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ABSTRACT Accessing scarce resources in distributed systems where entities are not centrally coordinated,
whether roebucks are fighting for a doe or WiFi users are competing for a common radio channel,
is associated with moderate efficiency and proves to be a challenging problem. In this study, we present our
hypothesis on shared entanglement and how such a process can improve resource access in macroscopically
distributed systems. Furthermore, the required entangled states can be established in a distributed manner.

INDEX TERMS Distributed systems, medium access control (MAC), quantum computing, quantum
entanglement, slotted-ALOHA, unitary transformation.

I. INTRODUCTION
Nature developed appropriate solutions to handle scenarios
in which individuals compete for resources. The resolution
process involves random behavior to avoid conflict, which
often results in injuries. This basic principle was adapted for
human-made artificial systems; for example, in distributed
networks, entities compete for limited resources, such as
computing time and channel usage. In the famous random
access protocols (ALOHA) system [1] and its successor
802.11 based WiFi [2], [3] and sensor networks [4], [5] users
attempt to access a common single radio channel with a cer-
tain probability. The fairness of the competition depends on
the strategy used to determine these access issues. Although
fairness is provided if the number of users is known, the effi-
ciency of distributed systems remains low due to the random
nature of strategies.

Since being proposed by Feynman in 1985, the principles
of quantummechanics in computing and communication sys-
tems have been strengthened. In the two main streams, exper-
imental quantum computers [6], [7] raise the expectations that
computationally complex problems can be solved quickly,
while quantum key distribution (QKD) systems have reached
the commercialization phase [8], [9]. QKD implementations
can also be assembled from individual components that are
available on the market [10]. Another important usage of
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quantum computing systems is codification, as presented
in [11]–[13].

Notably, competition resolution can also be achieved via
a central intelligence. For instance, in cellular networks,
the base station coordinates the connected entities, providing
medium access to them [14]–[16].Medium access control can
be extended to the quantum layer [17].

With the benefit of quantum computing, in this paper,
we focus on a common problem: resource access in dis-
tributed systems is known to have very low efficiency, i.e., the
majority of attempts fail because of colliding entities and
resources remain unused when people back off. This problem
can be avoided by a coordinating entity that schedules node
attempts. However, scenarios exist in which such centralized
solutions cannot be applied, even though centralization sig-
nificantly improves the system’s vulnerability. If the control-
ling node is injured or destroyed, the system would break
down.

Quantum mechanical phenomena, known as entangle-
ments, cannot deliver information between distant locations.
However, as we demonstrate in the following sections, entan-
glements can coordinate entities in a distributed manner such
that they behave as if a dedicated coordinator is carefully
watching them. This process efficiently improves resource
access while maintaining the level of reliability.

II. THE SLOTTED-ALOHA REFERENCE PROTOCOL
As a reference, a short overview of the Slotted-ALOHA
resource access method used in modeling distributed systems
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is provided [1]. The protocol itself has been widely analyzed
under different conditions [18]–[20]. Here, a short summary
of the protocol is presented. In slotted-Aloha, the time axis
consists of equal-length periods for resource access and
intact synchronization among users. Each user i accesses the
resource at the beginning of the slot with probability pi and
remains silent with probability q = 1−pi. If at least two users
attempt to access the resource in the same slot, a collision
occurs and the slot is lost or unused. This loss also occurs
if all the nodes remain silent. Resource access is successful
only if a single user makes an attempt. Assuming n players
operate independently of one another and use the same strat-
egy, i.e., they are cooperative, then the optimization is made
from an individual user perspective; therefore, the normalized
number of successful resource attempts per slot is represented
by a Bernoulli random variable S i with success probability

qi = pi(1− pi)(n−1) (1)

and the corresponding expected value is

E(Si) = qi. (2)

We aim to maximize resource access for all users

dE(Si)
dpi

= 0⇒ pi =
1
n
⇒ maxE(Si)

pi
=

1
n

(
1−

1
n

)n−1
(3)

so S =
n
∗
i=1
Si. We then have

maxE(Si)
pi

= n
1
n

(
1−

1
n

)n−1
=

(
1−

1
n

)n−1
. (4)

The optimal value pi = 1
n means that to maximize resource

access, users must be familiar with the total number of play-
ers. We then show that as n goes to infinity, we obtain

lim
n→∞

maxE(Si)
pi

= lim
n→∞

(
1−

1
n

)n−1
= lim

n→∞

1

1− 1
n

(
1−

1
n

)n
=

1
e
. (5)

