage of exploration, which
depends on the parameter ¢. The value of this parameter
determines if the Q-learning algorithm prefers to explore

VOLUME 9, 2021

4 Learning
Orchestrator

wa1, Waz, .. Wak 4

- ~
. S

4 ~
o7 VWag DRest "~
" .
é Link 1 g
% *; <0 | | DI o o -— g ?
] = = Ef
£ Quaet | 8 e 3 k2 33
%‘2 L) —~F o -— 5 g
5 g - Queve2 £ IAQM = - 57
s : = . = o Vo
5 : = IXP Switch s | Lnkk- 3
° e In- | 1) ; (3R a— g
", — @
Border Router Border Router
Domain 1 Domain 2
Local Parameters Averaged Parameters IXP Queue Global Drop Rate
Transfer Update Data Estimate

FIGURE 5. Implementation of the FIAQM for experimentation.

random actions rather than exploit the historical data to take
an action.

IV. EXPERIMENTATION DESIGN

In order to evaluate our FIAQM scheme, we set up a network
emulation environment on Mininet to run experiments and
obtain more realistic results. We chose Mininet as the tool to
validate our prototype since it allows a flexible SDN environ-
ment with high degree of confidence for real-time tests [24].
Moreover, Mininet eases the sharing of our solution, which
could be deployed into a real production network using our
code and test scripts, publicly available at [25]. Accordingly,
our emulation network consists of two border routers and
20 hosts connected to each one, forming a dumbbell topology.
In this way, there are 20 pairs of hosts generating traffic
from one domain to the other (hosts of each pair are in
different domains). Figure 5 depicts the implementation of
our experimentation setting. Note that for simplicity, only one
direction of the learning process for the congestion prediction
is depicted, that is, considering traffic from Domain 2 to
Domain 1. Therefore, the TAQM tuning happens at the egress
buffer of the Border Router Domain 2 in this setting.

With respect to the FCP implementation, our environment
involves three Mininet hosts acting as the Learning Orchestra-
tor and two Local Learners, the latter being represented by the
processor block at each border router. Additionally, PyTorch
is employed on these hosts for the execution of the learning
process as described in Algorithm 1. We chose PyTorch as
the framework for the implementation of our FCP algorithm
because it provides a high level of control and flexibility,
which we weigh as a key feature for our network emu-
lation. Moreover, PyTorch’s usability and developer-centric
design facilitates the implementation of new Deep Learning
architectures, using the familiar concepts developed for gen-
eral purpose programming languages such as Python [26].
This is particularly relevant for the application of the FL
approach, since it needs to be deployed in a distributed man-
ner when implementing real-world setups. We see this fact as

10679

IEEE Access

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

a significant advantage of PyTorch over other Deep Learning
frameworks like TensorFlow. For example, we employed
TensorFlow Federated (TFF) for the fulfilment of the FL
version of the LSTM model proposed in [2]. We were able to
confirm that TFF only enables the simulation of FL. models
with decentralized datasets, as stated in [27], but not an
actual distributed deployment. For these reasons, we decided
to utilize PyTorch as the Deep Learning framework for the
validation of our FIAQM scheme.

In relation to the traffic generation between the host
pairs for the queue metrics, we use the NetPerf tool [28],
which allows to stress the network under a combination of
several types of IP traffic. Furthermore, we perform tests
according to the Real-time Response Under Load (RRUL)
Specification to emulate a more core-network-like IP traffic.
In fact, RRUL-based tests reliably saturate the measured
link and, therefore, exposes any presence of the bufferbloat
effect. To this end, the RRUL specification contemplates
simultaneous bidirectional TCP and UDP streams, VoIP-like
streams, multiple up/down TCP streams to shorten the
ramp-up-to-saturation period, running traffic long enough
to defeat bursty bandwidth optimizations, and test server(s)
within 80 ms of testing client(s) [29]. Next, the emulator
collects the buffer statistics in intervals of 100 ms using the
Linux Traffic Control (TC), since this utility lets monitor
the queue events generated by the kernel [30]. The value of
the time interval corresponds to the typical assumption for a
single RTT interval in IP networks.

