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ABSTRACT The global stabilization controller design is addressed in this paper for a kind of uncertain
switched nonlinear systems (SNSs) in p-normal form. Notably, the study possess two significant features: the
system under investigation is subject to the dead-zone inputs, and the system states are expected to be driven
to zero in prescribed finite time. To do this, a novel time-varying scaling transformation (TVST), which can
be used to change the original prescribed-time stabilization into the asymptotic stabilization of transformed
one, is first recommended. Then, with the aid of the common Lyapunov function (CLF) technique, the state
feedback stabilization within prescribed-time of SNSs is established by using the recursive idea. Finally,
the effectiveness of given control method is confirmed by simulation results of a liquid-level system.

INDEX TERMS Switched nonlinear systems, p-normal form, dead-zone inputs, time-varying scaling
transformation, prescribed-time stabilization.

I. INTRODUCTION
Switched nonlinear systems (SNSs), as a kind important
hybrid dynamic systems, have received widespread attention
thanks to their significant values in practical applications,
such as power systems, mechanical systems, aircraft and traf-
fic systems [1]–[3]. Roughly speaking, two switching types,
that is, constrained switchings (CSs) and arbitrary switch-
ings (ASs), are considered in the literature. In contrast with
stable under CSs, stable under ASs of switched systems is
more desirable owing to its theoretical and practical signifi-
cance. It was affirmed in [4] that the existing of a common
Lyapunov function(CLF) for all subsystems is enough to
assure the whole switched system being asymptotically stable
under ASs. With the aid of this fact, great progress has been
made in the asymptotic stabilizing/tracking control of SNSs,
see [5]–[14] and the references therein.

On the other hand, pursuing finite-time convergence has
become an active research area in recent years because the
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finite-time stable system owns the nice properties of not
only faster response but also better robustness and distur-
bance rejection. Since the breakthrough work that the Lya-
punov finite-time stability theorem of nonlinear systems
was established in [15], fruitful achievements have been
achieved [16]–[28], just mention a few. Of particular note
is that the settling time functions acquired in the aforemen-
tioned results rely on initial system conditions. This ren-
ders that the settling time may increase unacceptably large
as the magnitude of initial conditions becomes large. To
overcome this weakness, Andrieu et al. in [29] developed
the notion of fixed-time stability, which demands that the
associated settling time function is regardless of initial sys-
tem conditions. Under the new framework of fixed-time
stability, various works have appeared to address control
designs of linear/nonlinear systems. Roughly, the existing
approaches on such control designs can be classified into two
classes: the bi-limit homogeneous approach [30], [31] and the
Lyapunov-based approach [32]–[38]. It is worth pointing out
that, in the bi-limit homogeneous approach, the upper bound
of the settling time (UBST) function exists but is unknown.
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In the Lyapunov-based approach, (namely, by constructing
a positive definite and proper function U to satisfy U̇ ≤
−aUβ

− bUη for some real numbers a > 0, b > 0,
0 < β < 1, η > 1, one obtains T ≤ 1/(a − aβ) +
1/(bη − b)), although its UBST is bounded, it is difficult or
even impossible to be prespecified discretionarily according
to requirements [39], [40]. This is mostly because the settling
time function derived from the Lyapunov-based approach
currently relies on a few design parameters, whose choice is
not easy to satisfy pregiven settling time.

Nevertheless, prespecifiable settling time is wanted by
many practice applications, e.g., missile guidance [41]. Based
on scaling the state by a function that increases unbound-
edly toward the terminal time, a computationally singular
controller was proposed to solve prescribed-time regulation
of Brunovsky systems in [42]. The extension of this tech-
nique was further refined in [43], where a time-varying scal-
ing transformation (TVST) was recommended to overcome
the computationally singular problem and the solution to
prescribed-time stabilization of SNSswas given. Note that the
proposed methodology in [43] requires that the powers of the
studied system are strictly equal to 1, which limits its applica-
tions because of many practical systems (e.g, the liquid-level
system [33]) described by the p-normal SNSs. Moreover,
another common drawback of the above-mentioned papers
are that the effect of the dead-zone inputs are ignored. How-
ever, many actual systems are usually inevitably subject to
input dead-zone nonlinearity during operation due to phys-
ical limitations of devices. Such undesirable property may
significantly degrade the system’s performance [44]–[48].
Therefore, the interesting question naturally arises: For a p-
normal SNS with dead-zone inputs, is it possible to design a
controller to achieve the prescribed-time stabilization under
ASs? If possible, how can one design it?

This paper tries to solve the problem of global
prescribed-time stabilization under ASs for a kind of
p-normal SNSs with dead-zone inputs and give an affirma-
tive answer to above question. The significant contributions
are highlighted as: (i) Fully considering practical system
requirements, global prescribed-time stabilization problem of
SNSs with dead-zone inputs is firstly addressed. (ii) A novel
TVST is suggested to change the original prescribed-time
stabilization problem into the problem of asymptotic stabi-
lization of transformed one. (iii) Under the weaker restricted
condition on characterizing system growth, a systematic
design method is proposed by delicately utilizing the CLF
technique. (iv) As an application of the proposed theoretical
result, the problem of prescribed-time control with dead-zone
input for a liquid-level system is solved.