If we approach the problem from a game theory perspective,
i.e., players optimize individual throughput with the same
strategy, then the result pi = 1

n leads to the Pareto optimum
of the game since none of the users can increase their pay-
load without hurting another player. For an easier compar-
ison of the proposed quantum entanglement-based method,
we emphasize that from an information theoretic perspective,
the efficiency of resource access can bemeasured as the chan-
nel capacity of the virtual Slotted-ALOHA channel. At each
time point, a slot can be regarded as a channel that is fed by
resource attempts, given that collision refers to noise in the
channel, as its output is successful resource access. Consid-
ering (4) and (5 ), the capacity varies from 1/2 to 1/ewhen the
number of users goes from n = 2 to infinity. Independently
of the manner of interpretation, we can conclude that the
optimal strategy strongly depends on accurate knowledge of
the number of users present in the system. Unfortunately,

this information is not available in distributed systems, which
substantially decreases the performance.

III. THE QUANTUM ENTANGLEMENT COMPETITION
RESOLUTION METHOD
First, we consider the Slotted-ALOHA system with 2 nodes,
as it is assumed that the users previously shared an entangled
Bell pair.

|β10〉 =
|01〉 + |10〉
√
2

. (6)

If both users measure their own qubit on a computational
basis {|0〉; |1〉}, they obtain opposite values, regarded as
tokens. The user who finds |1〉 is allowed to send his packet
during the next time slot, while the other user must remain
silent, thereby avoiding a collision. Due to the postulates
of quantum mechanics, measurements selected among ran-
dom users with uniform probability amplitudes keep this
competition resolution method uniform and fair, statistically
guaranteeing the same number of resources.

To generalize this concept to n nodes, the Bell pair |β10〉 is
modified to a specific entangled state called a |w〉 N qubit of
length

|wn〉 =
1
√
n

N∑
i=1

|2(n−i)〉. (7)

The entanglement we generate to fit our algorithm is a
special one. For the generation of the entangled pairs we use
Bell pairs, but by no means is that a generalization of Bell
pairs. We suppose that such a state |wn〉 (W-State)has already
been shared among the nodes, that each of the nodes performs
the measurement on the qubit, and that one of the n different
states is selected collectively. The binary form of state |2i〉
contains only one 1 in the ith bit position, yielding access to
the resource in the next slot, while any other bit will be 0,
which forces the corresponding user to remain silent.

The uniform probability amplitude distribution of this state
offers the same access probability 1/n for all users. Certain
users may require priority over others, which demands higher
access probability; therefore, the generalized form of |wn〉 is
introduced

|w̃n〉 =
n∑
i=1

ϕn,2(n−i) |2
(n−i)
〉. (8)

The probability that node i will access the common
resource when n nodes are present in the system is strongly
related to the probability amplitude

pn,i =
∣∣ϕn,2(n−i) ∣∣2 . (9)

Clearly, all probabilities must fulfill the following
condition:

n∑
i=1

pn,i = 1. (10)
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Generally, if a special node - called coordinator - is present
in the system to generate and distribute the qubits, |w̃n〉
resources will be accessed in each time slot without collision.
Furthermore, in that case, no superposed states are required.
The coordinator node randomly generates a power of 2 in
binary form and distributes the bits of the resulting binary
vector.

This approach does not work in a distributed environment
where nodes are uncoordinated, i.e., no coordinator node is
available. Nodes can communicate only with neighbors and
typically only one neighbor at each step. We assume that two
nodes have already agreed to share a bit pair 01. A newly
arriving node would likely tomodify this vector to 001, where
the 1 in the 3rd position guarantees channel access. To achieve
this goal, one node must communicate with two other nodes,
which is extremely inefficient in the case of n nodes.
To overcome this limitation, we show how the classic

binary vector compares to quantum state |w̃n〉, which is gen-
erated if the newly arriving user communicates with only one
node in the community.

IV. DISTRIBUTED GENERATION OF THE MULTIPARTY
ENTANGLED STATE
In this paper we assume that both classical and quantum
channels are idealistic. Also we assume that all devices
work as expected. Before going into details lets see a three
party example of what this algorithm is capable of.

