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ABSTRACT In this article, a novel Q-learning scheduling method for the current controller of a switched
reluctance motor (SRM) drive is investigated. The Q-learning algorithm is a class of reinforcement learning
approaches that can find the best forward-in-time solution of a linear control problem. An augmented system
is constructed based on the reference current signal and the SRM model to allow for solving the algebraic
Riccati equation of the current-tracking problem. This article introduces a new scheduled-Q-learning
algorithm that utilizes a table of Q-cores that lies on the nonlinear surface of an SRM model without involving
any information about the model parameters to track the reference current trajectory by scheduling the
infinite horizon linear quadratic trackers (LQT) handled by Q-learning algorithms. Additionally, a linear
interpolation algorithm is proposed to improve the transition of the LQT between trained Q-cores to ensure
a smooth response as state variables evolve on the nonlinear surface of the model. Lastly, simulation and
experimental results are provided to validate the effectiveness of the proposed control scheme.

INDEX TERMS Adaptive dynamic programming, current control, least square methods, motor drive,
optimal control, reinforcement learning, switched reluctance motors.

I. INTRODUCTION

Lately, switched reluctance motor (SRM) has earned signifi-
cant consideration for a wide range of transportation electrifi-
cation and variable speed applications. This is because it has
several inherences, such as aresilient and simple structure due
to the lack of magnet, brushes, and rotor winding. Moreover,
SRMs are efficient at high speed [1]. Based on the reduc-
tion in the power electronics costs, improved availability
and performance of film capacitors to handle the pulse-type
current of these machines, and the interest in the reduced
utilization of rare-earth magnets, the utilization of SRMs
for a variety of industrial and commercial applications has
been on the rise [2]. This includes applications in traction
drives as well as aeronautics where the high reliability, high
temperature and vibration tolerance, and high-speed range
of SRMs make them very competitive compared to more
complex motors [3]-[7]. However, SRMs have suffered from
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certain drawbacks, including high acoustic noise production
due to its torque ripple and flux paths and the expensiveness
of drive due to a large number of semiconductor switches
in its drive. Additionally, it has a highly nonlinear electro-
magnetic nature that is highly reliant on variations in the
phase current and rotor positions. Many researchers have
investigated SRMs to mitigate these issues by improving
the SRM design to minimize torque ripples or developing a
new converter topology using recently introduced and more
affordable power electronics switches [8]-[11]. The highly
nonlinear behavior of SRMs is the main challenge, which
must be considered when designing an effective controller.
Unlike conventional sinusoidal motors, SRMs require
pulse-type current that requires high variations of current (i.e.
di/dt) and hence a high bandwidth drive system. To achieve
a fast rate of current charge and discharge, a large dc-link
voltage and low phase inductances are often needed. How-
ever, this dc-link voltage will make the regulation of phase
currents more challenging, particularly during low speed
operation modes. Traditionally, delta modulation or hystere-
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sis current controllers have been used to regulate the phase
current. Hysteresis-type controllers lead to a variable switch-
ing frequency, which is not of interest as managing the
Electro-Magnetic Interferences (EMIs) becomes challenging.
Additionally, power switches will impose an upper limit
for the switching frequency and large current ripples will
increase torque ripple and audible noises.