The notations adopted in this paper are fairly standard.
Specifically, for a vector z = (z1, . . . , zn)T ∈ Rn, denote
z̄m = (z1, . . . , zm)T ∈ Rm, m = 1, . . . , n, and the function
dzeγ is defined as dzeγ = sign(z)|z|γ where sign(·) is the
signum function.

The rest of the paper is organised as follows. In Section II,
the problem formulation and preliminaries of this paper are

introduced. In Section III, details on the controller design
are presented, followed by the rigorous stability analysis of
the CLS. In Section, a practical example of the liquid-level
system is provided with simulation studies to validate the
efficiency of the proposed method. Finally, the paper is con-
cluded in Section IV.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
Consider a kind of p-normal SNSs with dead-zone inputs
given by

ż1 = h1σ (t) dz2eq1σ (t) + g1σ (t) (z1) ,
ż2 = h2σ (t) dz3eq2σ (t) + g2σ (t) (z̄2) ,

...

żn = hnσ (t)
⌈
Dσ (t)(uσ (t))

⌉qnσ (t)
+ gnσ (t) (z̄n) ,

(1)

where z̄i ∈ Ri is the system state (vector) and σ (t) :
[0,+∞) → S = {1, 2, . . . , s} is the piecewise continuous
switching signal. For each k ∈ S, hik ∈ R is the coefficient
of the kth subsystem. For any k ∈ S and i = 1, . . . , n,
gik : Ri

→ R are continuous functions satisfying gik (0) = 0,
qik ∈ R+ are the power orders, uk ∈ R are the control inputs,
and Dk denote the dead-zone input nonlinearities which can
be described as

Dk (uk )=


mk (t)(uk − bk (t)), uk ≥ bk (t),
0, −bk (t) < uk < bk (t),
mk (t)(uk + bk (t)), uk ≤ −bk (t),

(2)

where mk (t) and bk (t) represent the slopes and the
breakpoints of the dead-zone characteristic, respectively.
Moreover, it is further supposed that the state of switched
system (1) does not jump at the switching instants.
Remark 1: System (1) is indeed a general SNS because

its powers pi’s are allowed to take values continuously in
interval (0,+∞). As a result, it includes the extensively
studied strict-feedback one as a special case. The practi-
cal interest of studying such system can be justified via
the example of liquid-level system [33], which cannot be
global prescribed-time stabilized by using the existing control
methods.
Assumption 1: For given numbers qik , there exist smooth

functions ϕik ≥ 0 and constants τk ≥ 1 such that

|gik (z̄i)| ≤ ϕik (z̄i)
i∑

j=1

|zj|
λi−τk
λj , (3)

where λn+1 = 1, qikλi+1 = λi − τk > 0, i = 1, . . . , n and
k ∈ S.
Assumption 2: For i = 1, . . . , n and k ∈ S, there exist

constants hik > 0 and hik > 0 such that hik ≤ hik ≤ hik .
Assumption 3: For any k ∈ S, there exist constants m and

b such that 0 < m ≤ mk (t) and 0 < bk (t) ≤ b.
Remark 2: Assumption 1 can be seen as a new

homogeneous-growth-like condition because λi’s defined in
it are radically different from the conventional ones used
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in [18]–[22], [30] where they are recursively defined by λ1 =
1, qikλi+1 = λi − τk ≥ 0, i = 1, . . . , n. Moreover,
it should be pointed out that, it is also fairly common and
reasonable in engineering practice by imposing the control
coefficients and the unknown dead-zone parameters bounded
in Assumption 2 and 3 [45], [46].

B. PRELIMINARIES
Consider the nonlinear system

ż = g(z), z(0) = z0 ∈ Rn (4)

where g : Rn
→ Rn is a (discontinuous) nonlinear vector

field that satisfies φ(0) = 0. Moreover, all solutions of
system (4) are understood in the Filippov sense [49].
Definition 1 [31]: The origin of system (4) is globally

finite-time stable if it is globally asymptotically stable and for
any z0 ∈ Rn, there is a settling time function T : Rn

