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ABSTRACT This paper is concerned with the networked distributed fusion estimation problem under
denial-of-service (DoS) attacks, where the noise covariances are unknown but bounded, and the distribution
information of DoS attacks is not required to be known. Based on the dimensionality reduction and
compensation model, the local Kalman filter (LKF) with unknown covariances is designed by the maximum
and minimum robust estimation criterion, while the distributed fusion Kalman filter (DFKF) is derived from
the optimal weighted fusion criterion. Moreover, the robustness of the developed DFKF is also analyzed in
the presence of DoS attacks. Finally, an illustrative example is exploited to demonstrate the effectiveness
of the proposed methods.

INDEX TERMS Robust fusion, Kalman filter, unknown covariances, bandwidth constraints, DoS attacks.

I. INTRODUCTION
With the development of sensors and computer technol-
ogy, the multi-sensor fusion estimation (MFE) problem has
attracted considerable interest, due primarily to its exten-
sive applications in various fields including moving target
tracking [1], signal processing [2] and industrial monitor [3].
Most often, the major focus of the MFE is how to effectively
use the information contained in various kinds of data to
better estimate system states or parameters. Besides, lots of
fusion estimation methods have been proposed to improve
the reliability and robustness of estimators [2]–[6]. Generally,
the distributed fusion structures, compared with centralized
ones, are more reliable, robust and fault-tolerant to some
extent [7]–[9]. Moreover, the distributed fusion Kalman fil-
ter (DFKF) method can significantly reduce the amount of
calculation and communication burdens [10], [11].

The recent years have witnessed a surge of research inter-
est in networked multi-sensor fusion estimation (NMFE)
problems [12]–[19], where the measurement information can
be sent to the fusion center (FC) via the wired or wireless
communication networks. However, due to the bandwidth
constraints, only limited information can be carried by com-
munication network for each unit of time, and thus the
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FC can only receive a limited number of sensor messages.
Therefore, information loss is inevitable, which may lead
to the estimated performance degradation of the fusion esti-
mation. To overcome the problem of bandwidth constraints,
several methods have been developed, including quan-
tification method [20]–[22] and dimensionality reduction
method [23]–[28]. As the literature in [25]–[28] pointed out,
the dimensionality reduction method shows more advan-
tages in solving the bandwidth constraints problem for
high-dimensional state.

At the same time, the transmission channel is exposed
to the network environment when the information of each
sensor is transmitted from the measurement node to the FC.
Once the accuracy and the reliability of the estimation are
affected by cyber attacks, the precise control for system sta-
bility will be difficult to achieve. Several cyber attacks have
been addressed, such as DoS attacks and deception attacks
[29], [30]. The DoS attacks is the most reachable attacks [24]
and dangerous. A famous example includes the regional
power office systems in Ukraine [31], which suffered from
highly disrupted malware attacks and caused large-scale
regional blackouts for hours.

The problem of remote state estimation under DoS attacks
has been well investigated, where attacks exist in the commu-
nication channel between the sensors and the remote estima-
tor. Concretely, from the perspective of an attacker, a dynamic
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attack power allocation algorithm was proposed to reduce the
estimation performance in [32]. Further, the construction of
an optimal attack schedule [33] was studied for the attack
under energy constraints, where the purpose of the attacker is
to maximize the expected mean value of the estimation error.
On the other hand, in view of the stability problem of the
estimation system under DoS attacks, the defender proposed
a secure packet coding method to protect the communication
channel against DoS attacks by compensating the previous
partial loss of packets [34]. Under the constraints of energy
budget and the asymmetry of information between attackers
and defenders, a game method [35], [36] was proposed to
simulate the decision-making process of both parties, and the
optimal strategy was obtained to improve the performance of
the system. Most often, DoS attacks can affect the integrity
of data, and further cause performance degradation in remote
estimators. A common and direct method to mitigate the
situation is to use compensation strategies [37] when data is
intercepted. For example, the data successfully transmitted
last time, or alternatively the prediction of current lost data,
are feasible to compensate for partial lost information. With
the compensation strategies applied to estimation problem
under DoS attacks, the designed estimator will be more
robust to attacks and can recover from attacks to satisfactory
estimation performance faster. Meanwhile, the problem of
NMFE was also proposed to further improve the system
performance under DoS attacks. Different solutions have
been proposed to solve the bandwidth constraint problems
for fusion estimation. An optimal recursive Kalman filter was
designed by using dimensionality reduction strategy and an
effective attack strategy was proposed in [24]–[28] and [37].
An event-triggered control algorithm [30] was proposed and
then adopted to reduce the computational burdens [38], where
the impulsive system approach was used to prove the stability
of the system.