Many publications have investigated current control tech-
niques for SRM, including enhanced hysteresis control,
sliding-mode approaches, and fast PI controllers [12]-[17].
However, Pl-based methods are slow, and methods such
as delta-modulation will not be able to use the concept
of duty-cycle to breakdown the switching cycle to shorter
active periods. Therefore, a method is required to generate
a duty cycle. Classical controllers such as PID controllers
are not capable of controlling a system with such transients.
Hence, researchers have investigated methods such as model
predictive control and neural networks to cope with this
issue [18]—-[23]. To cope with the nonlinearities of the model,
Ref [19] has introduced a Taylor expansion algorithm to
approximate the variations of the model as a function of
the rotor angle and current. Also, adaptive estimators are
used to improving this approximation. However, the accu-
racy of the control is impacted by the Taylor expansion.
As an improvement, Ref [24] has introduced a table-based
inductance function that is used to form the model needed
for the Model Predictive Control (MPC) in each cycle as
oppose to a Taylor expansion. This table allows the MPC
to have access to an accurate inductance value for a given
rotor angle and current. Additionally, an adaptive estimator
is used to update this table. Ref [24] has also introduced
a linear interpolation technique for transitions between the
models that will be incorporated in this article to introduce
a novel scheduled Q-learning technique. In these literatures,
a fundamental model is assumed, then an adaptive estimator
is used to estimate the inductance of the phase as a function
of rotor angle and current. Then, this value is used in a model
predictive controller. The main drawbacks of the above works
are the need for a separate estimator, a model predictive
controller, and assumptions on the structure of the model.

In this article, the controller has been formulated based on
an infinite-horizon linear quadratic tracker (LQT). To elimi-
nate the need for a known model, a reinforcement Q-learning
scheme is used to learn and apply the best course of action
at each control cycle. Q-learning is inherently a linear con-
troller [25], and on the other hand, the model of an SRM
has nonlinearities to rotor angle and current (i.e. saturation).
Hence, this article proposes a scheduled Q-learning algorithm
that utilizes a table of Q cores, each containing a linear
controller for a given rotor angle and current. By transitioning
between these Q cores using a linear interpolation mecha-
nism, this article introduces a nonlinear tracking controller
capable of handling SRM drives.

The specific contributions of this article include i) intro-
duction of Q-learning LQT for SRMs, ii) scheduling a table
of Q-cores to achieve nonlinear control capabilities out of
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traditional Q-learning techniques, and iii) introducing a linear
interpolation technique for transitioning between Q-cores to
achieve a smooth Q scheduling.

The article is organized as follows: Section II reviews the
Q-learning algorithm and introduces the proposed controller.
Section III proposes the Q scheduling algorithm and table
interpolation. Sections IV and V verify the effectiveness of
the proposed controller through simulations and experimental
results.

Il. Q-LEARNING CONTROL OF SRM DRIVE

As discussed in Section I, there are several approaches to cur-
rent control SRMs with their own drawbacks. For instance,
the hysteresis technique downside is its rippled current, and
torque, and consequently the acoustic noises and low effi-
ciency. The conventional linear controllers such as PI/PID
lack the ability to cope with nonlinear systems. The non-
linear techniques such as model predictive controller rely
on an accurate system model, which can be changed during
the time. Therefore, model-free reinforcement learning is a
powerful tool to tackle all these drawbacks. Considering the
expensive computation costs for neural network-based rein-
forcement learning such as online adaptive optimal control
problem of a class of continuous-time Markov jump linear
systems (MJLSs) [26] or Online policy iterative-based Hoo
optimization algorithm [27], it is infeasible to implement
them into power electronics control circuits. On the other
hand, the Q-learning technique based on the Q-table only
requires enough memory spaces that are available in most of
the power electronics microcontrollers.

The primary target of the Q-learning algorithm in the
current control of SRMs is to solve the LQT problem,
which allows the system output to track a specific reference
signal. The implementation of the algorithm in this format
minimizes the predetermined value function associated with
the cost of the policy and the difference between the output
current and the reference signal. The classic solutions to the
LQT can be found by solving the feedback part using the
algebraic Riccati equation (ARE) and a feedforward part
using the noncausal difference equation [28]. However, these
approaches are not applicable for SRMs or most of the indus-
trial applications since they are solved offline and they need
accurate information on system dynamics. Adaptive dynamic
programming is a part of the Reinforcement Learning (RL)
methods and has been used to solve infinite-horizon LQT
problems online without knowing system dynamics [29]. Two
major assumptions have been made for this scheme: full state
feedback is observable for the controller and the full reference
trajectory is known. The LQT is a special case of model pre-
dictive controllers were the performance index is quadratic
and no further constraints are applied to the optimizer. Deriv-
ing the quadratic form of the performance index for the LQT
has been proved in [29]. The benefit of quadratic forms is the
availability of algorithms that can solve Bellman equations
online. To cope with the reference trajectory, an augmented
system is generated by incorporating the reference current
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trajectory into the state space model of SRM. This augmented
system leads to the development of ARE, which provides the
optimal solution for the LQT. By solving ARE, the feedback
and feedforward parts of the policy for the classic solution of
the LQT are solved at the same time [30]. The main drawback
of using the LQT Bellman equation to solve this problem is
that the accurate model of SRM is required [31].

