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ABSTRACT For a crane system, when the payload is too large to be seen as a mass point, or the hook
mass cannot be directly ignored, it performs more like a double-pendulum crane system, instead of a
single-pendulum crane system. Due to many factors, the working environment of the industrial crane system
is complex. Obstacles sometimes appear in the movement path of the payload, which affects the normal
operation of the crane system andmay cause accidents like collisions. To handle this issue, we propose a time
optimal trajectory planning method for the double-pendulum crane system with obstacle avoidance, which
ensures the objective of obstacle avoidance by the payload hoisting/lowering. During the trajectory planning
process, a series of physical constraints, including the trolley velocity constraints, the trolley acceleration
constraints, the payload’s swing angle constraints and the hook’s swing angle constraints are considered.
It can improve the safety of the crane system during the entire working process and the transportation
efficiency is also improved at the same time. Finally, the effectiveness of the proposed method is verified by
simulations.

INDEX TERMS Double-pendulum cranes, obstacle avoidance, trajectory planning, underactuated systems.

I. INTRODUCTION
With the improvement of industrialization, the level of indus-
trial mechanization and automation is also improved. Cranes
are an important means of transportation. They can be applied
in many fields, such as cargo hoisting on ships [1], con-
tainer hoisting on docks [2]–[4], parts hoisting in factories
and so forth [5]–[7]. At present, most cranes are manually
operated. However, due to the underactauted characteristics
of crane systems, even experienced workers cannot eliminate
payload’s swing quickly. Therefore, it is necessary to design
automatic control methods. In recent decades, the research on
the automatic control method of crane system has practical
significance and wide application value, which has attracted
researchers’ attention.

Generally speaking, the crane system has two control
objectives: the first is to make the payload reach the target
position quickly and accurately; the second is to suppress
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the payload’s swing. At present, most researchers ignore
the hook mass and regard the crane as a single-pendulum
system. They build simplified single-pendulummodels based
on the coupling between the trolley and the payload. Most
existing methods are based on single-pendulum models, such
as trajectory planning [8]–[10], energy-based control [11],
[12], adaptive control [13]–[15], sliding-mode control [16],
intelligent control [17]–[20], and innovation control [21].
Some researches have achieved good control performance.
In some practical situations, the single-pendulum model is
no longer effective, such as: 1) the hook mass is comparable
with the payload mass; 2) the size of the payload carried by
cranes are large (e.g., containers, steel pipes, fan blades); and
3) the rope connecting the hook and the payload are long.
At this time, the crane system presents double-pendulum
characteristics. In other words, we need to consider the
payload’s swing around the hook. Due to the existance
of the double-pendulum performance, the above-mentioned
single-pendulum crane control methods are not suitable, and
only few literatures have reported control methods designed
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for double-pendulum cranes. For the double-pendulum crane,
since one more unactuated state variable appears while
the control inputs remain the same, the control problem
is much more difficult than that of the single-pendulum
crane. In [22], under the premise of considering various
constraints, the transportation time function as the perfor-
mance index is given and solved by the bisection-based
method to obtain the desired trajectory. By using the adaptive
proportional-derivative sliding mode control (APD-SMC)
law, the coupling behavior between the trolley and the pay-
load is enhanced and the transient performance is improved
in [23]. Reference [24] shows an adaptive design which
can make a fixed sliding mode surface active to search
the state trajectory and improve the cart tracking precision.
Qian et al. put forward an single-input-rule module (SIRMs)
for fuzzy inference models [25]. The SIRMs can decrease
the number of fuzzy rules. Tuan uses neural networks to
estimate uncertain parameters and unknown winds [26].
By applying these methods, the performance and effec-
tiveness of the double-pendulum crane control system are
investigated.

In the industrial production, cranes not only need to com-
plete the transportation objective, but also need to face the
complex and demanding production environment. Sometimes
obstacles appear on the movement path of the payload. If they
cannot be avoided in time, accidents will occur. Therefore,
we need to consider not only the payload swing problem, but
also the payload obstacle avoidance problem. During the past
decades, few methods have been applied to crane systems
with obstacle avoidance.

On the one hand, some scholars studied on assistance
obstacle avoidance control methods. Yang et al. studied on
a safety alarm device for overhead crane to prevent impact-
ing persons or objects and used image processing technol-
ogy to create a video surveillance system [27]. In [28],
Hara et al. studied on the operational assistance system for
avoiding the obstacles collision and suppressing the payload
sway. The payload sway can be suppressed by the filtering
approach. The effectiveness of the proposed system is ver-
ified by the experiments with the laboratory-type overhead
traveling crane.

On the other hand, some scholars have proposed some
novel obstacle avoidance control methods based on crane
dynamics. Gutierrez and Collado analyzed the crane dynam-
ics and proposed a novel control method which uses a vir-
tual one-wired crane that is equivalent to the new two-wired
one [29]. Miyoshi et al. present the method that deals
with path planning for autonomous overhead cranes con-
sidering payload rotation [30]. Inomata and Noda stud-
ied on an advanced transfer trajectory planning method
of 2-dimensional transfer machines with vibrational element
such as an overhead traveling crane [31]. Iftikhar et al.
studied on an optimization-based controller for guiding the
crane through arbitrary obstacles [32]. Solving path plan-
ning problems with obstacles typically requires a two-stage
approach.