A. EXAMPLE OF COMPETITION RESOLUTION IN A
DISTRIBUTED ENVIRONMENT
This short example of how the communication occurs in our
distributed system will be described in details later. Let us
suppose that Alice and Bob are communicating and already
part of a distributed system. Eve wants to join the system.
First Eve needs to gain a part of an entangled system. After
bearing one part of an entangled quantum system the dis-
tributed system is prepared for communication. The first
step is a measurement on the entangled pairs. In step 2 the
quantum layer controls the classical layer to obtain optimal
performance based on the result of step 1.. Classical commu-
nication occurs in step 3.

The number of nodes in distributed systems is continu-
ously changing. New nodes are switched on or arrive in the
geographical area (see Fig. 4) as other nodes are switched
off or leave the area. To keep state |w̃n〉 updated, each node
interested in resource access possesses one of its qubits, but
no other user is entangled with it. We introduce the JOIN
and LEAVE operators in this section. Furthermore, the prob-
ability TRANSFER operator is constructed to guarantee fair
resource access among nodes.

B. ADDING A NEW NODE TO THE SYSTEM: THE JOIN
OPERATOR
When the system contains only two nodes, the appropriate
coordinating state is Bell state |β01〉

|β01〉 = |w2〉 =
|01〉 + |10〉
√
2

. (11)

FIGURE 1. Utilization of proposed algorithm.

FIGURE 2. Cooperation schematics of classical and quantum channels.

This state can be generated as seen in [21]. The allowance
of a nonuniform probability amplitude distribution (11) can
generally be written as

|w̃2〉 = ϕ2,1|0
2.
1〉 + ϕ2,2|

1.
1 0〉 =


0
ϕ2,1
ϕ2,2
0

 , (12)

where 1. and 2. over the lines refer to the nodes shown
in Fig. 4. Since the system is distributed, when a new node
wants to join, the node must meet only one of the members
(called the ’interface node’) of the system.

When a new node successfully joins, the coordination state
is

|w̃3〉 = ϕ3,1|00
3.
1〉 + ϕ3,2|0

2.
1 0〉 + ϕ3,4|

1.
1 00〉. (13)

In compliance with the postulates of quantum mechanics,
we must derive a unitary transform J that generates |w̃3〉

(I ⊗ J) |w̃2〉|0〉 = |w̃3〉. (14)

By solving this inhomogeneous linear equation system,
we derive unitary matrix J in the following form

J =


1 0 0 0
0 −J33 J23 0
0 J23 J33 0
0 0 0 1

 , (15)

and the condition

|J23|2 + |J33|2 = 1. (16)
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FIGURE 3. Operators in the system: Switched-on nodes or new nodes
arriving to the area can JOIN the medium access system to obtain access
grants. Leaving or switched-off nodes have to LEAVE the system to return
their access probabilities to the community. Finally, active nodes can
adjust their access possibilities by TRANSFERring a certain portion of
their probabilities.

FIGURE 4. New node joins the system: node1 and node2 have already
formed a medium access system; node3 connects to node2 and performs
the JOIN operation to become part of the system.

must be satisfied. At this point, it is worth emphasizing that
both parameters in (16) can be used freely as long as they
produce a unitary matrix.

After a new node joins, the system is in the state

|w̃3〉 = ϕ2,1J23|00
3.
1〉 + ϕ2,1J33|0

2.
1 0〉 + ϕ2,2|

1.
1 00〉. (17)

By means of a projective measurement in the computational
basis states, we obtain the access probabilities for the 3 users,
as shown in [22]

p3,1 = |ϕ2,2|2,
p3,2 = |ϕ2,1|2|J33|2,
p3,3 = |ϕ2,1|2|J23|2,

(18)

from which

p3,2 + p3,3 = |ϕ2,1|2|J23|2 + |ϕ2,1|2|J33|2

= |ϕ2,1|
2(|J23|2 + |J23|2). (19)

We write the measurement probabilities for |w̃2〉 from (12) in
the form of

p2,1 = |ϕ2,2|2,
p2,2 = |ϕ2,1|2.

(20)

Substituting (20) into (19), we establish the relation among
the access probabilities of the 2- and 3-user systems

p3,2 + p3,3 = |ϕ2,1|2 = p2,2. (21)

Therefore, a new node will receive access probability from
only the interface node, i.e., from the node to which it

attaches. In other words, a node with ‘‘questionable ethics’’
cannot distribute other nodes’ probabilities. This restriction
is equivalent to the speed of light limits of information
distribution.
We let RJ denote the ratio of access probability the inter-

face node shares with the newly joining node:

RJ =
p3,2
p3,3

. (22)

For instance, R = 2 means that the interface node will keep
2/3 of its access probability and will give 1/3 to the joining
node.