More recently, some researchers have been paying atten-
tion to the security fusion estimation of networked multi-
sensor systems. By exploring the attacked system, a novel
filtering learning algorithm [39] and a game strategy [40]
were proposed to solve the problem of abnormal observa-
tion distorted information in the FC. While the method of
system switching [41] and the rate conversion of multi-rate
sensors [29] were used to study the problem of filtering.
Some strategies were proposed to prevent the networked
fusion systems from being attacked, sufficient criterion of
the bounded state estimation was pointed to solve the fusion
estimation problem for time-delay and random disturbance
systems in [42].

Due to the wireless communication network congestion
between the sink nodes and the remote estimators, the trans-
mission channel is more vulnerable to DoS attacks. However,
the problem of distributed dimensionality reduction fusion
estimation problem under DoS attacks has rarely been studied
by researchers, which motivate the present research to gener-
ate. On the other hand, the Gaussian assumption with known
noise covariance for the celebrated Kalman filter is hard to

be satisfied in practical situations. The literature [43] dealt
with systems under unknown noise covariances such that the
corresponding Kalman filter has some nice form, but it does
not guarantee the robustness of the designed Kalman filter.
Therefore, we concern ourselves with robust filter design
problem with known upper bounds of noise covariances, that
is the actual noise variance is unknown but bounded to us.

This paper deals with the DFKF problem for networked
system architecture with the communication constraints, DoS
attacks and uncertain convariances. Specifically, the sink
node is responsible for receiving the measurements from sen-
sors and transmitting them to the remote estimator via com-
munication network, while the remote estimator calculates
the LKF, and sent to the FC for the distributed fusion estima-
tion. Since only partial sensor measurement of each sink node
can be transmitted to the remote estimator due to bandwidth
constraints, and thus the dimensionality reduction strategy
is applied to reduce the communication traffic. Meanwhile,
the measurement data packets may be lost in case of DoS
attacks. Though the dimensionality reduction fusion estima-
tion problem under bandwidth constrains and DoS attacks
were discussed in our previous work [24] and [26], the above
works focused on the communication uncertainties between
the local estimates and the FC, while the uncertain communi-
cation problem in this paper is from the sensor measurements
that may suffer DoS attacks and bandwidth constraints. In this
case, the place to reducing the dimensionality and the design
of compensation strategy are different from [24] and [26].
The contribution of this paper can be summarized as follows:
i) A unified compensation model is proposed to reduce the
information loss caused by DoS attacks and bandwidth con-
straints; ii) A recursively DFKF is designed in the presence
of uncertain covariances, and the robustness is guaranteed by
establishing a positive semidefinite decision problem and can
be solved by the Lyapunov equation.
Notations: Rn represents the n-dimensional real Euclidean

space. ‘◦’ means the Hadamard product. ‘I ’ is an identity
matrix, while col {·} stands for a block column matrix, and
diag {·} denotes a block diagonal matrix. prob {X} is the
occurrence probability of the event X , while XT represents
transpose of matrix X . E {·} is the mathematical expectation,
and x⊥y denotes that x and y are orthogonal vectors.