In the above references, obstacle avoidance control meth-
ods are proposed only for single pendulum crane systems.
On the other hand, there is no existing obstacle avoidance
control method for double-pendulum crane systems. For the
double-pendulum crane, the payload swing is more com-
plex, and it is more difficult to avoid the obstacle when the
obstacle appears on the payload moving path. Therefore, it is
more important to propose the obstacle avoidance method
for double-pendulum crane systems. In order to solve this
troublesome problem, in this paper, we propose an effective
trajectory planning method for double pendulum crane sys-
tems with the consideration of obstacle avoidance. Specif-
ically, through the analysis of the double-pendulum crane
model, the crane is shown to be differentially flat and the
flatness property are used to deal with couplings between sys-
tem states. Then a time optimization problem is constructed
by considering the requirement of obstacle avoidance and a
series of physical constraints, including the trolley velocity
constraints, the trolley acceleration constraints, the payload’s
swing angle constraints, and the hook’s swing angle con-
straints. The constructed optimization problem is solved by
a bisection-based method and the optimal transport time is
obtained, together with the time optimal trajectory. Simula-
tion results show that this method can achieve the obstacle
avoidance objective and the transportation task under physi-
cal constraints.

The main contributions of the proposed method are illus-
trated as follows: This method is an effective trajectory plan-
ning method with obstacle avoidance, which is designed for
double-pendulum cranes and can improve the system safety.
Through analysis of the dynamics and the system kinematic
characteristics, it is concluded that the crane system is differ-
entially flat with the payload coordinates as the flat outputs,
which is further used to deal with the coupling behavior
between state variables more conveniently. During the tra-
jectory planning process, a series of physical constraints are
considered to ensure the trackability of the trajectory and fur-
ther improve the double-pendulum crane system safety. At the
same time of avoiding obstacles, the time optimal trajectory
is obtained, which can greatly improve the efficiency of the
crane system.

II. PROBLEM STATEMENT
The considered double-pendulum crane system is shown in
FIGURE 1, whose dynamics are described as follows:

(m+ m1 + m2)ẍ + (m1 + m2)(l̈1 sin θ1 + 2l̇1 cos θ1θ̇1
+l1 cos θ1θ̈1 − l1 sin θ1θ̇21 )+ m2l2(cos θ2θ̈2 − sin θ2θ̇22 )

= fx (1)

(m1 + m2)(ẍ sin θ1 + l̈1 − l1θ̇21 )+ m2l2[θ̈2 sin(θ1 − θ2)

−θ̇22 cos(θ1 − θ2)]− (m1g+ m2g) cos θ1 = fl (2)

(m1 + m2)(ẍl1 cos θ1 + 2l1 l̇1θ̇1 + l21 θ̈1)

+m2l2[l1θ̈2 cos(θ1 − θ2)+ l1θ̇22 sin(θ1 − θ2)]

+l1 sin θ1(m1g+ m2g) = 0 (3)
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FIGURE 1. Illustration for a double-pendulum crane system with
obstacle.

m2l2[ẍ cos θ2 + (l̈1 − l1θ̇21 ) sin(θ1 − θ2)+ l2θ̈2
+ cos(θ1 − θ2)(2l̇1θ̇1 + l1θ̈1)]+ m2l2g sin θ2 = 0 (4)

where m,m1,m2 represent masses of the trolley, the hook
and the payload, respectively, x(t) denotes the trolley posi-
tion, l1(t) and l2 denote the rope length and the distance
between the hook center and the payload center, respectively,
θ1(t) and θ2(t) denote the hook’s swing angle and the pay-
load’s swing angle, respectively, fx(t) and fl(t) represent the
trolley actuating force and the payload hoisting/lowering
actuating force, respectively, and g is the gravity acceleration
constant.

Due to the fact that the working environment is very com-
plicated, obstacles sometimes appear in moving path of the
payload as shown in FIGURE 1. If the obstacle avoidance
objective is not considered, accidents like collisions may
occur, which is dangerous. For this reason, we seek to design
an effective trajectory planning method for double-pendulum
crane systems with the consideration of obstacle avoidance to
ensure safety and avoid possible collisions. Considering the
requirements of accurate transportation, swing suppression,
and obstacle avoidance, the control objectives are described
as follows:

• Control the trolley from the initial position xi to the target
position xd .

• As shown in FIGURE 1, assume that the obsta-
cle appears at xb, the payload should be hoisted in
order to achieve the obstacle avoidance objective.
When the payload horizontal position x2(t) reaches xb,
the payload vertical position y2(t) reaches the obsta-
cle top position lb from its initial vertical position li.
To complete the transportation task, when the pay-
load passes the obstacle, it needs to be lowered. When
the payload reaches its desired position xd , the pay-
load vertical position y2(t) should reach its initial
value li.

• Eliminate the hook’s swing θ1(t) and the payload’s
swing θ2(t).

In order to achieve the above control objectives, we will
propose an effective method in the next section.

III. TRAJECTORY PLANNING
A. FLAT OUTPUT CONSTRUCTION
By using the small angle assumption1, (3) and (4) are lin-
earized as follows:

(m1 + m2)(ẍl1 + 2l1 l̇1θ̇1 + l12θ̈1 + l1θ1g)

+m2l1l2θ̈2 = 0 (5)

ẍ + l̈1θ1 − l̈1θ2 + l2θ̈2 + 2l̇1θ̇1 + l1θ̈1 + gθ2 = 0 (6)

At the same time, one can express the coordinates of the hook
as follows:

x1 = x + l1 sin θ1, y1 = l1 cos θ1 (7)

where x1(t) and y1(t) are the hook horizontal position and the
hook vertical position, respectively.