To cope with this issue, Q-learning is utilized to learn
and adapt itself to the optimal solution of this LQT online.
The LQT Bellman equation and Q-learning algorithm for the
SRM drive system are introduced in this section.

A. THE LQT BELLMAN EQUATION ALGORITHM OF SRM
DRIVE

A schematic diagram of a switched reluctance motor is
depicted in Fig. 1, and Fig. 2 shows the circuit diagram of an
SRM driver in a 3-phase and detailed single phase. Driving
an SRM requires a train of current pulses applied with respect
to the rotor position. Due to the negligible mutual induc-
tance between phases and as done traditionally, the mutual
inductances are neglected to achieve a phase model that is
independent of other phases. Taking into consideration the
reference current, an augmented system can be formed by
discretizing the SRM model using the forward approximation
as

A 0 B
Xi+1 = |:0 F} |:xk]+ |:0i|uk = A Xk + Bpur (1)

Ik
Ve =[C 0]xx = CeXk 2)

xk=ik

Ph1 Phz Ph3 Uy

Si

_{
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S

(a) (b)

FIGURE 2. The circuit diagram of an SRM driver, (a) 3-phase drive circuit
(b) single phase circuit diagram.
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where X; = [xrx]” and A = 1 — TR/L, B = T /L,
xx is the phase current, uy is the DC-bus voltage, R is the
phase resistance, and the original output of the system yj
is the phase current, meaning that C = 1. The parameter
Ly is the nonlinear phase inductance as a function of both
phase current and rotor position. Parameter 7 is the sampling
time and F is the model of the reference trajectory (i.e. F =
1 for a flat current). Due to the actual mechanical design
of the machine, the nature of the inductance surface with
respect to a rotor angle is periodic, starting from an unaligned
position between rotor and stator poles until they are aligned.
To solve the LQT problem and achieve tracking, the reference
current generator pulses are assumed to be incorporated in the
augmented system as in (1). It is expressed as

i1 = Fry 3)

where ry is the reference current trajectory and F' € R”" is the
reference current generator. This can generate different types
of waveforms, including a sequence of square waveforms,
the reference current for SRM. Even the command generator
is not stable, then solving the LQT problem can occur by
injecting the discount factor into the value function. Based
on the augmented system, the discounted value function can
be expressed as

I
V) =2 3y X 0gXi+ u Ruil “)
i=k

where O, = [C —NTQI[C —I1, Q and R are predefined
weight matrices for the augmented state and the control input,
respectively, and 0 < y < 1 is a discount factor. It is
important to consider that matrices Q and R are constant,
positive-semi-definite and positive definite matrices, respec-
tively. However, in the finite time horizon, they do not need
to be constant. The value of y should be less than 1 to attain
a stable value function as the reference current in SRM is
generated as a train of pulses and therefore has a positive
dc average [32]. Based on (5), the value function relies on
the current augmented state and an infinite horizon of the
control inputs. By initializing the state of the value function
with fixed control input, that infinite sum can be written as

1
Vo) = 3 [ =307 Q =y + uf R | + vV Xe1)
(%)
Equation (4) is equivalent to the LQT bellman equation. As it
has been proved in [29] that the value function can be derived

in a quadratic form and V (x) = %XkT PX}, the LQT Bellman
equation with respect to a kernel P matrix is generated as

X PXp = x] Qgxi + uf Rug + vy X[\ PXii (©6)

where P matrix is the optimum solution of ARE with ele-
ments derived in [29]. By obtaining the Hamiltonian function
of the LQT and applying the stationary condition to obtain the
optimal control policy (8), the solution of ARE that allows the
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matrix P to converge to its optimal values can be generated
as

P=0,+yAlPA,—y?Al PBy(R+yBl PB,) 'BLPA, (7)

Now, one may construct the algorithm based on the policy
iteration method to solve the LQT problem by iterating the
Bellman equation until convergence using data measured
during the operation of the machine as in algorithm 1 as
follows.