Subsequently, we use set both the intra-domain and the
inter-domain link buffers to a relatively small hard limit
of 1000 packets. This assumption is based on the fact that
small buffer sizes in backbone routers are sufficient for many
networks and recommended for overall scalability [31], [32].
Additionally, all the intra-domain link buffers are config-
ured with AQM. More specifically, we consider the Flow
Queue - Controlling Queue Delay (FQ-CoDel) whose target
parameter to configure is the acceptable minimum stand-
ing/persistent queue delay [33]. As this parameter decreases,
more packets are dropped in a controlled manner, since they
are supposed to stay for shorter times in the queue. Conse-
quently, there are less packets in the queue and the link delay
decreases. On the other hand, when the FQ-CoDel target
parameter is high, the scheme does not drop packets and there
is a higher delay due to longer queues. Also, packets start
to be dropped uncontrollably as the queue overflows and,
therefore, the throughput is deteriorated.

As a preliminary experiment, we show that the drop rate
data of the queues at the Border Router Domain 1 describe
dissimilar patterns, as depicted in Figure 6a. Therefore,
the traffic data generated by the RRUL test and gathered
with the TC utility exhibits the kind of non-i.i.d. behaviour
necessary for the FL model of the FCP. For the sake of clarity,
we depict the drop rate data corresponding to ten queues
only, but similar graphs are obtained when more queues are
considered. On the other hand, to show the influence of tuning
FQ-CoDel, we set up a simple test that consists of modifying

10680

— Queue 1
Queue 2
—— Queue 3
— Queue 4
—— Queue 5
— Queue 6
Queue 7
—— Queue 8
Queue 9
—— Queue 10

O'l mu||‘ L Iﬂl ul 11 |

500 1000 1500 2000 2500 3000 3500
Time Interval of 100 ms

2.0

Drop Rate (%)
= =
o n

o
[

a)

Averaged mRTT (ms)
=
8
Averaged Throughput (Mbps)

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0 55 6.0
Target Queue Delay (ms)

b)

FIGURE 6. Preliminary tests for the Experimentation Design. a) Queues
data at Border Router Domain 1. b) Effects of tuning FQ-CoDel target
parameter on mpyy and Tout-

its target and interval parameters at the egress buffer of the
Border Router Domain 2 while data are constantly transferred
between two hosts, each one in a different domain. The
interval parameter ensures that the measured minimum delay
does not become too old and, typically, the target delay is 5%
of this interval [33]. Therefore, we set FQ-CoDel with target
values from 1 ms to 6 ms and intervals from 20 ms to 120 ms,
respectively. As can be seen in Figure 6b, although an AQM
scheme such as FQ-CoDel is meant to operate unchangeably,
there is a noticeable effect when its target parameter varies:
both mgrr and Tj,, are affected by the target delay con-
figuration. This is consistent with our solution formulation
explained in Section III-B.

For the parameters exchange between the Learning
Orchestrator and the Local Learners, we use the Secure
File Transfer Protocol (SFTP), which runs over the Secure
Shell (SSH) protocol, to avoid sending the parameters in
the clear. SFTP protects the data integrity through crypto-
graphic hash functions and provides authentication for both
the server and the client [34]. In this way, we also consider
security concerns in a real inter-domain scenario by adding
encryption functionality to the communication between the
parties involved in the FCP. Additionally, we assume that the
pair of private and public keys have been shared prior to
the execution of the Algorithm 1 and that a different port from
the default SSH port, i.e. port 22, is agreed for the transfer.

VOLUME 9, 2021

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

IEEE Access

TABLE 1. Model parameters to be transferred for the FCP.

Parameter Description Dfrr?:r?siron
A Weights of block input, hidden layer 0 120x1
by Bias of block input, hidden layer 0 120
Wh(lf) Weights of hidden cells, hidden layer 0 120%30
b]g(k)l) Bias of hidden cells, hidden layer 0 120
w Weights of block input, hidden layer 1 120x30
bl(;) Bias of block input, hidden layer 1 120
Wh(}? Weights of hidden cells, hidden layer 1 120%30
b&) Bias of hidden cells, hidden layer 1 120
Wﬂgz) Weights of block input, hidden layer 2 120x30
b Bias of block input, hidden layer 2 120
Wh(hz) Weights of hidden cells, hidden layer 2 120x30
by Bias of hidden cells, hidden layer 2 120
w, Weights of output layer 1x30

b, Bias of output layer 1

The use of SFTP is sufficient for the needs of our experi-
mentation, since wy are transferred as a Python dictionary
with the parameters of the FCP model. The size of this
dictionary is 77.8 kB and it contains the PyTorch tensors with
the weight and bias values, whose dimensions are specified
in Table 1. On the other hand, d; is a Python list with u
elements. For private and secure transfer of high-dimensional
parameter vectors in a FL setting, which is not the case of this
work, we point the reader to other research papers such as
[35], [36]. It is also important to highlight that, although the
FIAQM is tested in a distributed setting, the FCP algorithm is
synchronously executed between the Learning Orchestrator
and the Local Learners. This means that our experimentation
design considers the coordination of the learning algorithm
execution along with the transfer of the parameter files.