Similarly, one can express the coordinates of the payload
as follows:

x2 = x + l1 sin θ1 + l2 sin θ2 (8)

y2 = l1 cos θ1 + l2 cos θ2 (9)

where x2(t) and y2(t) represent the payload horizontal posi-
tion and the payload vertical position, respectively. (7)–(9)
can also be linearized as follows:

x1 = x + l1θ1, y1 = l1 (10)

x2 = x + l1θ1 + l2θ2 (11)

y2 = l1 + l2 (12)

Taking the time derivative of (11) and (12), it is found that

ẋ2 = ẋ + l̇1θ1 + l1θ̇1 + l2θ̇2 (13)

ẏ2 = l̇1 (14)

Taking the time derivative of (13) and (14) again, it is further
obtained that

ẍ2 = ẍ + l̈1θ1 + 2l̇1θ̇1 + l1θ̈1 + l2θ̈2 (15)

ÿ2 = l̈1 (16)

Substituting (16) into (15), one can obtain

ẍ2 = ẍ + ÿ2θ1 + 2l̇1θ̇1 + l1θ̈1 + l2θ̈2 (17)

Substituting (17) into (5), one has

(m1 + m2)l1(ẍ2 − ÿ2θ1 + θ1g)− m1l1l2θ̈2 = 0 (18)

Since the rope length l1(t) would not be equal to zero in
practice, (18) can be further simplified into the following
structure

(m1 + m2)(ẍ2 − ÿ2θ1 + θ1g)− m1l2θ̈2 = 0 (19)

Substituting (15) and (16) into (6), one has

ẍ2 − ÿ2θ2 + gθ2 = 0 (20)

1When the swing angle is small enough, the kinematic equation can be
linearized with the approximations of sin θ1 ' θ1, sin θ2 ' θ2, cos θ1 ' 1,
cos θ2 ' 1, sin(θ1 − θ2)θ̇21 ' 0 and sin(θ1 − θ2)θ̇22 ' 0 [33], [34].
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From (19) and (20), it is found that

θ1 =
ẍ2

ÿ2 − g
−

m1l2θ̈2
(m1 + m2)(ÿ2 − g)

(21)

θ2 =
ẍ2

ÿ2 − g
(22)

Substituting (22) into (21), one has

θ1 =
ẍ2

ÿ2 − g
−
m1l2(x

(4)
2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(m1 + m2)(ÿ2 − g)3

−
2m1l2y

(3)
2 x(3)2 g

(m1 + m2)(ÿ2 − g)4
(23)

Substituting (22) and (23) into (11), one can derive the fol-
lowing result:

x = x2 − l2
ẍ2

ÿ2 − g

+(l2 − y2)
[

ẍ2
ÿ2 − g

−
m1l2(x

(4)
2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(m1 + m2)(ÿ2 − g)3

−
2m1l2y

(3)
2 x(3)2 g

(m1 + m2)(g− ÿ2)4

]
(24)

It can be concluded that based on (12) and (22)–(24), all
system state variables, i.e., l1(t), x(t), θ1(t), θ2(t) can be
expressed by x2(t) and y2(t). Therefore, we can draw the
conclusion that the crane system is differentially flat with the
payload coordinates as the flat outputs.

B. OPTIMIZATION PROBLEM CONSTRUCTION
In order to obtain the optimal transportation time, we first
consider the conditions as follows:

1) At the initial moment t = 0, the trolley is at the initial
position xi, and its speed, acceleration and jerk shall all
be zero. The hook’s swing angle and angular velocity
are both zero. The payload’s swing angle and angular
velocity are also both zero. At the final moment t = T ,
the trolley arrives at the target position xd , and its speed,
acceleration and jerk shall all be zero. At the same time,
the payload reaches the target position. The payload
and the hook stop swinging. The payload’s swing angle
and angular velocity are both zero. The hook’s swing
angle and angular velocity are also both zero. Then we
have

x(0) = xi, ẋ(0) = 0,

ẍ(0) = 0, x(3)(0) = 0 (25)

x(T ) = xd , ẋ(T ) = 0,

ẍ(T ) = 0, x(3)(T ) = 0 (26)

θ1(0) = 0, θ̇1(0) = 0,

θ1(T ) = 0, θ̇1(T ) = 0 (27)

θ2(0) = 0, θ̇2(0) = 0,

θ2(T ) = 0, θ̇2(T ) = 0 (28)

2) To achieve obstacle avoidance, the payload should be
hoisted at the first. At the initial moment t = 0,

the payload initial vertical position is li. The payload
initial vertical velocity, acceleration and jerk should
also be zero. When the payload horizontal position
x2(t) reaches xb at time t = ts, the payload vertical
position should reach lb at the top of the obstacle. The
payload vertical velocity, acceleration and jerk ought to
be zero. When the payload passes the obstacle, it starts
to be lowered. When the payload reaches the target
position at time t = T , the payload vertical position
is li. In addition, the payload vertical velocity, acceler-
ation, and jerk should also be zero at time t = T . Then
we have

y2(0) = li, ẏ2(0) = 0, ÿ2(0) = 0, y(3)2 (0) = 0,

y2(ts) = lb, ẏ2(ts) = 0, ÿ2(ts) = 0, y(3)2 (ts) = 0,

y2(T ) = li, ẏ2(T ) = 0, ÿ2(T ) = 0, y(3)2 (T ) = 0 (29)

3) To ensure the trackability of the planned trajectory,
the amplitude of the trolley speed and acceleration
needs to be kept within suitable ranges. At the same
time, in order to ensure the safety in the entire trans-
portation process, the payload’s swing angle, hook’s
swing angle and their corresponding angular velocities
in the entire process need to be kept in corresponding
suitable ranges to avoid danger caused by large swings,
which indicates that

|ẋ(t)| ≤ vmax, |ẍ(t)| ≤ amax (30)

|θ1| ≤ θ1max, |θ̇1| ≤ ω1max (31)

|θ2| ≤ θ2max, |θ̇2| ≤ ω2max (32)

where vmax, amax, θ1max, ω1max, θ2max, ω2max rep-
resent the permitted trolley velocity, acceleration,
hook’s swing angle, hook angular velocity, payload’s
swing angle, and payload angular velocity amplitudes,
respectively.