B. THE Q-LEARNING ALGORITHM OF SRM DRIVE
Let’s assume that L; and hence the model of the machine
is linear. For instance, the controller is operating while the
variations of the current and angle of the rotor are negligible.
This is due to the fact that the Q-learning algorithm utilized
in this section can only operate on linear systems. In the next
section, the nonlinearity is addressed through scheduling.

In Algorithm 1, Policy Integration (PI) is applied to LQT
Bellman equation to acquire the optimum solution for ARE.

This algorithm requires all SRM dynamic parameters (i.e.
Ap) to solve the LQT problem online. Q-learning is among the
RL control methods that offer an adaptive tuning algorithm
to track the reference signal online without requiring the
system dynamic [33]. By extracting sets of data during the
operation, including the reference current and augmented
states, the algorithm can train Q-function until convergence
at each iteration. The Q-function of LQT can be provided
in matrix form by substituting the augmented model (1) and
reference current in the LQT Bellman equation as

O (X, ug)

T
_ l|:in| [Qq+VAZPAa

yAI'PB, X
= f (®)
2 | Uk VBb PAq

R+yBlPBy, | | wk

which can be written as

%] 6 Gu|[ X

Q Xi ) = 2|:Mki| |:GuX Guu:| |:“k] ©)
The Q-learning algorithm can be designed based on the policy
iteration method to solve the LQT online in a way that ensures
the system model parameters do not appear in the algorithm
processes [34]. This process improves the control input until
the system converges to the optimal level, which allows the
output current in the SRM to follow the reference current.
Algorithm 2 demonstrates the procedure of finding the solu-
tion to the Q-learning. In this algorithm, M is defined as M =
(X ur 17 Optimizing the Q-function in Algorithm 2 can be
achieved as G matrix trains and converges to the optimum
solution. The policy evaluation step for both algorithms 1 and
2 requires the solver to achieve convergence before updating
the policy [31].

lll. Q-LEARNING SCHEDULING

In the previous section, the adaptive Q-learning algorithm
controller for SRM was proposed to solve LQT and enable
the current of the SRM drive to track a reference trajectory
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Algorithm 1 Solving LQT Bellman Equation Online by
Using PI
Initialization: Initialize the algorithm with stable control
input. Repeat and update the following two process until
convergence.
1) Policy Evaluation:

xTPHIX; = (xT) (Q,, + (K,’;)TR(KI’Q)) (Xi)
+yX P X (10)

2) Policy Improvement:

K5 = (R+ yBLPBy) "'y Bl PA, (11)

Algorithm 2 Solving LQT Q-Function Online by Using PI
Initialization: Initialize the algorithm with stable control
input. Repeat and update the following two process until
convergence.

1) Policy Evaluation:
MG My = (X[)Qy(X0) + ()" R(ug)’
+y ML G M (12)

2) Policy Improvement:

ul = —(G TG Xy (13)