II. PROBLEM FORMULATION
Consider the framework of NMFE under DoS attacks
in Fig. 1, where the physical process is described as discrete
time-varying state-space model:

x(t + 1) = A(t)x(t)+ B(t)w(t) (1)

where x(t) ∈ Rn is the current state of the process, w(t) ∈ Rr

is the process noise, A(t) and B(t) are time-varying matrices
with appropriate dimensions. System (1) is observed by L
groups of sensors, and the measurement of each sensor group
is collected by its sink node, i.e.,

yk (t) = Ck (t)x(t)+ vk (t)(k = 1, · · · ,L) (2)
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FIGURE 1. The framework of NMFE under DoS attacks.

where yk (t) = col{y1k (t), · · · , y
mk
k (t)} is the measurement

of the k-th sink node, vk (t) = col{v1k (t), · · · , v
mk
k (t)} is the

measurement noise for the k-th sink node and vk (t) ∈ Rmk .
Ck (t) = col{C1

k (t), · · · ,C
mk
k (t)} is the augmented measure-

ment matrix for the k-th sink node. Here, w(t) and vk (t)
are uncorrelated zero-mean Gaussian white noises, which
satisfies

E
{[
wT (t) vTk (t)

]T [wT (t1) vTj (t1)
]}

= diag{Qw(t),Qvk (t)δkj}δtt1 (3)

where the noise covariances Qw(t) and Qvk (t) are unknown
but bounded, i.e.,

Qw(t) ≤ Q̄w(t),Qvk (t) ≤ Q̄vk (t)(k = 1, · · · ,L,∀t) (4)

where the upper bounds Q̄w(t) and Q̄vk (t) are known in
advance. Furthermore, mk is the number of sensors in the
k-th sink node. The dynamics of the measurement equation
for each sensor in (2) can be described as

yik (t)=C
i
k (t)x(t)+v

i
k (t)(i=1, · · · ,mk , k=1, · · · ,L) (5)

where yik (t) is the measurement from i-th sensor, vik (t) ∈ R is
the measurement noise, and C i

k (t) is the measurement matrix.
It is assumed that the initial state x(0) is a random variable
uncorrelated to w(t) and vk (t), where E[x(0)] = µ0 and its
actual covariance denoted by P0 is unknown but bounded by

P0 ≤ P̄0 (6)

When all the components of yk (t) are transmitted via the
communication networks with limited communication capac-
ity, it will suffer from lots of network induced problems,
such as packet loss, disorder and time delay. Resorting to the
dimensionality reduction idea in [23], only rk (1 ≤ rk <

mk ) elements of the measurement yk (t) are chosen to be
transmitted from k-th sink node to the FC at each instant.
ye,k (t) is the output of each sink node after the dimensionality
reduction, and each component of ye,k (t) is selected from
yik (t)(i = 1, · · · ,mk ). It is obvious that ye,k (t) does not have

to be equal to yk (t). There have1k options of the component
of ye,k (t), where

1k =
mk !

rk !(mk − rk )!
(7)

Once the selection strategy is finished at each instant, the out-
put of ye,k (t) will be transmitted from k-th sink node to the FC
via communication networks. To model the selection process
for the dimensionality reduction strategy, the binary-valued
white random sequences σ lk (t) ∈ {0, 1},∀l ∈ Ok

1
=

{1, · · · ,1k} are introduced, where σ lk (t) = 1(l ∈ Ok )
indicates that the l-th case of 1k is selected to reduce
the dimension of measurement in the sink node, otherwise
σ lk (t) = 0. Let αlk = prob{σ lk (t) = 1}(l ∈ Ok ). It is obvious
that

∑1k
l=1 α

l
k (t) = 1. Since only one possible case can be

selected at each instant and E[σ lk (t)] = α
l
k ,∀l ∈ Ok , one has

E[σ lk (t)σ
l1
k1
(t)] =

{
αlk , l = l1, k = k1
0, otherwise

To mathematically describe the relationship of ye,k (t) and
yk (t), we define the selection matrix of the l-th case to be:

5l
k (t) = diag{ξ1k (t), · · · , ξ

mk
k (t)}(k = 1, · · · ,L) (8)

where ξ ik (t) ∈ {0, 1} is the binary variables. ξ ik (t) = 1 means
the i-th component of yk (t) is allowed to be transmitted,
otherwise ξ ik (t) = 0.

mk∑
i=1

ξ ik (t) = rk (k = 1, · · · ,L) (9)

It follows from (2) - (9) that ye,k (t) can be written as

ye,k (t) = 2k (t)yk (t) (10)

where 2k (t) =
∑1k

l=1 σ
l
k (t)5

l
k (t).