V. FIAQM PERFORMANCE EVALUATION

To evaluate our FIAQM scheme, we first demonstrate how
the FCP algorithm predicts congestion accurately as a stand-
alone entity. Next, we illustrate how the FCP integrates
with the AQM parameter tuner to attain the objective of
reducing congestion and improving the performance of an
inter-domain connection.

A. FCP ALGORITHM PREDICTIONS ACCURACY

The experiments of this subsection are conducted in an offline
setting with data previously gathered during the preliminary
tests described in Section I'V. Hence, we count on 21 datasets:
one from the IXP queue, corresponding to the link between
the IXP switch and Border Router Domain 1, and 20 from
the queues of the intra-domain links of the aforementioned
router. Subsequently, we train the FPC with n = 0.001
and u = 2, which means that two queues of the router are
randomly selected to average the model parameters in each
round. Also, the number of training rounds are set to I' = 10

VOLUME 9, 2021

1.0 Actual Congestion
—— Predicted Congestion

o o o
IS o o

Normalized Drop Rate

o
N

0.0

0 200 400 600 800 1000
Time Intervals of 100 ms

FIGURE 7. Actual congestion of the IXP queue and predicted congestion
by the FCP.

I

w
@

w
o

I
[

Cumulative Loss, MSE
- N
w o

g
o

o
@

—— Centralized Congestion Predictor
0.0 — FCP

[200 400 600 800 1000 1200 1400
Number of Predictions

FIGURE 8. Evaluation loss comparison between a centralized congestion
predictor and the FCP algorithm.

and the local iterations to Z = 1000. To make predictions,
we utilize the data from the IXP queue as the set of test
samples. Figure 7 shows how the predicted congestion of the
FPC model, trained with the queue data of Border Router
Domain 1, resembles the actual congestion of the IXP’s
queue. Note that, rather than predicting the exact value of
drop rate in a particular time interval, we are more interested
in capturing the tendency of that value. Hence, the predictions
are accurate enough for our goal. In terms of the loss metric,
we chose the Mean Square Error (MSE), which yields a value
of 0.002 over the test subset.

On the other hand, we compare the loss obtained when
the congestion predictor is trained in a federated fashion
and in a centralized manner. As this comparison requires
more exhaustive tests, we change the emulation parameters
I' and Z to 50 and 2000, respectively. We also run a separate
centralized model that is trained with data from the IXP’s
queue. As can be seen in Figure 8, FCP gets lower cumulative
loss than the LSTM model of the centralized congestion
predictor. What is interesting about this result is that both
federated and centralized models are evaluated by making
predictions over a test subset from the IXP’s queue. That
is, the FCP outperforms the centralized congestion predictor,
even though the test data is a subset of the dataset used for
the centralized model training. This result is consistent with
those presented in [6].

10681

IEEE Access

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

I Centralized Congestion Predictor
HEm FCP

30

= N N
G S]

Rounds Needed, I

=
o

3.50 3.75
Target Loss, Cumulative MSE

FIGURE 9. Number of training rounds needed to reach the target loss by
a centralized congestion predictor and the FCP algorithm.

In contrast, the time complexity of the FedAvg algo-
rithm can be expressed in terms of the total training rounds,
I, local epochs, E, and the number of local samples, ny,
as O (I' x E x maxy (n)). This means that the time taken
for the FL training depends on the slowest participant in each
round, also known as stragglers, because of the number of
local updates that those participants need to execute [37].
In our proposed FCP algorithm, we reduce this complexity
by considering that all the participants have the same number
of local samples, that is N = ng. It is important to highlight
that this is a realistic consideration, since the traffic in core
networks is very high and the routers’ queues are likely to
expose congestion frequently. In this way, the local epochs
and local batches of the FedAvg algorithm are converted into
Z local training iterations in FCP (step 8, Algorithm 1), which
correspond to ng. In other words, different from the FedAvg
algorithm, in the FCP algorithm every participant happens
to have the same number of local updates (or local training
iterations, Z), which yields a time complexity of O (I x N).
Nevertheless, we show that I' < N is generally the case for
our problem scenario.