We determine coefficients J23, J33 as functions of the a pri-
ori input parameters of |w̃2〉 and the ratioRJ . Substituting (18)
into definition (22), it follows that

RJ =
|J23|2

|J33|2
. (23)

From (18) and applying the unit length of rows and
columns of matrix J , we determine how to set up transform
J to achieve the desired distribution of access probabilities

J23 =

√
1

RJ + 1
, J33 =

√
RJ

RJ + 1
. (24)

The matrix J is as follows:

J =



1 0 0 0

0 −

√
RJ

RJ + 1

√
1

RJ + 1
0

0

√
1

RJ + 1

√
RJ

RJ + 1
0

0 0 0 1


. (25)

C. DISCONNECTING: THE LEAVE OPERATOR
When a node leaves the system, the node must pass its access
rights (probability) to the common media of an interface
node. We must find a transformation that breaks the entan-
glement between the exiting entity and the rest of the system,
returning the measurement probability to the interface node:

(I ⊗ L)|w3〉 = |w̃2〉|0〉. (26)

Independent of the number of steps needed to produce
|w̃3〉 from |w̃2〉, we can determine one single virtual JOIN
operator J that would generate |w̃3〉 from |w̃2〉. Since the
evolution of the system obeys unitary operators, it can also be
reversed. To leave the distributed network, a node must apply
the LEAVE operator L, which is the inverse or, equivalently,
adjoint (the conjugate transpose) of the JOIN operator J ,
i.e., L = J−1 = J†. Disconnection is shown in Fig. 5.

In possession of |w̃2〉 and |w̃3〉, we can solve the linear
equation system (14) to obtain operator J in the form of (25).
J is Hermitian since it has only real elements and is sym-

metrical in terms of reflection along the main diagonal; thus,
it follows that

L = J−1 = J† = J . (27)
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FIGURE 5. A node leaves the system: node1, node2 and node3 have
already formed a medium access system, and node3 decides to
disconnect. Therefore, node3 returns his access probability to node2 by
performing the LEAVE operation.

Matrix L can be written as

J =



1 0 0 0

0 −

√
RL

RL + 1

√
1

RL + 1
0

0

√
1

RL + 1

√
RL

RL + 1
0

0 0 0 1


, (28)

where RL = RJ refers to the ratio defined in (22).
To calculate the coefficients of operator L, the leaving

node must be familiar with the possessed probability that will
be returned to the interface node; this interface node must
modify its memory variable and store its access probability
according to the value obtained from the exiting node.

D. ADJUSTING PROBABILITIES: THE TRANSFER
OPERATOR
In some scenarios, transferring probabilities among nodes in
the system is practical, if not actually necessary. To resolve
this problem, a third functionality is required for a resource
access point to allow nodes to adjust their access probabil-
ities. During probability TRANSFER, two nodes exchange
probabilities, e.g., a node possessing more probability gives
its excess probability to another node. We call this operator
probability TRANSFER and denote it by T .
We must emphasize that if the LEAVE operator is con-

structed with inappropriate parameters, then only a portion of
the entire access probability is returned to the interface node,
which will remain in the system with modified probability.

To determine the matrix of operator T , we consider that
each node is able to update its own access probability during
any of the three operations. In this way, all the probabilities
are known when n nodes are present in the system pn,i, i ∈
[0, n − 1]. After a new node joins, n + 1 nodes are present
with probabilities pn+1,i, i ∈ [0, n]. Clearly, the new node
may receive access probability from any node in the system.

The LEAVE and JOIN operators can be applied sequen-
tially to create the TRANSFER operator, as shown in Fig. 6.,
i.e., one of the probability exchanging nodes gives its entire
probability to the other, which returns a portion of the
probability when the first node joins. Thus, node2 operates

FIGURE 6. Application of the TRANSFER operator: node1, node2 and
node3 have already formed a medium access system. Node2 and
node3 decide to exchange access probabilities to smooth the overall
probability distribution; therefore, they perform the TRANSFER operation.

as an interface node. This approach models the transfer oper-
ation and helps to calculate the matrix of T

T (RT ) = J (RJ )L(RL), (29)

where the ratio RT represents the ratio of the probability
amplitude of node3 in (13) before and after the probability
transfer:

RT =
|ϕ3,1|

2

|ϕ′3,1|
2 . (30)

We assume that the measurement probability transfer occurs
from node2 to node3.