After that, substituting (24) into (25) and (26), and doing
some calculations, we have the following results:

x2(0) = xi, ẋ2(0) = ẍ2(0) = x(3)2 (0) = 0,

x(4)2 (0) = x(5)2 (0) = x(6)2 (0) = x(7)2 (0) = 0,

x2(T ) = xi, ẋ2(T ) = ẍ2(T ) = x(3)2 (T ) = 0,

x(4)2 (T ) = x(5)2 (T ) = x(6)2 (T ) = x(7)2 (T ) = 0 (33)

Substituting (22) into (32), one has∣∣∣∣ ẍ2
ÿ2 − g

∣∣∣∣ ≤ θ2max (34)∣∣∣∣ x(3)2

ÿ2 − g
−

ẍ2y
(3)
2

(ÿ2 − g)2

∣∣∣∣ ≤ ω2max (35)

Substituting (23) into (31), one can obtain∣∣∣∣ ẍ2
ÿ2 − g

−
m1l2(x

(4)
2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(m1 + m2)(ÿ2 − g)3

−
2m1l2y

(3)
2 x(3)2 g

(m1 + m2)(ÿ2 − g)4

∣∣∣∣ ≤ θ1max (36)
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∣∣∣∣ x(3)2

ÿ2 − g
−

ẍ2y
(3)
2

(ÿ2 − g)2

−
m1l2

m1 + m2

[
x(5)2 (ÿ2 − g)+ y

(3)
2 (x(4)2 − x

(3)
2 )− x(5)2 g

(ÿ2 − g)3

−
3y(3)2 (x(4)2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(ÿ2 − g)4

]
−

2m1l2
m1 + m2

[
y(4)2 x(3)2 g+ y(3)2 x(4)2 g

(ÿ2 − g)4

−
4y(3)2 y(3)2 x(3)2 g

(ÿ2 − g)5

]∣∣∣∣ ≤ ω1max (37)

Using the equation (24), we can write (30) by

∣∣∣∣ẋ2 − x(3)2 y2 + ẍ2ẏ2
ÿ2 − g

+
ẍ2y2y

(3)
2

(ÿ2 − g)2

+
m1l2

m1 + m2

[
(x(5)2 ÿ2 + x

(4)
2 y(3)2 − x

(5)
2 g)(y2 − l2)

(ÿ2 − g)3

−
(x(3)2 y(3)2 + ẍ2y

(4)
2 )(y2 − l2)− (x(4)2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )ẏ2

(ÿ2 − g)3

+
3y(3)2 (x(4)2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )(y2 − l2)

(ÿ2 − g)4

+2g
(y(4)2 x(3)2 + y

(3)
2 x(4)2 )(y2 − l2)+ y

(3)
2 x(3)2 ẏ2

(ÿ2 − g)4

]
−
8m1l2gx

(3)
2 y(3)2

2
(y2 − l2)

(m1 + m2)(ÿ2 − g)5

∣∣∣∣ ≤ vmax (38)∣∣∣∣ẍ2 − x(4)2 y2 + 2x(3)2 ẏ2 + ẍ2ÿ2
ÿ2 − g

−
2y(3)2 y(3)2 ẍ2y2
(ÿ2 − g)3

+
2x(3)2 y2y

(3)
2 + 2ẍ2ẏ2y

(3)
2 + ẍ2y2y

(4)
2

(ÿ2 − g)2

−
m1l2

m1 + m2

[
(x(6)2 ÿ2 + 2x(5)2 y(3)2 + x

(4)
2 y(4)2 )(y2 − l2)

(ÿ2 − g)3

−
(x(6)2 g+ x(4)2 y(3)2 + 2x(3)2 y(4)2 + ẍ2y

(4)
2 )(y2 − l2)

(ÿ2 − g)3

+
2ẏ2(x

(5)
2 ÿ2 + x

(4)
2 y(3)2 − x

(5)
2 g− x(3)2 y(3)2 − ẍ2y

(4)
2 )

(ÿ2 − g)3

+
3y(3)2 (y2 − l2)(x

(5)
2 ÿ2 + x

(4)
2 y(3)2 )

(ÿ2 − g)4

−
3y(3)2 (y2 − l2)(x

(5)
2 g+ x(3)2 y(3)2 + ẍ2y

(4)
2 )

(ÿ2 − g)4

+
ÿ2(x

(4)
2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(ÿ2 − g)3

−
3ẏ2y

(3)
2 (x(4)2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(ÿ2 − g)4

+
(x(4)2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )(3ẏ2y

(3)
2 + 3y2y

(4)
2 − 3l2y

(4)
2 )

(ÿ2 − g)4

−
9y(3)2 y(3)2 (y2 − l2)(x

(4)
2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(ÿ2 − g)5

+
2g(y2 − l2)(y

(5)
2 x(3)2 + 2y(4)2 x(4)2 + y

(3)
2 x(5)2 )