assuming that L; was constant. The inductance profile of
the SRM is a nonlinear function of the current and the rotor
angle. For instance, the inductance profile of the motor uti-
lized later in the experimental section is shown in Fig. 3.
In addition to this function, in the long term, effects such as
aging of bearings and changes in the airgap, chemical degra-
dation of the core such as rust, which can lead to changes
in the airgap length, and temperature expansion can cause
further variation in the inductance profile. Also, common
manufacturing related variations such as variations in the
airgap length, permeability, and even number of turns can
cause some differences between the expected model and the
actual inductance profile. To mitigate these effects, adap-
tive estimation approaches to update the dynamic parame-
ters of the machine are of interest. Various methods have
been utilized to estimate the inductance profile of SRM and
update the nonlinear model of the SRM [35], [36]. However,
these methods are unlike the proposed Q-learning approach,
which can perform both tracking reference and adaptive
estimation at the same time. The Q-learning by itself is
not feasible or applicable to a nonlinear system such as an
SRM. To address this issue, one can incorporate a proper
local linearization scheme for the nonlinear inductance sur-
face of SRM to allow the Q matrix to train in its locally
linearized region.
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FIGURE 3. The inductance profile of the SRM used later during
experimental testing with respect to the rotor angles and the currents.

Gain scheduling is a powerful solution to enable a linear
control solution to address a nonlinear control problem. Gain
scheduling is commonly applied to classical PID controllers
to fine tune control parameters for the local operating condi-
tions. Several implementations of gain scheduling methods
have been studied for SRM control such as in speed con-
trol [37] and in PI current controller for enhancing the perfor-
mance [38]. Gain scheduling allows the Q-learning algorithm
to react rapidly to variations in operating conditions. For this,
it is important to select enough Q-cores to reflect the non-
linear system properly. In contrast to nonlinear RL methods
for adaptive dynamic programming such as neural networks
which require heavy matrix operations for online training,
gain scheduling provides fewer computation loads, which
makes it ideal for implementations on conventional micro-
controllers. Its major requirement is access to sufficient mem-
ory to store all trained Q matrix in the table elements based
on the corresponding states and rotor angles. The data table
must be updated for each iteration during system trajectories.

In this article, the surface of the inductance profile of
SRMs is divided into sufficient segments to achieve a suitable
linearization with a balanced tradeoff between the number
of table elements and accuracy. Each Q-core represents a
local linear controller that can follow the trajectory for that
specific region of operation. The Q-learning algorithm can
be executed in each segment by training a Q matrix in the
segment until the matrix achieves its optimum solution based
on the data collected from that segment. The training Q matrix
at each segment is registered and stored as a table entry
to generate a bidimensional Q matrix array which helps to
efficiently conquer the nonlinear behavior of SRM.

For a fast control response, the Q-core table is fully trained
using the expected parameters and then preloaded into the
control system. This allows the controller to only adapt to
the variations between the expected and actual model. The
following subsections show the process of the Q-scheduling
algorithm and its stages. The first stage involves solving and
training Q-functions at each Q-core and can be performed
using the least square method. The table implementation
method will then transmit the scheduled Q matrix from the
Q-table to the policy improvement to update the control
input.
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A. TRAINING LOCAL Q MATRICES

In this article, the least square approach has been utilized to
solve the tracking problem and learn the Q matrix by using
enough data packets measured through the operating of the
machine. The least square solver does not require a system
identification model. In practice, an observer is required to
observe that states online. To implement policy evaluation,
no less than H = (my + my, + my) x (my + my + my +
1)/2 data tuples are needed to perform LS method while
O Xg, ux) = %MkT GM), and the number of elements in G
matrix are (m, +my+my) X (my +my+my). This can be solved
using the Kronecker product. The Kronecker product of G, xp,
gn-Z - gmn-2Z
and Z, 4 can be defined as GR Z = Lo
8ml Z ... gmn'Z
Kronecker product enables the Q matrix to appear as columns
of stacking vectors as

A (vec(G)T> -B (14)

The definition of Ay and By, are expressed as
My & My — yMi41 ® Mi41
A= : (15)
| Mictz @ Mz — Y M1 @ Mgz

(XkT)Qq(Xk) + (Mfc)TR(uk)i
B = : (16)
| (X0 (Xao) + (e, )T Ry o)

where z > H is the number of samples for each iteration.
Then, the batch least square equation for solving Q matrix is
provided as

vec (Gf“) — AT ATB (17)