To this end, we set various target loss values in order to
determine how many rounds of training the FCP needs to
reach those targets. Thus, four benchmarks are defined based
on the cumulative loss over 2000 predictions as targets. In this
experiment, the number of local iterations is Z = 2000,
as well. Similar to the evaluation test explained previously,
the predictions are made considering a test subset from the
IXP’s queue. We then compare the number of training rounds
needed by the FPC algorithm against an LSTM trained in a
centralized host, Figure 9. As can be seen, the FCP algorithm
requires less rounds during the training process to attain the
desired loss on the test data. This result shows that, although
there is an overhead in the congestion predictor training of
the FIAQM, the proposed algorithm compensates this over-
head by enabling a lighter training process in terms of the
rounds needed. Moreover, this outcome evidences that the
complexity of the FCP algorithm is heavily influenced by
the number of samples used for the training process, N, rather
than I

10682

TABLE 2. Emulation parameters for the evaluation of the FIAQM scheme
in realtime.

Network Emulation Parameter Value
Border Router Domain 1 - IXP link bandwidth 1 Gbps
Border Router Domain 2 - IXP link bandwidth 1 Gbps

Random integer,
[250, 500) Mbps

Border Router Domain 1 - IXP link delay 2 ms
Border Router Domain 2 - IXP link delay 2 ms

Intra-domain links bandwidth

Intra-domain links delay Random integer,

[2, 10) ms
Number of hosts per domain 20
Buffers hard limit (all queues) 1000 packets
AQM mechanism (all queues) FQ-CoDel
Intra-domain links AQM target (static) 2 ms
Intra-domain links AQM interval (static) 40 ms
Period of AQM parameters tuning, 7’ 2s
Emulation time 600 s

B. REAL-TIME AQM TUNING WITH FIAQM

In this subsection, we elaborate about the experiments that
we conducted in real time to show the performance of our
proposed method as a whole, that is, the FIAQM’s main com-
ponents working together. To this end, we carry out several
experiments in the emulation setting described in Section IV.
The network emulation parameters for this evaluation are
summarized in Table 2. We assess the MDP for the AQM
tuning problem by considering 100 levels of congestion as
current or next states. To determine their levels, we keep
the maximum observed and predicted values as reference for
the discretization. We also delimit the actions to 100 values,
which are the target delay of FQ-CoDel. In this way, the pos-
sible actions to take are a set of values from 1.1 ms to
11 ms in steps of 100 us. As we explained in Section III-B,
we modify two parameters at the same time: the target delay
and the interval. Thus, the experiments are more consistent as
these two parameters are tightly related. For this assessment,
the Border Router Domain 2 performs the IAQM while the
Border Router Domain 1 is configured with the default target
and the interval parameters in the Linux kernel: 5 ms and
100 ms, respectively.

In terms of the FIAQM execution, the FCP runs in the back-
ground while the AQM tuner performs its job in an online
manner. To achieve so, the Q-values are updated iteratively
every 2 seconds based on both the predicted level of con-
gestion ahead and P, which is calculated from the 7}, and
mpgrT Vvalues that two monitoring hosts, one in each domain,
measure with active probes. Once the reward based on P, is
known, the algorithm updates the Q-values by applying (7).

On the other hand, the FCP utilizes pre-trained model
parameters while the first training round is completed. Thus,
the FCP predictions during this time are accurate enough for
the AQM tuner. Additionally, 100 samples of the IXP’s queue
data are considered for the predictions, which means the

VOLUME 9, 2021

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

IEEE Access

0.16

Drop Rate Estimate, DRgs:
S
&

0
50 100 150 200 250 300 350 400 450 500 550 600
Time (s)

FIGURE 10. Improvement over time provided by FIAQM in terms of
congestion reduction and P growth. AQM tuning starts at 150 s.

historical levels of congestion in the past 10 seconds. Those
predictions are transferred from the Learning Orchestrator
to the Local Learner asynchronously, in form of a NumPy
array of dimension 100 x 1 and 928 B in size. This array
corresponds to the global drop rate estimate of the other
domain, DREgg, as depicted in Figure 5. In this way, the AQM
tuner takes into account the most recent available values of
DREgy, even if the FCP is still processing a new training round.