(ÿ2 − g)4

+
2g(2y(4)2 x(3)2 ẏ2 + 2y(3)2 x(4)2 ẏ2 + y

(3)
2 x(3)2 ÿ2)

(ÿ2 − g)4

−
8gy(3)2 (y(4)2 x(3)2 + y

(3)
2 x(4)2 )(y2 − l2)

ÿ2 − g5

−
8gy(3)2 y(3)2 x(3)2 ẏ2

(ÿ2 − g)5

]
−

2m1l2g
m1 + m2

[
4y(3)2 (y(4)2 x(3)2 + y

(3)
2 x(4)2 )(y2 − l2)

(ÿ2 − g)5

+
4y(3)2 x(3)2 ẏy(3)2 + 4y(3)2 y(4)2 x(3)2 (y2 − l2)

(ÿ2 − g)5

−
20y(3)2 y(3)2 y(3)2 x(3)2 (y2 − l2)

(ÿ2 − g)6

]∣∣∣∣ ≤ amax (39)

So far, all the constraints shown in (29) and (33)–(39) are
converted into constraints on the payload’s horizontal and
vertical coordinates x2(t) and y2(t). We can construct a time
optimization problem as

minimize T

subject to (29) and (33)− (39). (40)

In the next section, we will solve the time optimization
problem and obtain the trolley and rope trajectories.

C. TRAJECTORY PLANNING
By analyzing (33), it is found that there are 16 equality con-
straints on x2(t). We choose a 15-order polynomial function
to represent x2(t), which is indicated as follows:

x2(t) = (xd − xi)
15∑
i=0

αi

(
t
T

)i
+ xi (41)

where αi’s, i = {0, 1, . . . , 15} are to-be-determined parame-
ters. Then the nth-order derivative of x2(t) gives the result as
follows:

x(n)2 (t) = (xd − xi)
15∑
i=n

αi
i!

(i− n)!

(
1
T

)n( t
T

)i−n
(42)

Substituting (41) and (42) into (33) and making some
calculations, we can get

α0 = α1 = α2 = α3 = α4 = α5 = α6 = α7 = 0,

α8 = 6435, α9 = −40040, α10 = 108108,

α11 = −163800, α12 = 150150, α13 = −83160,

α14 = 25740, α15 = −3432 (43)

By analyzing (29), it is found that there are 8 equality
constraints on y2(t).We choose a 7-order polynomial function
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to represent y2(t), which is indicated as follows:

y2(t) =


(lb − li)

∑7

i=0
βi(

t
ts
)i + li, t ∈ [0, ts)

(li − lb)
∑7

i=0
βi(

t − ts
T − ts

)i + lb, t ∈ [ts,T ]
(44)

where βi’s, i = {0, 1, . . . , 7} are to-be-determined parameters
and ts is the time when the payload reaches the horizontal
position xb. Substituting (44) into (29) and making some
calculations, we can get

β0 = β1 = β2 = β3 = 0,

β4 = 35, β5 = −84, β6 = 70, β7 = −20 (45)

In order to solve the time optimization problem and then
finish the optimal trajectory planning, we choose to use a
bisection-based method, whose application process is shown
in Algorithm 1 by pseudo codes, where T1 and T2 repre-
sent the lower and upper bounds of the transportation time,
respectively, T ∗ represents the optimal transportation time,
and δ ∈ <+ is the allowable error bound.

Algorithm 1 Detailed Processes of Solving the Time
Optimization Problem (40)
Input: xi, xd , xb, li, l2, lb, vmax, amax, θ1max, ω1max
θ2max, ω2max, T1, T2, δ.
Output: T ∗.

1 while T2 − T1 > δ do
2 set: T = (T1 + T2)/2
3 if (34)–(39) are all satisfied then
4 T2 = T
5 else
6 T1 = T
7 end if
8 end while
9 T ∗ = T2.

Using the Algorithm 1, we get the optimal transportation
time T ∗, while using (24) and (12), the optimal trolley trajec-
tory and the rope trajectory are shown as

xr (t) =



x2 − l2
ẍ2

ÿ2 − g

+(l2 − y2)
[

ẍ2
ÿ2 − g

−
2m1l2y

(3)
2 x(3)2 g

(m1 + m2)(g− ÿ2)4

−
m1l2(x

(4)
2 ÿ2 − x

(4)
2 g− ẍ2y

(3)
2 )

(m1 + m2)(ÿ2 − g)3

]
, t ∈ [0,T ∗]

xd , t > T ∗

(46)

l1r (t) =

{
y2 − l2, t ∈ [0,T ∗]
li − l2, t > T ∗

(47)

At this point, the entire trajectory planning process is com-
pleted. On the other hand, from the detailed process of the
proposed method, it is concluded that this is no limitation
of the payload mass for the proposed trajectory planning

method. The obstacle avoidance reference trajectory can be
obtained for the payload with any mass. Thus there is no
mass limit for the payload in the simulations. In practical
application, the payload mass may be limited by considering
the crane payload capacity.