By maintaining the persistence condition, least square may
be solved iteratively by applying recursive least square (RLS)
equations as

ex(t) = Q Xk, w) — AL Ge(t — 1) (18)

= = nk(t — 1) Arex

Gr(t) =Gt — 1)+ T ATne — DAy (19)

e (1 = 1) Ay A (6 = 1)
1+ Al (¢ — 1) Ay

where ¢ is the index of iterations of the RLS, e is the error,

and 7 is the covariance matrix whereas n; (0) = t/ for a big
positive number T while / is an identity matrix.

me () =i (t —1) — (20)

B. TABLE DATA EXTRACTION AND LINEAR
INTERPOLATION

Table readout algorithm is important to enabling extracting
the knowledge from the Q-cores table and utilizing the data to
improve policy. A table of Q-learning has been computed and
formed in the previous section that contains the locations for
current-rotor position points selected from the surface of the
inductance profile. The typical current pulse for each SRM
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FIGURE 4. The process of implanting the Q-cores table into the controller,
(a) The sample current path lies on the Q-cores table, (b) the definition of
the bilinear scheduling parameters.

phase placed on the Q-learning table is shown in Fig. 4-a.
One method of implementing the Q-learning table is to use
the optimal Q matrix that is located at near the current path.
In this case, the algorithm will read the value of the current
and measure the distance to neighboring matrices to find the
nearest Q matrix. This process solves the problem of using
only one learned Q matrix in the locally linearized region.
Although, in practice, this method is relatively simple, it leads
to transients in the current waveform every time the controller
switches between two table elements.

The bilinear interpolation algorithm provides a smoother
and more accurate scheduling than does the nearest Q matrix
method. This algorithm divides the Q matrix among its four
closest Q matrices neighbors in the opposite proportion of the
distance, which means if the state of the system is located at
equal distance from four Q neighbors, the values of scheduled
Q matrix are divided equally; if it is a near one of the four
matrices, most of the scheduled Q matrix data are transmitted
from that adjacent Q matrix. Observing the four neighboring
Q matrices points Q11, Q12, Q21 and Q»p, which are the
four closest neighbors of scheduled Q matrix Q;, then Qy is
obtained as

Qs = Po + P10 + pai + B30i 2y

where the coefficient of bilinear scheduling By, 81, 82 and 83
are obtained by solving

. . =1
Bo I 6 i1 61 O
B1 1 61 i 6y 021

= . . 22
B2 1 6 i 6 012 (22)
B3 1 6 i 6 On
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FIGURE 5. The overall control block diagram.

ix

In practical implementation, to avoid solving systems of
equations and performing matrix inversions that are not fea-
sible in a digital controller, and since the scheduled Q matrix
lies on a square grid of four Q matrices, one can use a
simplified algorithm based on a unit square, Q; is computed
as
Ou QOun||l-h
Os=1[1-0h k] |:Q21 sz] [ I } (23)

where Iy € [0,1) and I, € [0,1) are the lengths
between Qg and the nearest Q matrix in the rotor angels
and current axis, respectively. These lengths are calculated
as shown in Fig.4-bas [} = (0 — 91/92 —61) and L =
(i—i / ip — i1). Implementing this method drastically min-
imizes the computational burden of the scheduling process
and the number of cycles required for scheduling.

IV. SIMULATION RESULTS

The Q-learning algorithm integrated with the bilinear
scheduling approach has been simulated to study the per-
formance of the proposed current controller and verify the
effectiveness of the controller. The control scheme is depicted
in Fig. 5. This controller has been applied to a 500 W
12/8 SRM, which has a phase resistance of 2 €2 and a nominal
current of 5 A. The inductance profile of the controller begins
from the aligned position at 16 mH and gradually decreases
until it reaches the unaligned position at 6 mH. The available
dc voltage is 100V. The simulation sampling time is defined
by the switching frequency. In other words, for this simulation
that the switching frequency is 10kHz, the sampling time
is 1/10kHz equal to 0.1 millisecond. The control cycle in
which the Q-learning/hysteresis performs is also defined by
the switching frequency. To smoothen the simulation results,
the time step for electrical parts 0.1 of the control cycle (10
microseconds). Algorithm 2 has been utilized for training all
Q-cores pre-located on the nonlinear surface of the machine.
In this case, the algorithm should initialize the process using
a stable control policy and an augmented state. The initial
augmented state and initial control policy have been selected
tobe Xo = [00]” and Ky = [100 —100]7 , respectively.
The cost function has been applied with the weights of
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FIGURE 6. Tracking the output current of SRM to the reference current.