As mentioned before, DoS attacks can be easier to be
successfully executed by the adversary in the communication
networks. When ye,k (t) is transmitted to the remote estima-
tors, the attacker may launch DoS attacks on the channel
between the sink nodes and the remote estimators such that
the remote estimators cannot receive ye,k (t) at a particu-
lar time. Let ηk (t) ∈ {0, 1} denote whether the adversary
launches a DoS attack or not at time t , and it is assumed
that ηk (t) is the indicator value (i.e., 0 or 1 at each time).
Notice that the value of ηk (t) can be determined for estimator
design. Since data packets are marked with the time-stamp
method [27] before transmission, and thus the remote estima-
tor can easily detect DoS attacks by checking the time-stamp
information.

Let ȳe,k (t) denote input of the remote estimator from the
k-th sink node at each instant. When ηk (t) = 0, the k-th
communication channel is jammed by DoS attacks, then the
input of the remote estimator is proposed to be

ȳe,k (t) = ȳe,k (t − 1) (11)

Otherwise, ηk (t) = 1, whichmeans that ye,k (t) is successfully
transmitted to the remote estimators. To compensate for the
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information loss caused by dimensionality reduction strategy,
ȳe,k (t) is modeled as

ȳe,k (t) = ye,k (t)+ (I −2k (t))ȳe,k (t − 1) (12)

Moreover, it follows from (10) - (12) that the unified form of
ȳe,k (t) is formulated by

ȳe,k (t) = ηk (t)ye,k (t)+(I−ηk (t)2k (t))ȳe,k (t − 1) (13)

Define Xa,k (t)
1
= col{x(t), ȳe,k (t − 1)} and Wa,k (t)

1
=

col{w(t), vk (t)}, it then follows from (1) and (13) that the
compensation systems under DoS attacks and bandwidth con-
straints are modeled by:

Xa,k (t + 1)=8k (t)Xa,k (t)+ 0k (t)Wa,k (t) (14)
ȳe,k (t)=9k (t)Xa,k (t)+ηk (t)2k (t)vk (t)(k=1, · · · ,L)

(15)

where
8k (t) =

[
A(t) 0

ηk (t)2k (t)Ck (t) I − ηk (t)2k (t)

]
0k (t) = diag{B(t), ηk (t)2k (t)}
9k (t) =

[
ηk (t)2k (t)Ck (t) I − ηk (t)2k (t)

]
Definition 1 [5]: For a system with uncertain noise covari-

ances, if the existence of uncertain noise covariances sat-
isfies (4) and (6), so that for all admissible uncertainties,
the corresponding filtering estimation error covariance has
the minimum upper bound or the maximum lower bound,
then the actual Kalman filter is said to have guaranteed
performance robustness.
Consequently, the aims of this paper are described as

follows:
• Based on (4) and (6), design recursive DFKF for the
compensation systems (14) and (15) under DoS attacks,
bandwidth constraints and uncertain covariances;

• According to all admissible actual covariances satisfy-
ing (4) and (6), prove that the designed DFKF is robust,
i.e., it has a minimum upper bound.