From (29), we seek T = JL in the following form:

T =


1 0 0 0
0 T22 −T23 0
0 T23 T22 0
0 0 0 1

 . (31)

Using (29), (30) and (31), the post-transfer state |w̃3
′
〉 is

expressed as

|w̃3
′
〉 = (I ⊗ T (RT ))|w̃3〉 =



0
T22ϕ3,1 − T23ϕ3,2
T23ϕ3,1 + T22ϕ3,2

0
ϕ3,4
0
0
0


. (32)

Reducing the linear equation system yields

T22ϕ3,1 − T23ϕ3,2 =
√
RTϕ3,1,

T23ϕ3,1 + T22ϕ3,2 =
√
|ϕ3,1|2 + |ϕ3,2|2 − RTϕ3,2. (33)

From (33), the coefficients of matrix T can be obtained

T22 =

√
RTϕ3,1 + U23ϕ3,2

ϕ3,1
,

T23 =
ϕ3,1ϕ3,2(

√
|ϕ3,1|2 + |ϕ3,2|2 − RT −

√
RT )

(ϕ23,1 + ϕ
2
3,2)

. (34)
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E. GENERALIZATION OF OPERATORS
For the sake of plausible discussion, the JOIN, LEAVE
and TRANSFER operators have been introduced for a sys-
tem containing three nodes in the previous sections. Now,
we present how these results can be easily extended to larger
systems.

The matrices of these operators have a special structure

U =


1 0 0 0
0 U22 U23 0
0 U32 U33 0
0 0 0 1

 (35)

as one can observe a special consequence when I ⊗ U is
applied to input |w̃N 〉.

(I ⊗ U )|w̃N 〉

=



1 0 0 0 · · · 0 0 0 0
0 U22 U23 0 0 0 0 0
0 U32 U33 0 0 0 0 0
0 0 0 1 0 0 0 0
...

. . .
...

0 0 0 0 1 0 0 0
0 0 0 0 0 U22 U23 0
0 0 0 0 0 U32 U33 0
0 0 0 0 · · · 0 0 0 1



×



0
ϕN ,0
ϕN ,1
0
...

ϕN ,N−1
0
0
0



=



0
U22ϕN ,0 + U23ϕN ,1
U32ϕN ,0 + U33ϕN ,1

0
...

ϕN ,N−1
0
0
0


= |w̃′N 〉. (36)

The column vector on the right-hand side of (36) high-
lights that only the probability amplitudes of the last two
wires (nodes) are affected by operator U and are connected
to it independently of whether |w̃N 〉 is in an entangled state.

Based on this observation, since the sequence of nodes can
be chosen logically, the system can be virtually arranged so
that the actual operation always acts on the last two wires,
as depicted in Fig. 9. Therefore, the number of nodes in the
system is extended to any number while the results obtained
for the 3-node system remain valid.

FIGURE 7. Generalization of operators.

FIGURE 8. Operators acting on more nodes.

FIGURE 9. Generalized operator acting on K nodes.

To provide fairness in classically distributed systems, indi-
vidual users may observe access attempts to a common
resource. By detecting successful attempts, one can estimate
other access probabilities, which are related to the corre-
sponding priority. Clearly, this estimation is fairly coarse.
In the case of collisions, identifiers cannot be detected.
By contrast, the quantum-assisted MAC can solve this
issue. During distributed |wN 〉 generation, nodes continu-
ously update their access probabilities. Since no collision
occurs, each access attempt is detected, and the entire access
probability distribution of the system is known for all the
nodes.

V. OPERATIONS ON MULTIPLE NODES
Previously, we considered operations on one joining or leav-
ing node. What happens when numerous nodes would like
to join or leave the system? For instance, when a group of
students leave a seminar and go to another building together.
We present how to construct operators that are capable of
allowing more than one, i.e., (K ) nodes, join (transfer or
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FIGURE 10. Construction method for the multi-JOIN operator for K
nodes.

leave). The system is assumed to initially include N nodes
and the group that arrives consists of K nodes. To create a
multi-operator we consider the following schematics.