IV. SIMULATION RESULTS
In this section, the effectiveness of the proposed method
will be verified by numerical simulations. Each physical
parameter of the double-pendulum crane is set as follows:

m = 20 kg, m1 = 5 kg, m2 = 1 kg,

li = 2.6 m, l2 = 0.4 m, lb = 0.8 m, g = 9.8 m/s2,

xi = 0 m, xb = 0.6 m, xd = 1.5 m

The permitted amplitudes are selected as

vmax = 0.5 m/s, amax = 0.5 m2/s,

θ1max = θ2max = 2 deg, ω1max = ω2max = 5 deg/s

The parameters in Algorithm 1 are set as follows:

T1 = 0 s, T2 = 20 s, δ = 0.0001

By utilizing MATLAB R© [35], the time optimization
problem is solved with the optimal transportation time as
T ∗ = 9.4147 s, and at the same time, we get ts =
4.4045 s. To verify the effectiveness of trajectory planning,
proportional-derivative (PD) controllers are used to track the
trajectory, which are shown as

Fx = −kp1(x − xr )− kd1(ẋ − ẋr )

Fl = −kp2(l1 − l1r )− kd2(l̇1 − l̇1r )− m1g− m2g

where kp1, kd1, kp2, kd2 ∈ <+ are positive control gains. kp1
(or kp2) is the proportional gain of PD control method. If we
choose a larger kp1 (or kp2), it will take a shorter convergence
time to track trajectory. However, if kp1 (or kp2) is selected
too large, the unexpected overshoots of x2(t) and y2(t) will
happen. kd1 (or kd2) is the differential gain of PD control
method. If we choose a larger kd1 (or kd2), it will cost a longer
convergence time to track trajectory. At the same time, larger
kd1 (or kd2) will help reduce overshoots and oscillations.
After carefully tunning, we find satisfactory performances
can be obtained if we follow: kp1 = 200, kd1 = 100,
kp2 = 1000, and kd2 = 100.

All simulations are implemented using the Simulink R©

toolbox of MATLAB R© [36]. The simulation results are show
in FIGURES 2–5. In FIGURE 2, the red dashed line, the red
dashed-dotted line, and the red dotted line represent the trol-
ley reference trajectory, the rope length reference trajectory,
and swing angle constraints, respectively. In FIGURE 3,
the red dashed line and the red dashed-dotted line repre-
sent trolley velocity constraints and trolley acceleration con-
straints, respectively. In FIGURE 4, the red dashed line and
the red dashed-dotted line represent hook’s angular veloc-
ity constrains and payload’s angular velocity constrains,
respectively.
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FIGURE 2. Simulation results (the trolley displacement, the rope length,
the hook’s swing angle, and the payload’s swing angle). Black solid line:
simulation results; red dashed line: the trolley reference trajectory xr (t);
red dashed- dotted line: the rope length reference trajectory l1r (t); red
dotted line: swing angle constraints θ1 max = θ2 max = 2 deg.

FIGURE 3. Simulation results (the trolley velocity, the trolley acceleration,
the trolley actuating force, and the payload hoisting/lowering force).
Black solid line: simulation results; red dashed line: trolley velocity
constraints vmax = 0.5 m/s; red dashed-dotted line: trolley acceleration
constraints amax = 0.5 m2/s.

FIGURE 4. Simulation results (the hook’s swing angular velocity, and the
payload’s swing angular velocity). Black solid line: simulation results; red
dashed line: hook’s angular velocity constraints ω1 max = 5 deg/s; red
dashed-dotted line: payload’s angular velocity constraints
ω2 max = 5 deg/s.

From FIGURE 2, it is observed that using the method,
the trolley reaches its target position rapidly and accurately
with nearly no positioning error. The hook’s swing angle and

FIGURE 5. Simulation results (payload moving path).

payload’s swing angle are both suppressed effectively during
the transportation. FIGURE 3 shows that the trolley’s velocity
and acceleration are within the permitted ranges. Addition-
ally, from FIGURE 4, it is also found that the hook’s swing
angular velocity and the payload’s swing angular velocity
suppressed effectively. As can be seen from the payload
trajectory, the payload can successfully avoid the obstacle
in FIGURE 5. Within the optimal transportation time T ∗,
the trolley and the payload reach the target horizontal posi-
tion xd , and at the same time the payload is hoisted to lb
and then lowered to li to achieve the obstacle avoidance
objective. In other words, the trajectory planning method not
only achieves the transportation task, but also ensures the
obstacle avoidance. In addition, the payload’s swing angle,
angular velocity, the hook’s swing angle and angular velocity
are within suitable ranges.

Through numerical simulation tests, it is found that the
payload has crossed the obstacle and the crane has completed
the transportation task, which also verifies the effectiveness
of the proposed method. Due to the lack of necessary exper-
imental equipment, we cannot show the performance of our
control method more comprehensively through experiments.
At present, we are starting to build the double-pendulum
crane testbed. When experimental conditions are available,
we will verify the method effectiveness through experiments.

V. CONCLUSION
In order to solve the obstacle avoidance problem of
double-pendulum cranes, we propose a trajectory planning
method, which can achieve the fast trolley transportation and
payload swing suppression, as well as the objective of obsta-
cle avoidance by payload hoisting/lowering. In particular,
through the analysis of the crane dynamic model, the double-
pendulum crane is shown to be differentially flat with the
payload horizontal and vertical positions as the flat outputs.
Afterwards, the original trajectory planning is turned into
the trajectory planning for flat outputs. By considering the
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requirement of obstacle avoidance and a series of physical
constraints, a time optimization problem is formulated. Uti-
lizing a bisection-based method, the formulated time opti-
mization problem is solved with the optimal transportation
time obtained. Then corresponding optimal trajectories are
also obtained. Finally, the effectiveness of the method is
verified by simulations. In the following work, we will design
an effective tracking strategy to improve the tracking perfor-
mance and improve the system safety.

ACKNOWLEDGMENT
The authors would like to thank the reviewers and associate
editor for the valuable suggestions and comments, which
greatly improve the article quality.