Remark 1: Many dimensionality reduction methods have
been proposed to solve the bandwidth constraint problem in
[24]–[28], which allows only part components of estimated
signal to be transmitted to adapt for the limited commu-
nication capacity. The un-transmitted components are com-
pensated by one-step prediction. Different from these state
dimensionality reduction methods, the un-transmitted mea-
surement at time t is compensated by (12) (i.e., ȳe,k (t)) at time
t − 1. On the other hand, the defense strategy (13) is imple-
mented against the DoS attacks in bandwidth constraints
communication environment. That is, the signal received by
the remote estimator at time t − 1 is used as a compensator
when DoS attacks caused packet dropout occurs at time t ,
i.e., ye,k (t) = ȳe,k (t − 1) in (11). In what follows, we con-
sider a simple estimated signal transmission example over the
wireless network to get ye,k (t). Two sink nodes are used to
monitor the system, and the dimensionality reduction strategy
is employed before the measurements are transmitted via

network. L = 2, mk = 3, r1 = 1 and r2 = 2, it follows
from (7) and (8) that
11 = 3,51

1(t) = diag{1, 0, 0},52
1(t) = diag{0, 1, 0},

53
1(t) = diag{0, 0, 1};12 = 3,51

2(t) = diag{1, 1, 0},
52

2(t) = diag{1, 0, 1},53
2(t) = diag{0, 1, 1}.

(16)

Notice that 5l
1(t) and 5l

2(t) represent different selection
strategies. For example, 51

1(t) = diag{1, 0, 0} in (16) indi-
cates that the first component of y1(t) is allowed to be trans-
mitted the FC, but the second and thrid components of y1(t)
are lost.
Remark 2: The idea of dimensionality reduction strategy

in this paper is different from the strategies in [24] and [26],
mainly reflected in two aspects. First, the places to reduce
the dimensionality are different. Due to the constrained com-
munication channel between each sink node and the FC,
the dimensionality reduction strategy in [24] and [26] is
implementedwhen each local estimate is sent to the FC. How-
ever, the strategy in this paper is implemented before the mea-
surement signals are sent to sink nodes. Second, the design of
compensation strategy is distinct from these literature. The
compensation model in [24] and [26] is used for compensat-
ing estimation signals, while the compensation model built in
this paper is for compensating measurement signals.
Remark 3:Most of existing DoS attacks assumptions need

distributed information of attacks. For example, the occur-
rence of attacks is assumed to follow a Markov transition
probability distribution [33], or the maximum number of
attacks during a separated time period [45] is assumed to
be given. These assumptions are sometimes not available
in practical situations, and the introduced parameters (i.e.,
attack statistics, transition probability and maximum number
of attacks) are hard to be determined in advance. Instead,
the distribution information of DoS attacks is not needed in
this paper. The occurrence of attacks (i.e., ηk (t)) is the only
value that needs to be determined for estimator design. From
a practical point of view, data packets can be marked with the
time-stamp before transmission, and thus the remote estima-
tor can detect DoS attacks easily by receiving the time-stamp
information of the data. Therefore, the distribution informa-
tion of DoS attacks is not required to be known.

III. MAIN RESULTS
A. LOCAL ROBUST ESTIMATION UNDER DoS ATTACKS
Before presenting the main results, some preliminary results
are displayed. Taking expectations on 8k (t), 0k (t), 9k (t),
2k (t) and denoting 8e

k (t) = E[8k (t)], 0ek (t) =

E[0k (t)], 9e
k (t) = E[9k (t)] and 2e

k (t)=E[2k (t)], one has

8e
k (t) =

[
A(t) 0

ηk (t)2e
k (t)Ck (t) I − ηk (t)2

e
k (t)

]
0ek (t) = diag{B(t), ηk (t)2e

k (t)}

9e
k (t) =

[
ηk (t)2e

k (t)Ck (t) I − ηk (t)2
e
k (t)

]
2e
k (t) =

∑1k

l=0
αlk5

l
k (t)
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Some statistical information about the noise is given by

E
{[

W T
a,k (t) vTk (t)

]T [
W T
a,j(t1) vTj (t1)

]}
=

[
QWa (t) Sk (t)
STk (t) Qvk (t)δkjδtt1

]
QWa (t) = E

[
Wa,k (t)W T

a,j(t1)
]