Accordingly, Figure 10 shows the results of the real-time
network emulation in 600 s. Note that, for the comparison
sake, we set the FIAQM’s tuner to start operating at 150 s of
the emulation. Then, the AQM parameters of Border Router
Domain 2 are fixed to the default values during the first 150 s
and, from this time on, the IAQM tunes these parameters
according to Algorithm 2. As can be seen, the drop rate ahead
at the Border Router Domain 1, which corresponds to the
DREg; values forecasted by the FCP, decreases significantly
once the FIAQM starts the tuning process. Conversely, P,
tends to get higher values as the AQM tuner improves over
time. As a result, the tuning process populates the Q-table
with the values of P, in the respective (s, @) coordinates at
every iteration of Algorithm 2. We highlight that, thanks to
the way that we design the AQM tuner, the resulting Q-table
is a light NumPy array of 100 x 100 elements and 39.1 kB in
size.

Finally, Table 3 summarizes the hyperparameters of both
modules of the FIAQM scheme utilized for its evaluation
in the real-time emulation. It is also important to point out
that, although we designed our experimentation setting to
make it as realistic as possible, Mininet has some limitations
regarding the links bandwidth of the emulated network ele-
ments. In actual backbone networks, link data rates are of
the order of tens or hundreds of Gbps. However, Mininet
emulations are constrained by the data rate of the computer’s
network interface where Mininet is running and the number
of emulated network interfaces. This means that, in order
to achieve results that resemble real-world networks, this
data rate capacity must be considered for all the links in the
emulation environment. Nevertheless, the emulation parame-
ters can be easily scaled when running our setting on other
computers, actual SDNs, or even Linux-based bare metal

VOLUME 9, 2021

TABLE 3. Hyperparameters of the FIAQM'’s learning modules.

Module Hyperparameter Value

LSTM hidden layers, L 3

Cells per LSTM hidden layer 30

LSTM dropout regularization, & 0.2

FCP Learning rate, n 0.001
Subsets of non-zero queues, u 2

Local training iterations, Z 1000

Training rounds (maximum), I 10

Learning rate, 0.5

AQM Tuner Discount factor, y 0.8
Exploration/exploitation rate, & 0.5

routers [38]. Last but not least, we would like to remind
the reader that the code of the experiments described in this
subsection is publicly available at [25]. We intent to make
our contribution accessible to researchers and developers who
are actively working on congestion-related problems of the
Internet. Please cite this paper if you use any posted script for
your works.

VI. CONCLUSION

In this work, we showed how the appropriate tuning of
AQM parameters can improve the RTT and throughput of
inter-domain connections. We presented our FIAQM solu-
tion, which leverages the characteristics of existing AQM
schemes in such scenarios where several parties are involved
in a communication process and privacy is a major consid-
eration. The main components of the FIAQM architecture
effectively applies the fundamentals of the FL approach to
attain congestion control between ASes managed by differ-
ent organizations and whose network data cannot be shared.
We described in detail the main components of FIAQM: an
LSTM trained in a federated fashion to predict the beyond-
own-domain congestion and an AQM parameter tuner based
on the Q-learning algorithm. We also explained how these
two components integrate to make possible for a border router
to dynamically tune the AQM scheme of its link queue that
connects to the border router in another domain.

On the other hand, we evaluated the performance of
FIAQM in a realistic environment by means of network emu-
lations. Despite the limitations of the software tool used to
this end, our solution can be easily adapted to other envi-
ronments. Additionally, the performance of future FIAQM
implementations may be further improved by considering
other design aspects for the neural network of the FCP. For
instance, different activation functions could yield more accu-
rate and faster predictions of congestion in situations where
shorter time intervals for the measurements are required.
Finally, we point out that, although our experiments included
only FQ-CoDel as the AQM scheme, the proposed FIAQM
method could be straightforwardly implemented with other
schemes. In those cases, the only necessary changes would

10683

IEEE Access

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

be the redefinition of the set of actions for the AQM tuner
module and the inclusion of the specific instructions for the
desired AQM scheme configuration in Linux.