REFERENCES
[1] Z. N. Masoud, A. H. Nayfeh, and D. T. Mook, ‘‘Cargo pendulation reduc-

tion of ship-mounted cranes,’’ Nonlinear Dyn., vol. 35, no. 3, pp. 299–311,
Feb. 2004.

[2] N. P. Nguyen, T. N. Phan, and Q. H. Ngo, ‘‘Autonomous offshore container
crane system using a fuzzy-PD logic controller,’’ in Proc. 16th Int. Conf.
Control, Autom. Syst. (ICCAS), Oct. 2016, pp. 1093–1098.

[3] M. Mahrueyan and H. Khaloozadeh, ‘‘On the skew and sway control
of container cranes,’’ in Proc. 2nd Int. Conf. Control, Instrum. Autom.,
Dec. 2011, pp. 407–412.

[4] Q. H. Ngo and K.-S. Hong, ‘‘Sliding-mode antisway control of an off-
shore container crane,’’ IEEE/ASME Trans. Mechatronics, vol. 17, no. 2,
pp. 201–209, Apr. 2012.

[5] J. Smoczek and J. Szpytko, ‘‘Particle swarm optimization-based multivari-
able generalized predictive control for an overhead crane,’’ IEEE/ASME
Trans. Mechatronics, vol. 22, no. 1, pp. 258–268, Feb. 2017.

[6] M. S. Korytov, V. S. Shcherbakov, and V. V. Titenko, ‘‘Analytical solution
of the problem of acceleration of cargo by a bridge crane with constant
acceleration at elimination of swings of a cargo rope,’’ J. Phys., Conf. Ser.,
vol. 944, Dec. 2018, Art. no. 012062.

[7] N. Sun, T. Yang, Y. Fang, Y. Wu, and H. Chen, ‘‘Transportation control
of double-pendulum cranes with a nonlinear quasi-PID scheme: Design
and experiments,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 7,
pp. 1408–1418, Jul. 2019.

[8] Z. Wu and X. Xia, ‘‘Optimal motion planning for overhead cranes,’’ IET
Control Theory Appl., vol. 8, no. 17, pp. 1833–1842, 2014.

[9] H. Chen, P. Yang, andY.Geng, ‘‘A time optimal trajectory planningmethod
for overhead cranes with obstacle avoidance,’’ in Proc. IEEE/ASME Int.
Conf. Adv. Intell. Mechatronics (AIM), Jul. 2019, pp. 697–701.

[10] N. Sun, Y. Fang, Y. Zhang, and B. Ma, ‘‘A novel kinematic coupling-based
trajectory planning method for overhead cranes,’’ IEEE/ASME Trans.
Mechatronics, vol. 17, no. 1, pp. 166–173, Feb. 2012.

[11] X. Wu and X. He, ‘‘Enhanced damping-based anti-swing control method
for underactuated overhead cranes,’’ IET Control Theory Appl., vol. 9,
no. 12, pp. 1893–1900, Aug. 2015.

[12] N. Sun and Y. Fang, ‘‘New energy analytical results for the regulation of
underactuated overhead cranes: An end-effector motion-based approach,’’
IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4723–4734, Dec. 2012.

[13] C.-Y. Chang, ‘‘Adaptive fuzzy controller of the overhead cranes with non-
linear disturbance,’’ IEEE Trans. Ind. Informat., vol. 3, no. 2, pp. 164–172,
May 2007.

[14] M.-S. Park, D. Chwa, and M. Eom, ‘‘Adaptive sliding-mode antisway
control of uncertain overhead cranes with high-speed hoisting motion,’’
IEEE Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1262–1271, Oct. 2014.

[15] L. Ramli, Z. Mohamed, M. Ö. Efe, I. M. Lazim, and H. I. Jaafar, ‘‘Efficient
swing control of an overhead crane with simultaneous payload hoisting and
external disturbances,’’ Mech. Syst. Signal Process., vol. 135, Jan. 2020,
Art. no. 106326.

[16] R. Liu and S. Li, ‘‘Suboptimal integral sliding mode controller design
for a class of affine systems,’’ J. Optim. Theory Appl., vol. 161, no. 3,
pp. 877–904, Jun. 2014.

[17] Y. Zhao and H. Gao, ‘‘Fuzzy-Model-Based control of an overhead crane
with input delay and actuator saturation,’’ IEEE Trans. Fuzzy Syst., vol. 20,
no. 1, pp. 181–186, Feb. 2012.

[18] W. Yu, M. A. Moreno-Armendariz, and F. O. Rodriguez, ‘‘Stable adaptive
compensation with fuzzy CMAC for an overhead crane,’’ Inf. Sci., vol. 181,
no. 21, pp. 4895–4907, Nov. 2011.

[19] S. Ding and Z. Wang, ‘‘Event-triggered synchronization of discrete-
time neural networks: A switching approach,’’ Neural Netw., vol. 125,
pp. 31–40, May 2020.

[20] L.-H. Lee, P.-H. Huang, Y.-C. Shih, T.-C. Chiang, and C.-Y. Chang, ‘‘Par-
allel neural network combined with sliding mode control in overhead crane
control system,’’ J. Vib. Control, vol. 20, no. 5, pp. 749–760, Apr. 2014.

[21] H. Chen and N. Sun, ‘‘Nonlinear control of underactuated systems sub-
ject to both actuated and unactuated state constraints with experimental
verification,’’ IEEE Trans. Ind. Electron., vol. 67, no. 9, pp. 7702–7714,
Oct. 2020.