\ {0} →
(0,∞), which makes every solution z(t, z0) of (4) satisfying
z(t, z0) = 0, ∀t ≥ T (z0).
Definition 2 [31]: The origin of system (4) is globally

fixed-time stable if it is globally finite-time stable and its
settling-time function T (z0) is bounded, that is, there exists
a positive constant Tmax such that T (z0) ≤ Tmax, ∀z0 ∈ R.
Definition 3: The origin of system (4) is globally

prescribed-time stable if it is globally fixed-time stable and
for any prescribed finite time Tc > 0, there exists some
tunable designing parameters θ ∈ Rl such that T (z0) ≤
Tc, ∀z0 ∈ R.
Lemma 1 [50]: For ζ ∈ R, η ∈ R, and a constant q ≥ 1,

the following inequalities hold: (i)|ζ + η|q ≤ 2q−1|ζ q + ηq|;
(ii)(|ζ | + |η|)1/q ≤ |ζ |1/q + |η|1/q ≤ 2(q−1)/q(|ζ | + |η|)1/q.
Lemma 2 [50]: For positive constants c, d and real-valued

function δ(ζ, η) > 0, |ζ |c|η|d ≤ c
c+d δ(ζ, η)|ζ |

c+d
+

d
c+d δ

−c/d (ζ, η)|η|c+d .
Lemma 3 [51]: If 0 < q ≤ 1 and a > 0, then for any

ζ, η ∈ R, one has |dζeaq − dηeaq| ≤ 21−q|dζea − dηea|q.

III. PRESCRIBED-TIME STABILIZATION
In this section, a constructive design mechanism of com-
mon stabilizer of switched system (1) is established for any
given finite settling time Tc > 0 under ASs. The design
consists of defining such common stabilizer as a piecewise
controller. Specially, when t ∈ [0, Tc) we first construct a
non-autonomous controller to drive the state tending to and
reaching the origin regardless of the initial conditions within
Tc, thereafter we design an autonomous controller to keep the
state at the origin.

A. CONTROLLER DESIGN FOR THE CASE OF t ∈ [0, Tc )
Inspired by recent works [38], [39], to shift the original
prescribed-time stabilization to the framework of asymptotic
stabilization, we introduce the following novel TVST:

ζi = 0
λizi, i = 1, . . . , n, Dk (vk ) = 0λn+1Dk (uk ), (5)

where

0 =
Tc

Tc − t
. (6)

Remark 2: It is clear that 0(·) is monotonically increasing
on [0,Tc) and satisfies 0(0) = 1, 0(Tc) = +∞.
With the aid of (5), switched system (1) can be reinter-

preted as
ζ̇1 = 0

τσ (t)
(
h1σ (t) dζ2eq1σ (t) + ḡ1σ (t) (ζ1)

)
,

ζ̇2 = 0
τσ (t)

(
h2σ (t) dζ3eq2σ (t) + ḡ2σ (t)

(
ζ̄2
))
,

...

ζ̇n = 0
τσ (t)

(
hnσ (t)

⌈
Dσ (t)(vσ (t))

⌉qnσ (t)
+ ḡnσ (t)

(
ζ̄n
))
,

(7)

where

ḡiσ (t)(ζ̄i) = λiζi
0̇

01+τσ (t)
+ 0λi−τσ (t)giσ (t)(z̄i),

i = 1, . . . , n, (8)

for which we have
Proposition 1: For i = 1, . . . , n and k ∈ S, there are

smooth functions ϕ̄ik (ζ̄i) ≥ 0 such that

|ḡik (ζ̄i)| ≤ ϕ̄ik (ζ̄i)
i∑

j=1

|ζj|
λi−τk
λj . (9)

Proof: From the definition of 0 in (6), one has 0̇ =
02/Tc. This further together with (5) and Assumption 1 ren-
ders

|ḡik (ζ̄i)| =

∣∣∣∣ζi λi0̇01+τk
+ 0λi−τkgik (z̄i)

∣∣∣∣
≤ λi0

1−τk |ζi| +

∣∣∣∣∣∣0λi−τkϕik
i∑

j=1

|zj|
λi−τk
λj

∣∣∣∣∣∣
≤ λi0

1−τk |ζi| + ϕik

i∑
j=1

∣∣ζj∣∣ λi−τkλj . (10)

By noting that 0 ≥ 1 for all t ∈ [0, Tc), one can find the
smooth functions ϕ̄ik (ζ̄i) ≥ λi|ζi|

τk/λi + ϕik such that this
proposition is true.

In the sequel, a state feedback asymptotic stabilizing con-
troller of switched system (7) is constructed for the case of
t ∈ [0,Tc) by using the CLF-based recursive technique.
Step 1. Let ρ ≥ max1≤i≤n{λi} being a real number and

select the common Lyapunov function V1 for this step as

V1 = W1 =

∫ ζ1

0

⌈
dse

ρ
λ1 − 0

⌉ 2ρ−λ1
ρ

ds. (11)

Then, for each subsystem k of switched system (7), applying
Assumption 1 and (9) gives

V̇1 = 0τk dπ1e
2ρ−λ1
ρ

(
h1kdζ2eq1k + ḡ1k

)
≤ 0τk

(
dπ1e

2ρ−λ1
ρ h1k (ζ2eq1k − dζ ∗2 e

q1k )