Lastly, although in this work we proposed the use of
metrics directly taken from the queues as the income data
for FIAQM, other kinds of data may easily feed our pro-
posed method. For example, as we mentioned in Section II,
the metadata reported by routers employing the INT standard
can be adapted to be used in FIAQM. However, how to incor-
porate INT metrics in multi-domain settings and Machine
Learning-based solutions such as FIQAM requires further
research.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the Internet,”
Queue, vol. 9, no. 11, p. 40, Nov. 2011, doi: 10.1145/2063166.2071893.
C. A. Gomez, X. Wang, and A. Shami, “Intelligent active queue manage-
ment using explicit congestion notification,” in Proc. IEEE Global Com-
mun. Conf. (GLOBECOM), Dec. 2019, pp. 1-6, doi: 10.1109/GLOBE-
COM38437.2019.9013475.

M. Chiesa, C. Dietzel, G. Antichi, M. Bruyere, I. Castro, M. Gusat, T. King,
A. W. Moore, T. D. Nguyen, P. Owezarski, S. Uhlig, and M. Canini,
“Inter-domain networking innovation on steroids: Empowering ixps with
SDN capabilities,” IEEE Commun. Mag., vol. 54, no. 10, pp. 102-108,
Oct. 2016, doi: 10.1109/MCOM.2016.7588277.

K. C. C. Clafty, D. D. Clark, S. Bauer, and A. D. Dhamdhere, ‘Policy
challenges in mapping Internet interdomain congestion,” in Proc. 44th Res.
Conf. Commun., Inf. Internet Policy (TPRC 44), Aug. 2016. [Online].
Auvailable: https://ssrn.com/abstract=2756868

P. Kairouz et al., “Advances and open problems in federated
learning,” 2019, arXiv:1912.04977. [Online]. Available: http://arxiv.
org/abs/1912.04977

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., Apr. 2017, pp. 1273-1282. [Online].
Available: http://proceedings.mlr.press/v54/mcmahan17a.html

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2,
pp. 12:1-12:19, 2019, doi: 10.1145/3298981.

T. Li, A. Kumar Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” 2019, arXiv:1908.07873.
[Online]. Available: http://arxiv.org/abs/1908.07873

Y. Yang, X. Yin, X. Shi, Z. Wang, J. He, T. Z. Fu, and M. Winslett,
“Inter-domain routing bottlenecks and their aggravation,” Comput. Netw.,
vol. 162, Oct. 2019, Art. no. 106839, doi: 10.1016/j.comnet.2019.06.017.
Y. Zhao, A. Saeed, M. Ammar, and E. Zegura, ‘“‘Unison: Enabling con-
tent provider/ISP collaboration using a switch abstraction,” in Proc.
IEEE 27th Int. Conf. Netw. Protocols (ICNP), Oct. 2019, pp. 1-11, doi:
10.1109/ICNP.2019.8888032.

W. Silva, “An architecture to manage incoming traffic of inter-domain
routing using OpenFlow networks,” Information, vol. 9, no. 4, p. 92,
Apr. 2018, doi: 10.3390/info9040092.

A. Dethise, M. Chiesa, and M. Canini, “Privacy-preserving detection
of inter-domain SDN rules overlaps,” in Proc. SIGCOMM Posters
Demos, Los Angeles, CA, USA, Aug. 2017, pp. 6-8, doi: 10.1145/
3123878.3131967.

K. D. Joshi and K. Kataoka, “PRIME-Q: Privacy aware end-to-end
QoS framework in multi-domain SDN,” in Proc. IEEE Conf. Netw.
Softwarization (NetSoft), Jun. 2019, pp. 169-177, doi: 10.1109/NET-
SOFT.2019.8806645.

M. S. Kang and V. D. Gligor, “Routing bottlenecks in the Internet: Causes,
exploits, and countermeasures,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Scottsdale, AZ, USA, Nov. 2014, pp. 321-333, doi:
10.1145/2660267.2660299.

X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich,
S. A. Monetti, and T.-Y. Wang, “Fine-grained queue measurement in the
data plane,” in Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol., Orlando,
FL, USA, Dec. 2019, pp. 15-29, doi: 10.1145/3359989.3365408.

10684

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: High pre-
cision congestion control,” in Proc. ACM Special Interest Group
Data Commun., Beijing, China, Aug. 2019, pp.44-58, doi: 10.1145
3341302.3342085.