To construct the matrix of operator U , the following inho-
mogeneous linear equation system must be solved, where the
input and output superpositions are given as

U |wK+1〉 = |w̃K+1〉. (37)

Since U is unitary, i.e., U−1 = U†, the columns or rows
of matrix U must form an orthonormal basis resulting in the
conditions

K∑
i=1

|ui,j|2 = 1, (38)

where ui,j are the coefficients of U , and

K∑
i=1

ui,jui,l = 0 (39)

for any j, l ∈ [1,K ] and j 6= l.
To avoid the exhausting calculations of the above equation

system with conditions, we present a construction method
that traces the problem back to the preciously discussed 2-
qubit systems.

Our first example is the multi-JOIN operator Jm(K ), which
allows K nodes to join the system in one step.
As depicted in Fig. 10., the matrix of multi-JOIN operator

Jm(K ) can be constructed from K two-by-two JOIN opera-
tors J (l,K ). On the bottom green wire is the node already
included in the system. The arriving nodes receive transmis-
sion probability from this node. The coefficients of Jm(K ) can
easily be acquired by the appropriate tensor product of the
individual J (l,K ) and identity matrices.

The construction method for the multi-LEAVE operator,
which supports K nodes leaving in one step, is similar to that
of the multi-JOIN operator (see Fig. 11.). Individual 2-qubit
L(l,K ) and identity matrices result in the matrix L(K ) by
means of the tensor products.

With the definition of the multi-JOIN and multi-LEAVE
operators, it is now possible to redistribute access proba-
bilities among any number of nodes. The matrix of any

FIGURE 11. Construction method for the multi-LEAVE operator for K
nodes.

multi-TRANSFER operator can be constructed by means of
an appropriate combination of multi-LEAVE and multi-JOIN
operators, similarly to the process for 2-qubit systems
in Fig.6.

Possession of the probability distribution of the system
priorities can be assigned to the nodes. Nodes with higher
priorities do not keep their access probabilities when acting
as interface nodes or giving a limited amount of access prob-
ability during the exchange.

VI. PERFORMANCE EVALUATION
Regarding performance evaluation Sotted Aloha was in our
focus as it was one of the first operating distributed systems
and is used even today as an appropriate reference for evalua-
tion. The simulation results presented here were generated in
a Matlab environment. The framework was developed by us
to accomodate high number of simulations within a reason-
able time frame. Simulation was executed for the quantum
channel as competition resolution occurs there. The goal was
to investigate how a distributed system would behave using
the novel quantum protocol presented above. This can be used
for instance to distributedly coordinate a slotted ALOHA
system on a quantum channel (resulting in zero collision on
the classical channel). Simulation methods were as follows.
Each joining node selects an interface node with a uniform
distribution. In the case of probability transfer, the nodes have
selected pairs with uniform distribution, i.e., we assume that
all nodes align with one another. The number of nodes in the
system is set to 10 or 100 to evaluate the performance at dif-
ferent scales. The depicted access probabilities are averaged
for 100,000 runs.

Since the proposed method avoids collisions and unused
slots, we investigate from the individual user perspective,
i.e., fairness and priorities will be discussed.

Initially, the network contains two nodes with uniform
access probabilities. Each time a new node joins the sys-
tem, it connects to any node with a uniform distribution and
receives one-half of the interface node’s access probability.

The first investigation focuses on a system with a small
population. The simulation is run until the total number of
entities in the system reaches 12. The access probability of
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FIGURE 12. Common resource access probability for 10 users: successive
JOIN operations result in a nonuniform probability distribution.

individual users is shown in Fig. 12. The x-axis lists the IDs
of the nodes in the order in which the entities join the system.

Fig. 12. summarizes our expectations, i.e., medium access
in its original form does not provide equal resource access
time to the entities.

A. CONTINUOUS REBALANCING
Continuous rebalancing makes access fairer and more effi-
cient, and we improve the operation with a new functionality.
When a new node joins the system, the already joined nodes
can use this time frame to exchange access probabilities via
the TRANSFER operator. The previous simulation scenario
is extended during each JOIN operation: all the nodes, except
the new and interface node, perform probability TRANSFER
with a uniformly selected partner, setting up the same access
probability in pairs. We observe the trends by increasing the
number of nodes in the system to 100. Fig. 13. highlights how
the proposed improvement to themethod is an efficient way to
provide fair access to everyone, i.e., continuous rebalancing
of the system’s distribution provides a good extrapolation of
the uniform distribution.