+ h1kdπ1e
2ρ−λ1
ρ dζ ∗2 e

q1k + |π1|
2ρ−τk
ρ ϕ̄1k

)
. (12)

where π1 = dζ1e
ρ
λ1 and ζ ∗2 is the virtual controller of ζ2 to be

specified.
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Take the common ζ ∗2 for each subsystem k ∈ S as

ζ ∗2 = −dπ1e
λ2
ρ β

λ2
ρ

1 (ζ1), (13)

where

β1(ζ1) ≥ max
k∈S

(
n+ ϕ̄1k
h1k

) ρ
q1kλ2

, (14)

is a smooth function independent of k , and substituting (13),
(14) into (12), one has

V̇1 ≤ −n0τk |π1|
2ρ−τk
ρ

+0τkh1kdπ1e
2ρ−λ1
ρ

(
dζ2e

q1k − dζ ∗2 e
q1k
)
. (15)

Step 2.Defineπ2 = dζ2e
ρ
λ2 −dζ ∗2 e

ρ
λ2 and take the common

Lyapunov function V2 = V1 +W2 with

W2 =

∫ ζ2

ζ ∗2

⌈
dse

ρ
λ2 − dζ ∗2 e

ρ
λ2

⌉ 2ρ−λ2
ρ

ds. (16)

From the fact that

∂W2

∂ζ2
= dπ2e

2ρ−λ2
ρ ,

∂W2

∂ζ1
= −

2ρ − λ2
ρ

∂
(
dζ ∗2 e

ρ
λ2

)
∂ζ1

×

∫ ζ2

ζ ∗2

∣∣∣dse ρλ2 − ⌈ζ ∗2 ⌉ ρ
λ2

∣∣∣ ρ−λ2ρ ds,

(17)

a direct calculation gives

V̇2 ≤ −n0τk |π1|
2ρ−τk
ρ

+0τkh1kdπ1e
2ρ−λ1
ρ

(
dζ2e

q1k − dζ ∗2 e
q1k
)

+0τk
(
∂W2

∂ζ1
(h1kdζ2eq1k + ḡ1k )

+ h2kdπ2e
2ρ−λ2
ρ

(
dζ3e

q2k − dζ ∗3 e
q2k
)

+ h2kdπ2e
2ρ−λ2
ρ dζ ∗3 e

q2k + dπ2e
2ρ−λ2
ρ ḡ2k

)
, (18)

where ζ ∗3 is the virtual controller to be designed later. To pro-
ceed, we need to give the upper bound estimates for some
terms of (18).

First, based on the definitions of πj and ζ ∗j (j = 1, 2) and
Lemma 3, one has∣∣dζ2eq1k − dζ ∗2 eq1k ∣∣ =

∣∣∣∣∣(dζ2e ρλ2 )
λ2q1k
ρ
−

(
dζ ∗2 e

ρ
λ2

) λ2q1k
ρ

∣∣∣∣∣
≤ 21−

λ2q1k
ρ

∣∣∣dζ2e ρλ2 − dζ ∗2 e ρλ2 ∣∣∣ λ2q1kρ

= 21−
λ2q1k
ρ |π2|

λ2q1k
ρ . (19)

Thus, it is from (19), Assumption 2 and Lemma 2 obtained
that

h1kdπ1e
2ρ−λ1
ρ

(
dζ2e

q1k − dζ ∗2 e
q1k
)

≤ 21−
λ2q1k
ρ h1k |π1|

2ρ−λ1
ρ |π2|

λ2q1k
ρ

≤
1
3
|π1|

2ρ−τk
ρ + |π2|

2ρ−τk
ρ $21k , (20)

where$21k ≥ 0 is a smooth function.
Secondly, from (9) and Lemma 1, one can get

|ḡ2k | ≤ ϕ̄2k

(
|ζ1|

λ2−τk
λ1 + |ζ2|

λ2−τk
λ2

)
≤ ϕ̄2k

(
|π1|

λ2−τk
ρ + |π2|

λ2−τk
ρ + β

λ2−τk
ρ

1 |π1|
λ2−τk
ρ

)
≤ ϕ̃2k

(
|π1|

λ2−τk
ρ + |π2|

λ2−τk
ρ

)
, (21)

where ϕ̃2k =
(
1+ β

λ2−τk
ρ

1

)
ϕ̄2k ≥ 0 is a smooth function.