A. Graves, “Long short-term memory,” in Supervised Sequence Labelling
with Recurrent Neural Networking, A. Graves, Ed. Berlin, Germany:
Springer, 2012, pp. 37-45.

S. Skansi, “Recurrent Neural Networks,” in Introduction to Deep Learn-
ing: From Logical Calculus to Artificial Intelligence, S. Skansi, Ed. Cham,
Switzerland: Springer, 2018, pp. 135-152.

F. M. Bianchi, E. Maiorino, M. C. Kampftmeyer, A. Rizzi, and R. Jenssen,
“Recurrent Neural Network Architectures,” in Recurrent Neural Netw.
for Short-Term Load Forecasting: An Overview Comparative Analysis,
F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, R. Jenssen,
Eds. Cham, Switzerland: Springer, 2017, pp. 23-29.

F. Baker and G. Fairhurst, JETF Recommendations Regarding Active
Queue Management, document RFC 7567, 2015.

6.1 Issues in Resource Allocation—Computer Networks: A Systems
Approach Version 6.2-dev Documentation. Accessed: Oct. 9, 2020.
[Online]. Available: https://book.systems.approach.org/congestion/
issues.html

S. Floyd, Metrics for the Evaluation of Congestion Control Mechanisms.
document RFC 5166, 2008.

R. S. Sutton and A. G. Barto, “Temporal-difference learning,” in Rein-
forcement Learning: An Introduction. Cambridge, MA, USA: MIT Press,
2018, pp. 131-132.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw., New York, NY, USA, Oct. 2010, pp. 1-6, doi:
10.1145/1868447.1868466.

C. A. Gomez. FIAQM. Accessed: Oct. 5, 2020. [Online]. Available:
https://github.com/cgomezsu/FIAQM

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2019,
pp. 8026-8037.

TensorFlow Federated. Accessed: May 6, 2020. [Online]. Available:
https://www.tensorflow.org/federated

Care and Feeding of Netperf 2.7.X. Accessed: May 13, 2020. [Online].
Available: https://hewlettpackard.github.io/netperf/doc/netperf.html
Realtime Response Under Load (RRUL) Specification—Bufferbloat.net.
Accessed: Jul. 13, 2020. [Online]. Available: https://www.bufferbloat.net/
projects/bloat/wiki/RRUL_Spec/

TC(8)—Linux Traffic Control ~ Manual Page. Accessed:
May 5, 2020. [Online]. Available: https://man7.org/linux/man-pages/
man8/tc.8.html

G. Appenzeller, 1. Keslassy, and N. McKeown, ‘“Sizing router
buffers,” in Proc. Conf. Appl., Technol., architectures, protocols for
Comput. Commun., Portland, OR, USA, 2004, pp.281-292, doi:
10.1145/1015467.1015499.

D. Wischik and N. McKeown, ‘‘Part I: Buffer sizes for core routers,” ACM
SIGCOMM Comput. Commun. Rev., vol. 35, no. 3, pp. 75-78, Jul. 2005,
doi: 10.1145/1070873.1070884.

T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet,
The Flow Queue CoDel Packet Scheduler and Active Queue Management
Algorithm, document RFC 8290, 2018.

J. Galbraith and O. Saarenmaa. (Jul. 2006). SSH File Transfer Protocol.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-secsh-
filexfer-13

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggrega-
tion for privacy-preserving machine learning,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., New York, NY, USA, Oct. 2017,
pp. 1175-1191, doi: 10.1145/3133956.3133982.

M. Ion, B. Kreuter, A. E. Nergiz, and S. Patel, “On deploying secure
computing: Private intersection-sum-with-cardinality,” in Proc. IEEE Eur.
Symp. Secur. Privacy (EuroS&P), Aug. 2020, pp. 370-389.