If one is interested in an asymptotically uniform access
distribution, then the system may continue rebalancing
for the defined number of iterations after all nodes have
joined.

As depicted in Fig. 14, several additional rebalancing steps
will bring the distribution appropriately close to a uniform
distribution.

The sample standard deviation is an appropriate metric to
measure the difference from the ideal uniform distribution

σ =

√√√√√ N∑
i=1

(Xi − µ)2

N − 1
(40)

where µ denotes the mean value of resource access probabil-
ities, N is the number of nodes in the system, and Xi is the
resource access probability of the ith node.

FIGURE 13. Continuous rebalancing for 100 users, averaged over
10000 runs. When nodes perform TRANSFER operations with their
neighbors, the overall probability distribution tends toward a uniform
distribution very efficiently.

FIGURE 14. Rebalancing after all nodes have joined. When the number of
nodes is stationary, nodes can continue the TRANSFER operation to
achieve a better approximation of an overall uniform distribution.

In Fig. 15, the sample standard deviations are presented for
10 and 100 nodes as a function of the number of rebalancing
steps after all nodes have joined the system. Rebalancing is
shown to be an effective tool to ensure fairness.

The application of multi-node operators that act on K
nodes, instead of 1 node, in a single step provides further
improvement in the efficiency of the entanglement distribu-
tion proportional to the value of K .

The discussed simulation results are based on the assump-
tion that any node can join another and that probability trans-
fer can be performed between any two arbitrary nodes. In real
scenarios, topological restrictions may restrict this freedom.
However, this limitation does not hinder the operation, as only
access probability rebalancing needs more time.

It is worth noting that setting up quantum links has extra
cost. Upon real life implementation the extra cost of using a
quantum channel can be lowered by the gain in performance
increase of the classical channel.
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FIGURE 15. Sample standard deviation as a function of the number of
rebalancing steps after all nodes have joined the system.

VII. CONCLUSION
State of the art distributed protocols faces channel attempts
in random time instances. In the contrary distributed systems
have been implemented for a while, in fact Slotted Aloha
was on of the first ones. Quantum communication is just in
its childhood, i.e., practically there are only 3 well-known
protocols (superdense coding, teleportation and large set of
quantum key distribution protocols, but these latter ones rep-
resent a very specific subset).

Superdense coding can be regarded as entanglement
assisted communication of classical information over quan-
tum channel. Teleportation means entanglement assisted
communication of quantum information over classical
channel.

Our new protocol opens a new track in quantum communi-
cations because it delivers classical information over classical
channel using entanglement. This entanglement improves
the efficiency of communication compared to the classical
protocols. It means from information theory point of view that
using entanglement may increase the classical capacity of a
classical channel! Furthermore, both teleportation and super-
dense coding apply entangled Bell states while we presented
that another family of entangled states - called W-states - can
be exploited for communication.

The proposed quantum-assisted method outperforms
Slotted-ALOHA and other classically distributed medium
access solutions. This method avoids collisions and unused
slots, i.e., it guarantees that 100% of the resource attempts
will be successful via using quantum methods. In the case of
classical solutions, this rate always remains below 100%. For
Slotted-ALOHA, this value falls within the region [0.5..1/e],
depending on the number of users in an even application of
the optimal access strategy.

Our method demonstrates that quantummechanical effects
can be exploited to substantially improve the efficiency of
classical distributed systems. We anticipate our assay to be
a starting point for more sophisticated and realistic meth-
ods. For example, imperfect storage of entangled particles

introduces errors and may decrease the efficiency and indi-
vidual resource access communities may merge into a larger
community or be divided into smaller parts.

Another important novelty of the new protocol is related
to its scalability. While the efficiency of classical methods
depends on the number of users, the presented quantumMAC
is invariant to this parameter: the method is always optimal.
Although optimal solutions exist for classical distributions,
MAC protocols and individual nodes are unaware of the
required population size. Only rough estimates are made
using exponential (back off) contention windows in WiFi
systems [2], [3]. Therefore, the optimal performance, which
is worse than that of the quantum-assisted method, can only
be approximated.

Extension of the proposed basic protocol to systems with
arbitrary random packet arrival times is in the focus of future
research.
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