Using (21) and Lemma 2 produces

dπ2e
2ρ−λ2
ρ ḡ2k ≤ dπ2e

2ρ−λ2
ρ ϕ̃2k

(
|π1|

λ2−τk
ρ + |π2|

λ2−τk
ρ

)
≤

1
3
|π1|

2ρ−τk
ρ + |π2|

2ρ−τk
ρ $22k . (22)

where$22k ≥ 0 is a smooth function.
Finally, note that

2ρ − λ2
ρ

∫ ζ2

ζ ∗2

∣∣∣dse ρλ2 − ⌈ζ ∗2 ⌉ ρ
λ2

∣∣∣ ρ−λ2ρ ds

≤
2ρ − λ2
ρ
|π2|

ρ−λ2
ρ |ζ2 − ζ

∗

2 |

≤
2ρ − λ2
ρ

21−
λ2
ρ |π2|, (23)

and ∣∣∣∣∣∣∣
∂
(
dζ ∗2 e

ρ
λ2

)
∂ζ1

∣∣∣∣∣∣∣ =
∣∣∣∣∂(β1dπ1e)∂ζ1

∣∣∣∣
≤

∣∣∣∣∂β1∂ζ1

∣∣∣∣ |π1| + ρ

λ1
β1|π1|

ρ−λ1
ρ

≤ |π1|
ρ−λ1
ρ γ2, (24)

where γ2 ≥ 0 is a smooth function.
Therefore, in the light of (21), (23), (24) and Lemma 2, one

concludes that
∂W2

∂ζ1
(h1kdζ2eq1k + ḡ1k )

≤
2ρ − λ2
ρ

∫ ζ2

ζ ∗2

∣∣∣dse ρλ2 − ⌈ζ ∗2 ⌉ ρ
λ2

∣∣∣ ρ−λ2ρ ds

×

∣∣∣∣∣∣∣
∂
(
dζ ∗2 e

ρ
λ2

)
∂ζ1

∣∣∣∣∣∣∣ (h1kdζ2eq1k + ḡ1k )
≤

1
3
|π1|

2ρ−τk
ρ + |π2|

2ρ−τk
ρ $23k , (25)

where$23k ≥ 0 is a smooth function.
Substituting (20), (22) and (25) into (19) yields

V̇2 ≤ −(n− 1)0τk |π1|
2ρ−τk
ρ
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+0τkh2kdπ2e
2ρ−λ2
ρ

(
dζ3e

q2k − dζ ∗3 e
q2k
)

+0τk
(
h2kdπ2e

2ρ−λ2
ρ dζ ∗3 e

q2k

+ ($21k +$22k +$23k )|π2|
2ρ−τk
ρ

)
. (26)

Then, for each subsystem k ∈ S, one can design the common
virtual controller

ζ ∗3 = −dπ2e
λ3
ρ β

λ3
ρ

2 (ζ̄2), (27)

where the smooth function β2 is independent of k and satisfies

β2(ζ̄2)≥max
k∈S

(
n− 1+$21k+$22k +$23k

h2k

) ρ
q2kλ3

, (28)

such that

V̇2 ≤ −(n− 1)0τk
(
|π1|

2ρ−τk
ρ + |π2|

2ρ−τk
ρ

)
+0τkh2kdπ2e

2ρ−λ2
ρ

(
dζ3e

q2k − dζ ∗3 e
q2k
)
. (29)

Step i (i = 3, . . . , n). In this step, the following property
is obtained.
Proposition 2: Suppose at step i−1, there are aC1 common

Lyapunov function Vi−1, and a row of C0 common virtual
controllers ζ ∗1 , . . . , ζ

∗
i defined by

ζ ∗1 = 0, π1 = dζ1e
ρ
λ1 − dζ ∗1 e

ρ
λ1 ,

ζ ∗2 = −dπ1e
λ2
ρ β

λ2
ρ

1 (ζ1), π2 = dζ2e
ρ
λ2 − dζ ∗2 e

ρ
λ2 ,

...
...

ζ ∗i = −dπi−1e
λi
ρ β

λi
ρ

i−1(ζ̄i−1), πi = dζie
ρ
λi − dζ ∗i e

ρ
λi , (30)

with β1 > 0, . . ., βi−1 > 0, being smooth and independent of
k , such that

V̇i−1≤−(n−i+2)0τk
i−1∑
j=1

|πj|
2ρ−τk
ρ +0τkhi−1,kdπi−1e

2ρ−λi−1
ρ

× (dζieqi−1,k − dζ ∗i e
qi−1,k ). (31)

Then the ith common Lyapunov function Vi = Vi−1 +Wi
with

Wi =

∫ ζi

ζ ∗i

⌈
dse

ρ
λi − dζ ∗i e

ρ
λi

⌉ 2ρ−λi
ρ

ds, (32)

is C1, positive definite and proper, and there is a C0 common
state feedback controller

ζ ∗i+1 = −β

λi+1
ρ

i (ζ̄i)dπie
λi+1
ρ , (33)

such that

V̇i ≤ −(n− i+ 1)0τk
i∑

j=1

|πj|
2ρ−τk
ρ

+0τkhikdπie
2ρ−λi
ρ (dζi+1eqik − dζ ∗i+1e

qik ). (34)

Proof: See the Appendix.
Step n. Choose

Vn =
n∑
j=1

Wj =

n∑
j=1

∫ ζj

ζ ∗j

⌈
dse

ρ
λj − dζ ∗j e

ρ
λj

⌉ 2ρ−λj
ρ

ds. (35)