[22] H. Chen, Y. Fang, and N. Sun, ‘‘A swing constrained time-optimal tra-
jectory planning strategy for double pendulum crane systems,’’ Nonlinear
Dyn., vol. 89, no. 2, pp. 1513–1524, Jul. 2017.

[23] M. Zhang, X. Ma, R. Song, X. Rong, G. Tian, X. Tian, and Y. Li, ‘‘Adap-
tive proportional-derivative sliding mode control law with improved tran-
sient performance for underactuated overhead crane systems,’’ IEEE/CAA
J. Automatica Sinica, vol. 5, no. 3, pp. 683–690, May 2018.

[24] H. Ouyang, J. Wang, G. Zhang, L. Mei, and X. Deng, ‘‘Novel adaptive
hierarchical sliding mode control for trajectory tracking and load sway
rejection in double-pendulum overhead cranes,’’ IEEE Access, vol. 7,
pp. 10353–10361, 2019.

[25] D. Qian, S. Tong, and S. Lee, ‘‘Fuzzy-Logic-based control of payloads sub-
jected to double-pendulummotion in overhead cranes,’’Autom. Construct.,
vol. 65, pp. 133–143, May 2016.

[26] L. A. Tuan, ‘‘Neural observer and adaptive fractional-order backstepping
fast-terminal sliding-mode control of RTG cranes,’’ IEEE Trans. Ind.
Electron., vol. 68, no. 1, pp. 434–442, Jan. 2021.

[27] J. S. Yang, M. L. Huang, W. F. Chien, and M. H. Tsai, ‘‘Application of
machine vision to collision avoidance control of the overhead crane,’’ in
Proc. Int. Conf. Electr., Autom. Mech. Eng., Phuket Island, Thailand, 2015,
pp. 16–17.

[28] Y. Hara and Y. Noda, ‘‘Operational assistance system for obstacle collision
avoidance and load sway suppression in overhead traveling crane,’’ inProc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Budapest, Hungary, Oct. 2016,
pp. 2196–2201.

[29] I. Gutierrez and J. Collado, ‘‘An LQR controller in the obstacle avoidance
of a two-wires hammerhead crane,’’ Neurocomputing, vol. 233, pp. 14–22,
Apr. 2017.

[30] T. Miyoshi, S. Kawakami, and K. Terashima, ‘‘Path planning and obstacle
avoidance considering rotarymotion of load for overhead cranes,’’ J.Mech.
Syst. Transp. Logistics, vol. 1, no. 1, pp. 134–145, 2008.

[31] A. Inomata and Y. Noda, ‘‘Fast trajectory planning by design of initial
trajectory in overhead traveling crane with considering obstacle avoidance
and load vibration suppression,’’ J. Phys. Conf., vol. 744, p. 12070, 2016.

[32] S. Iftikhar, O. J. Faqir, and E. C. Kemgan, ‘‘Nonlinear model predictive
control of an overhead laboratory-scale gantry crane with obstacle avoid-
ance,’’ in Proc. IEEE Conf. Control Technol. Appl. (CCTA), Hong Kong,
Aug. 2019, pp. 382–387.

[33] D. Blackburn, W. Singhose, J. Kitchen, V. Patrangenaru, J. Lawrence,
T. Kamoi, and A. Taura, ‘‘Command shaping for nonlinear crane dynam-
ics,’’ J. Vib. Control, vol. 16, no. 4, pp. 477–501, Apr. 2010.

[34] D. Fujioka and W. Singhose, ‘‘Input-shaped model reference control of
a nonlinear time-varying double-pendulum crane,’’ in Proc. 10th Asian
Control Conf. (ASCC), May 2015, pp. 1–6.

[35] The Math Works. MATLAB. Accessed: 2019. [Online]. Available:
https://www.mathworks.com

[36] The Math Works. Simulink Toolbox for Use With MATLAB. Accessed:
2019. [Online]. Available: https://www.mathworks.com/products/
simulink.html

WA ZHANG received the B.S. degree from Tian-
jin Chengjian University, Tianjin, China, in 2016.
He is currently pursuing the M.S. degree in control
science and engineering with the Hebei University
of Technology, Tianjin.

His major research interest includes underactu-
ated crane system control.

VOLUME 9, 2021 13029



W. Zhang et al.: Time Optimal Trajectory Planning Method for Double-Pendulum Crane Systems With Obstacle Avoidance

HE CHEN (Member, IEEE) received the B.S.
degree in automation and the Ph.D. degree in
control science and engineering from Nankai
University, Tianjin, China, in 2013 and 2018,
respectively.

He is currently a Lecturer of Control Science
and Engineeringwith the School of Artificial Intel-
ligence, Hebei University of Technology, Tianjin.
His research interests include control of underac-
tuated systems (e.g., cranes) and motion planning

of wheeled mobile robots. He serves as an Academic Editor (AE) for
Mathematical Problems in Engineering. He is also a Guest Editor for the
topics Control and Stability for Robotic Crane Systems of Frontiers Robotics
and AI.

HAIYONG CHEN received the M.S. degree from
the Harbin University of Science and Technology,
Harbin, China, in 2005, and the Ph.D. degree from
the Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 2008.

He is currently a Professor with the School
of Artificial Intelligence, Hebei University of
Technology, Tianjin, China. His research interests
include image processing, robot vision, and pattern
recognition.

WEIPENG LIU received the Ph.D. degree from the
Hebei University of Technology, Tianjin, China,
in 2016.

He is currently a Professor with the School of
Artificial Intelligence, Hebei University of Tech-
nology, Tianjin. His research interests include
image processing, artificial intelligence, robotics,
and pattern recognition.

13030 VOLUME 9, 2021