Q =100 and R = 0.001. The discount factor in this function
isy =0.9.

The ratio between Q and R is essential for training the
local Q matrix. If the value of R is large, an extremely high
cost associated with the control input will occur, which pre-
vents the linear quadratic tracker from tracking the reference.
Moreover, if there is a huge Q/R ratio or R=0, the controller
will track the reference in the first step due to a huge applied
control input. This means that the duty cycles switch between
two values, either 0% or 100%, which allow the controller to
act as a delta-modulation controller that causes a remarkably
high pulsation on the current. Therefore, selecting an effective
Q/R ratio for tracking controller is of interest that permits
the control input to vary freely as well as preventing the
controller from tracking the reference from the first cycle.
Hence, we have chosen the weights to be Q = 100 and
R=0.001 as they are the best selection based on a design
technique.

The reference model generates a train of square wave
signals, the typical reference current for SRM. The Q-matrix
at the unaligned position and a current of 4 A converges to
its optimal values to allow tracking performance as shown
below:

438100  —253100 5729
G = | —253100 56630 —2595 (24)
5729 —2595 98.1
And, the optimal control gain K converges to
K = [120 —122] (25)

The optimal values vary based on Q-core along with the
states that are located in the domain of the system. For each
Q-core, there are 6 data tubules collected per iteration to
train the Q-matrices using the LS method. In this simulation,
the speed of the SRM is constant and has been selected to be
60 RPM to demonstrate the result for the proposed controller.
Fig. 6 shows how the SRM drive current tracks the reference
of sequent pulses within a few time steps. Fig. 7 shows
how the control gains K values that have converged to their
optimal numbers change (considering the movement along
the scheduling-table as well). The optimal voltage signal
introduced to the motor to verify the best tracking perfor-
mance is shown in Fig. 8. Fig. 9 illustrates the behavior of
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FIGURE 8. The optimal phase voltage introduced to the machine
throughout learning.

the current once the reference changed from 4A to 5.5A. This
figure depicts that the Q-table starts re-learning as a result
of any change in the reference current. Hence, even though
one cycle requires currents of up to 18A, the system will
soon learn the correct model (in a practical application, over
currents will be eliminated using a supervisory hysteresis
band).

V. EXPERIMENTAL RESULTS

In this section, the results and observations are presented
to show the practical feasibility of the control method.
The experimental components include a 3-phase 500 W
12/8 SRM, DC machine with DC power supply to control the
field and hence loading of the machine as a mechanical load,
H bridge converter, control board with a TITMS320F28377D
microcontroller, and a mixed domain oscilloscope. The
experimental setup is shown in Fig. 10. The unaligned and
aligned inductances for the machine used for validation are
6mH and 16mH, respectively, and the nominal current is
5 A per phase. The proposed Q-learning algorithm is imple-
mented inside one of the two TMS320F28377D cores capable
of operating at 200MFLOPS each. The available processing
power in this controller is sufficient to control a 3-phase SRM
at a 40 kHz control frequency.