Then, the previous inductive steps indicate that there exists
an expected common dead-zone output

ζ ∗n+1 = −dπne
λn+1
ρ β

λn+1
ρ

n (ζ̄n), (36)

such that

V̇n ≤ −0τk
n∑
j=1

|πj|
2ρ−τk
ρ

+0τkhnkdπne
2ρ−λn
ρ

(
dDk (vk )eqnk − dζ ∗n+1e

qnk
)

= −0τk
n∑
j=1

|πj|
2ρ−τk
ρ

+0τkhnkdπne
2ρ−λn
ρ

×
(
d0λn+1Dk (uk )eqnk − dζ ∗n+1e

qnk
)
. (37)

Thus, from Assumption 3, one can design the common
state feedback control u as

u = ucom =


ζ ∗n+1

m0λn+1
+ b, ζ ∗n+1 > 0,

0, ζ ∗n+1 = 0,
ζ ∗n+1

m0λn+1
− b, ζ ∗n+1 < 0,

(38)

which renders for any k ∈ S, the inequality (39), as
shown at the bottom of the next page holds. By noting

−dπne
2ρ−λn
ρ dζ ∗n+1e

qnk ≥ 0, one gets

V̇n ≤ −0τk
n∑
j=1

|πj|
2ρ−τk
ρ ≤ −

n∑
j=1

|πj|
2ρ−τk
ρ . (40)

As a result, the following result is obtained.
Theorem 1: For switched system (1) with Assumptions

2.1-2.3, the common state feedback controller u consisting
of (30), (36) and (38) drives the state of the CLS to zerowithin
prescribed finite time Tc > 0 under ASs.

Proof: Proposition 3.2 indicates that Vn is positive def-
inite and proper. Therefore, by (40) and Lemma 4.3 in [52],
there are class K∞ functions η1, η2 and η3 such that

η1(|ζ |) ≤ Vn(ζ ) ≤ η2(|ζ |), (41)

V̇n ≤ −η3(|ζ |), (42)

which means that ζ (t) on [0,Tc) is globally asymptotically
convergent and bounded.

On the other side, the TVST (5) gives

zi(t)=0−λi (t)ζi(t)=
(
Tc − t
Tc

)λi
ζi(t), i=1,. . ., n. (43)
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Consequently, one further has

lim
t→Tc

zi(t)= lim
t→Tc

(
Tc − t
Tc

)λi
ζi(t)=0, i=1,. . ., n. (44)

Thus, the proof is completed.

B. CONTROLLER DESIGN FOR t ≥ Tc AND MAIN RESULT
Since the common state feedback controller has been
designed in the above subsection to drive the state of the CLS
to the origin in prescribed finite time Tc > 0 under ASs.
Consequently, next we are only to design a controller such
that the state is maintained at the origin for t ≥ Tc.
By the solution properties of existence and continuation,

one easily obtained that z(Tc) = 0.Moreover, observe that the
original system (1) and the transformed system (7) have the
similar structure except the time-varying control coefficient
0τk . Therefore, by letting 0 = 1, one can design a new
common state feedback controller u consisting of (30), (36)
and (38), to maintain the state at the origin for t ≥ Tc.
Till now, it is completed the design of prescribed-time

stabilizer for switched system (1). Accordingly the following
theorem is stated to sum up the main results of this paper.
Theorem 2: Considering switched system (1) with

Assumptions 2.1–2.3, if the common state feedback con-
troller

u = ucom =


ζ ∗n+1

m0λn+1
+ b, ζ ∗n+1 > 0,

0, ζ ∗n+1 = 0,
ζ ∗n+1

m0λn+1
− b, ζ ∗n+1 < 0,

(45)

with

01 =


Tc

Tc − t
, 0 ≤ t < Tc,

1, t ≥ Tc,
(46)

ζ ∗n+1 = −dπne
λn+1
ρ β

λn+1
ρ

n (ζ̄n), (47)

is applied, then the origin of the CLS is globally
prescribed-time stable under ASs.

Proof: From the monotonous growth property of 0(t) =
Tc/(Tc − t) and the asymptotical convergent of ζ (t) for all
t ∈ [0, Tc), one has

|z(t)| ≤ |ζ (t)| ≤ |ζ (0)| = |z(0)|. (48)

This together with z(t) = 0 for any t ∈ [Tc, +∞) renders

|z(t)| ≤ |z(0)|, t ≥ 0, (49)

TABLE 1. Qualitative comparison with the existing related results.

in other words, the origin of the CLS is globally Lyapunov
stable.

With this and the global prescribed-time convergent of
the CLS given in Theorem 1 in mind, it is straightforward
from Definition 3 that the origin of the CLS is globally
prescribed-time stable. This completes the proof.
Remark 3: To further stress the contributions of this paper,

we offer some comparison with the existing related results in
TABLE 1.