S. Feng and H. Yu, ‘“Multi-participant multi-class
federated learning,” 2020, arXiv:2001.11154. [Online].
http://arxiv.org/abs/2001.11154

Mininet Overview—Mininet. Accessed: May 6, 2020. [Online]. Available:
http://mininet.org/overview/

vertical
Available:

VOLUME 9, 2021

http://dx.doi.org/10.1145/2063166.2071893
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013475
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013475
http://dx.doi.org/10.1109/MCOM.2016.7588277
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1016/j.comnet.2019.06.017
http://dx.doi.org/10.1109/ICNP.2019.8888032
http://dx.doi.org/10.3390/info9040092
http://dx.doi.org/10.1145/3123878.3131967
http://dx.doi.org/10.1145/3123878.3131967
http://dx.doi.org/10.1109/NETSOFT.2019.8806645
http://dx.doi.org/10.1109/NETSOFT.2019.8806645
http://dx.doi.org/10.1145/2660267.2660299
http://dx.doi.org/10.1145/3359989.3365408
http://dx.doi.org/10.1145/3341302.3342085
http://dx.doi.org/10.1145/3341302.3342085
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1145/1015467.1015499
http://dx.doi.org/10.1145/1070873.1070884
http://dx.doi.org/10.1145/3133956.3133982

C. A. Gomez et al.: FIAQM in Inter-Domain Congestion

IEEE Access

CESAR A. GOMEZ (Member, IEEE) received the
B.E. degree in electronics engineering from St.
Thomas Aquinas University at Bogota, in 2005,
and the M.E.Sc. degree in telecommunications
engineering from the National University of
Colombia, in 2010. He is currently pursuing
the Ph.D. in electrical and computer engineering
with Western University, Canada. His background
includes industrial experience for over ten years in
several network engineering roles at companies,
such as Siemens, ZTE, and Nortel. His current research interest includes
application of machine learning techniques towards the realization of the
intelligent networking automation paradigm. He is also the Vice-Chair of
the IEEE Computer Chapter, London Section, Region 7.

XIANBIN WANG (Fellow, IEEE) received the
Ph.D. degree in electrical and computer engi-
neering from the National University of Singa-
pore, in 2001. From January 2001 to July 2002,
he was a System Designer with STMicroelectron-
ics. From July 2002 to December 2007, he was a
Research Scientist/Senior Research Scientist with
the Communications Research Centre Canada
(CRC). He is currently a Professor and a Tier
1 Canada Research Chair with Western University,
Canada. He has over 400 peer-reviewed journal and conference papers,
in addition to 30 granted and pending patents and several standard con-
tributions. His current research interests include 5G and beyond, the
Internet-of-Things, communications security, machine learning, and intel-
ligent communications. He is a Fellow of the Canadian Academy of
Engineering and the Engineering Institute of Canada. He has received many
awards and recognitions, including the Canada Research Chair, the CRC

VOLUME 9, 2021

President’s Excellence Award, the Canadian Federal Government Public
Service Award, the Ontario Early Researcher Award, and six IEEE Best
Paper Awards. He was involved in many IEEE conferences, including
GLOBECOM, ICC, VTC, PIMRC, WCNC, and CWIT, in different roles,
such as symposium chair, tutorial instructor, track chair, session chair, and
TPC co-chair. He is also serving as the Chair of the IEEE London Section and
the Chair of ComSoc Signal Processing and Computing for Communica-
tions Technical Committee. He was also an Associate Editor for the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, from 2007 to 2011, and the IEEE
WiReLESS COMMUNICATIONS LETTERS, from 2011 to 2016. He currently serves
as an Editor/Associate Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS,
the IEEE TRANSACTIONS ON BroADCASTING, and the IEEE TRANSACTIONS ON
VEHICULAR TEcHNoLOGY. He is an IEEE Distinguished Lecturer.

ABDALLAH SHAMI (Senior Member, IEEE)
received the B.E. degree in electrical and computer
engineering from Lebanese University, Beirut,
Lebanon, in 1997, and the Ph.D. degree in elec-
trical engineering from the City University of
New York, New York, NY, USA, in 2002. He is
currently a Professor with the ECE Department,
Western University. He is also the Director of the
Optimized Computing and Communications Lab-
oratory. His research interests include performance
and optimization modeling, machine learning and data analytics, the IoT,
virtualization, cloud computing, and software-defined networks. He has
chaired key symposia for IEEE GLOBECOM, IEEE ICC, IEEE ICNC, and
ICCIT. He was the elected Chair of the IEEE Communications Society
Technical Committee on Communications Software, from 2016 to 2017, and
the IEEE London Section Chair, from 2016 to 2018. He is also an Associate
Editor of the IEEE TRANSACTIONS ON MOBILE CoMPUTING, the IEEE NETWORK,
and the IEEE CoMMUNICATIONS SURVEYS AND TUTORIALS.

10685