To demonstrate the effectiveness of the proposed
Q-learning technique compared to the conventional hys-
teresis controller, both techniques are applied, where the
proposed scheduled Q-learning approach controls the first
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FIGURE 10. The experimental setup.

phase, and the hysteresis technique controls the second and
the third phase. The behavior of the current at different stages
of the learning process is shown in Fig. 11. In this figure,
the controller is set to run starting from the preloaded Q table
to the point that the Q table is trained to the actual hardware
online. In this figure, probe 1 shows the behavior of Phase
A under the proposed control while probe 2 shows Phase
B under the traditional Delta-modulation for comparison.
During the learning process, when the Q matrices are not
fully trained, the current tries to track the reference current
(Fig. 11-a). The zoomed version of the current response is
shown in Fig. 11-b. After a couple of cycles, the Q matrices
are fully trained and the current can successfully track the
reference current with almost no ripples on the current pulses
(Fig. 11-c). Delta-modulation is not effective in minimizing
the ripples for the current pulses. The Q-learning algorithm,
once the Q-matrices are fully trained, are much more effective
at minimizing the ripples for current pulses.

A. CHANGING THE REFERENCE CURRENT RESPONSE

In this test, the reference current is changed from 5.5 A
to 4.5 A. The observations are illustrated in Fig. 12. This
figure shows that the Q-matrices begin retraining once the
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FIGURE 11. Startup process with the current set on 5.5 A (a) when the Q
matrices are not fully trained, (b) the zoomed version of current response
when the Q matrices are not fully trained (c) the current response when
the Q matrix is fully trained.

reference current varies to 4.5 A. Fig. 12-a shows how the
new reference is tracked. After a few cycles, the current
tracks the reference effectively after the Q-matrices are fully
trained (Fig. 12-b). When conventional delta-modulation is
used, large ripples will be observed in phase current, and there
is no way to mitigate them (Fig. 12-b).

To illustrate the novelty of the proposed technique, it can be
seen that a model-free Q-learning control can regulate the cur-
rent in only three cycles, which in general is less than 15 mil-
liseconds. Moreover, the proposed technique reduces the
ripples significantly compared to the conventional hysteresis
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method. Finally, the controller does not need any tuning if the
SRM parameters changes because aging or change in airgaps,
since the online training never stops learning. In this article,
the proposed Q-learning parameters are only the discount
factor and the size of the Q-table. These parameters are
defined based on the trial-and-error technique.

B. HARDWARE IMPLEMENTATION CHALLENGES

Laboratory testbeds always arise new challenges compared
to the simulation. Computationally feasibility is the main
obstacle of the experimental testbeds, which includes two
main parts: (i) whether the controller can be implemented
easily? For instance, regarding the reinforcement learning
methods, there are several functions, libraries, and toolboxes
available in MATLAB and Python that can facilitate the
implementation, that are not available in embedded com-
pilers. The main advantage of the proposed technique is its
easy-to-implement characteristics. The iterative inherence
of the proposed technique limits the mathematical opera-
tion to summations, multiplications, and square roots. The
embedded TI microcontroller, TMS320F28377D, includes
embedded hardware multiplier and square root blocks, which
significantly decreases the computation time. (ii) if the con-
troller can fit in the control cycle. In this article, where the
controller only requires a few numbers of multiplications and
summation, a 200 MHz microcontroller can easily implement
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the algorithm. However, for more complicated reinforcement
learning methods with multilayer neural network, forward
computations, and back propagation training, alternative
solutions are required, which are not the main concern of this
article.

VI. CONCLUSION

The Q-learning scheduling algorithm for controlling the cur-
rent of an SRM drive was studied in this article. By defin-
ing a Q-learning LQT, a table of Q-cores was generated to
cover the nonlinear surface of the SRM model. Using this
table, a scheduled Q-learning controller was derived, which
is capable of controlling a nonlinear system, particularly,
an SRM drive. Additionally, an online training mechanism
was introduced capable of controlling the SRM without hav-
ing any information regarding the system model parameters.
This training mechanism updates each Q-core in the table
as the state variables evolve over the domain of this table.
Furthermore, a linear interpolation technique was used to
ensure smooth transitions between these Q-cores. Lastly,
simulation and experimental results demonstrated that the
proposed algorithm is successful in controlling the current
of a switched reluctance motor, minimizing its ripples, and
adapting to the underlying SRM without any prior informa-
tion regarding its parameters.
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