IV. AN APPLICATION EXAMPLE
To verify the applicability of the proposed control scheme,
we consider a liquid-level system the dynamics of which are
represented by

C1Ḣ1 = Q1

C2Ḣ2 = Q− Q1 − Q2

Q1 =

{
α1
√
2g|H2 − H1|, H2 ≥ H1,

−α2
√
2g|H2 − H1|, H2 < H1,

Q2 = α3
√
2gH2. (50)

where the physical meanings of system parameters can be
found in [33].

By introducing the variable change

z1 = H1 − H , z2 = H2 − H1, u =
Q
C2
−
α3
√
2gH
C2

,(51)

and taking into the presence of the input dead-zone nonlin-
earity account, the dynamics of (50) can be modelled as the
following switched p-normal form:

ż1 = h1σ (t)dz2e
1
2 ,

ż2 = D(u)+ g2σ (t)(z̄2), (52)

where σ (t) : [0,+∞) → {1, 2}, h1σ (t) =
ασ (t)
√
2g

C1

and g2σ (t)(z̄2) = −
C1
C2
h1σ (t)dz2e

1
2 −

α3
√
2g

C2
dz1 + z2 +

He
1
2 +

α3
√
2g

C2
dHe

1
2 , D denotes the output of dead-zone input

nonlinearity described by (2) with mk = 1 + 0.2 sin t ,

d0λn+1Dk (uk )eqnk − dζ ∗n+1e
qnk =



(
0λn+1mk

(
ζ ∗n+1

m0λn+1
+ b− bk

))qnk
− ζ
∗qnk
n+1 ≥ 0, ζ ∗n+1 > 0,

0, ζ ∗n+1 = 0,

−

(
−0λn+1mk

(
ζ ∗n+1

m0λn+1
− b+ bk

))qnk
+ (−ζ ∗n+1)

qnk ≤ 0, ζ ∗n+1 < 0.

(39)
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FIGURE 1. Trajectories of state z1 under different initial conditions of
case (a), case (b) and case (c).

bk = 0.4 + 0.1 cos t respectively. Based on Lemma 3, it is
easily verified that

|g2k | ≤
C1

C2
h1k |z2|

1
2 +

α3
√
2g

C2

×

∣∣∣dz1 + z2 + He 12 − dHe 12 ∣∣∣
≤

(
αk
√
2g

C2
+
α3
√
2g

C2

)(
|z1|

1
2 + |z2|

1
2

)
. (53)

As a result, Assumptions 2.1–2.3 hold for τ1 = τ2 = 1, λ1 =
λ2 = 2, λ3 = 1, m = 0.8, b = 0.5, h1k = h1k = h2k =
h2k =

αk
√
2g

C1
, ϕ21 =

√
2g
C2

(α1 + α3)(1 + z21)
1
2 and ϕ22 =

√
2g
C2

(α2 + α3)(1+ z21)
1
2 .

Introducing ζi = 0
λi
1 zi, i = 1, 2 with

01 =


Tc

Tc − t
, 0 ≤ t < Tc,

1, t ≥ Tc,
(54)

and taking ρ = 2, h = min
k=1,2
{h1k , h2k}, h = max{h1k , h2k}

and ϕ̄2 = max
k=1,2

(λ2(1 + ζ 22 )
1
2 /Tc + ϕ2k ), according to Theo-

rem 2 one can design a common state feedback controller

u =



ζ ∗3

m0λ31
+ b, ζ ∗3 > 0,

0, ζ ∗3 = 0,
ζ ∗3

m0λ31
− b, ζ ∗3 < 0,

(55)

ζ ∗3 = −(1+ ψ21 + ψ22 + ψ23)dπ2e
1
2 , (56)

with β1 = (2 + 2
Tc
(1 + ζ 21 )

1
2 )/h if t ∈ [0, Tc) and β1 = 2/h

if t ∈ [Tc, +∞), π2 = ζ2 − ζ
∗

2 , ζ
∗

2 = −β1ζ
2
1 , ϕ̃2 = (1 +

β
1
2
1 )ϕ̄2, ψ21 = 3.7712 d

3
2
1 , ψ22 = 0.6667ϕ̃

3
2
2 + ϕ̃2, ψ23 =

|
∂ζ ∗2
∂ζ1

h|+0.6667|
∂ζ ∗2
∂ζ1
|
3(hβ

1
2
1 +

2
Tc
(1+ζ 21 )

1
2 )3, which renders the

switched system (52) globally prescribed-time stable under
ASs.

For the simplicity, select the system parameters as H =
100cm, g = 9.8m/s2, C1 = C2 =

√
2g = 4.427cm2,

FIGURE 2. Trajectories of state z2 under different initial conditions of
case (a), case (b) and case (c).

FIGURE 3. Trajectories of dead-zone input u and output D(u) under
different initial conditions of case (a), case (b) and case (c).

FIGURE 4. Switching signal σ (t).

α1 = 1.25cm2, α2 = 1cm2 and α3 = 0.25cm2 and the
prescribed time as Tc = 4s. For different initial conditions:
(a) (z1(0), z2(0)) = (1,−0.5), (b) (z1(0), z2(0))= (100,−50)
and (c) (z1(0), z2(0)) = (1000,−500), FIGURES 1–3 are
given to exhibit state trajectories of the closed-loop switched
system (52)–(56), under a randomly produced switching sig-
nal exhibiting in FIGURE 4. It can be clearly observed that
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the convergence time of the switched systemmaintains below
the prescribed time 4s in spite of the initial value increas-
ing rapidly, which confirms the effectiveness of the control
method.

V. CONCLUSION
In this paper, we discover a novel TVST which can change
the original problem of prescribed-time stabilization into the
asymptotic stabilization of transformed one, and provide a
constructive solution to prescribed-time stabilization of SNSs
in p-normal form. A practical application to prescribed-time
control of a liquid-level system is provided to show the
validity of the proposed method. In our future work, we will
explore that how achieve the prescribed-time stabilization
task by employing the switched Lyapunov function method
for want of lower conservatism.

APPENDIX
Proof of Proposition 2: Firstly, some simple derivations give

∂Wi

∂ζi
= dπie

2ρ−λi
ρ ,

∂Wi

∂ζj
= −

2ρ − λi
ρ

∂
(
dζ ∗i e

ρ
λi

)
∂ζj

×

∫ ζi

ζ ∗i

∣∣∣dse ρλi − ⌈ζ ∗i ⌉ ρ
λi

∣∣∣ ρ−λiρ
ds,

(57)

for j = 1, . . . , i − 1. By ρ ≥ max1≤i≤n{λi} and βj(·) being
smooth, it is obvious that Wi, and also Vi is C1.

Second, similar to the one in [46] using the idea of the
classified discussion, it can be showed

Wj ≥ Cj|ζj − ζ ∗j |
ρ−λj
ρ , (58)

is true for some constant Cj > 0.
Therefore, one has

Vi = Vi−1 +Wi ≥ Vi−1 + Ci|ζi − ζ ∗i |
ρ−λi
ρ , (59)

and thus Vi is positive definite and proper.
Finally, we prove inequality (34). From (31) and (57),

it follows that

V̇i ≤ −(n− i+ 2)0τk
i−1∑
j=1

|πj|
2ρ−τk
ρ

+0τk
(
hi−1,kdπi−1e

2ρ−λi−1
ρ (dζieqi−1,k − dζ ∗i e

qi−1,k )

+ hikdπie
2ρ−λi
ρ dζi+1e

qik + hikdπie
2ρ−λi
ρ ḡik

+

i−1∑
j=1

∂Wi

∂ζj

(
hjkdζj+1eqjk + ḡjk

) . (60)

Along the same line as that in Step 2, the estimates of some
terms of (60) based on Lemma 1–3 are given.

hi−1,kdπi−1e
2ρ−λi−1

ρ (dζieqi−1,k − dζ ∗i e
qi−1,k )

≤
1
3
|πi−1|

2ρ−τk
ρ + |πi|

2ρ−τk
ρ $i1k , (61)

dπie
2ρ−λi
ρ ḡik ≤

1
3

i−1∑
j=1

|πj|
2ρ−τk
ρ + |πi|

2ρ−τk
ρ $i2k , (62)

i−1∑
j=1

∂Wi

∂ζj

(
hjkdζj+1eqjk + ḡjk

)
≤

1
3

i−1∑
j=1

|πj|
2ρ−τk
ρ + |πi|

2ρ−τk
ρ $i3k , (63)

for some positive smooth functions $ijk , j = 1, 2, 3 and
k ∈ S.
Substituting (61)–(63) into (60), one has

V̇i ≤ −(n− i+ 1)0τk
i−1∑
j=1

|πj|
2ρ−τk
ρ

+0τk
(
hikdπie

2ρ−λi
ρ (dζi+1eqik − dζ ∗i+1e

qik )

+ hikdπie
2ρ−λi
ρ dζ ∗i+1e

qik

+ |πi|
2ρ−τk
ρ ($i1k +$i2k +$i3k )

)
. (64)

Then, a common state feedback controller

ζ ∗i+1 = −dπie
λi+1
ρ β

λi+1
ρ

i (ζ̄i), (65)

where βi(·) is smooth and satisfies

βi(ζ̄i) ≥ max
k∈S

(
n− i+ 1+$i1k +$i2k +$i3k

hik

) ρ
qikλi+1

,(66)

renders

V̇i ≤ −(n− i+ 1)0τk
i∑

j=1

|πj|
2ρ−τk
ρ

+0τkhikdπie
2ρ−λi
ρ (dζi+1eqik − dζ ∗i+1e

qik ). (67)

This completes the proof.
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