= diag{Qw(t),Qvk (t)δkj}δtt1
Sk (t) = E[Wa,k (t)vTj (t1)] = col{0,Qvk (t)δkjδtt1}

(17)

According to Eq. (4), we can obtain QWa (t) ≤ Q̄Wa (t),
Sk (t) ≤ S̄k (t), where Q̄Wa (t) = diag{Q̄w(t), Q̄vk (t)δkj}δtt1 and
S̄k (t) = col{0, Q̄vk (t)δkjδtt1}.
Obviously, the augmented noise Wa,k (t) ∈ Rr+mk and

the measurement noise vk (t) ∈ Rmk are correlated Gaussian
white noises with zero means. In this case, the compensation
systems (14) and (15) need to be transformed into a new
system with uncorrelated noises, and the detailed steps are
as follows:

Adding a zero item to the right hand side of (14) yields

Xa,k (t + 1) = 8k (t)Xa,k (t)+ 0k (t)Wa,k (t)+ Jk (t)[ȳe,k (t)

−9k (t)Xa,k (t)− ηk (t)2k (t)vk (t)] (18)

Define Zk (t)
1
= 8k (t) − Jk (t)9k (t), and ωk (t)

1
=

0k (t)Wa,k (t) − ηk (t)Jk (t)2k (t)vk (t). Jk (t) can be viewed as
an undetermined matrix. Thus Xa,k (t + 1) can be organized
as

Xa,k (t + 1) = Zk (t)Xa,k (t)+ ωk (t)+ Jk (t)ȳe,k (t) (19)

To make ωk (t) be a zero-mean white noise which is uncorre-
lated to vk (t) i.e.,

E[ωk (t)vTk (t)] = 0
e
k (t)Sk (t)− ηk (t)Jk (t)2

e
k (t)Qvk (t)

= 0 (20)

and then the specific expression of Jk (t) is

Jk (t)=

{
0ek (t)Sk (t)Q

−1
vk (t)[2

e
k (t)]

−1, ηk (t)=1
matrix with appropriate dimension, ηk (t)=0

(21)

At same time, J̄k (t) can be achieved by the upper bounds
Q̄vk (t) and S̄k (t)

J̄k (t) =

{
0ek (t)S̄k (t)Q̄

−1
vk (t)[2

e
k (t)]

−1, ηk (t) = 1
matrix with appropriate dimension, ηk (t) = 0

(22)

Obviously, the state transition matrix and the process noise
have also been introduced in the systems. Noticed that the
covariance of the white noise ωk (t) can be computed by

Qω(t) = E[ωk (t)ωTk (t)]

= 0ek (t)[QWa (t)− ηk (t)Sk (t)Q
−1
vk (t)S

T
k (t)][0

e
k (t)]

T

(23)

Similarly, its upper bound covariance can be written as

Q̄ω(t) = 0ek (t)[Q̄Wa (t)− ηk (t)S̄k (t)Q̄
−1
vk (t)S̄

T
k (t)][0

e
k (t)]

T

(24)

Theorem 1: For the compensation systems (14) and (15),
the conservative optimal recursive Kalman filter is given by

X̂a,k (t) = Z̄k (t − 1)X̂a,k (t − 1)
+J̄k (t − 1)ȳe,k (t − 1)+ K̄k (t)εk (t)

εk (t) = ȳe,k (t)−9k (t)X̂a,k (t|t − 1)
K̄k (t) = P̄k (t|t − 1)[9e

k (t)]
T Q̄−1εk (t)

Q̄εk (t) = 9e
k (t)P̄k (t|t − 1)[9e

k (t)]
T

+ηk (t)2e
k (t)Q̄vk (t)[ηk (t)2

e
k (t)]

T

P̄k (t|t) = H̄ e
k (t)P̄k (t − 1|t − 1)[H̄ e

k (t)]
T

+N̄ e
k (t)Q̄ω(t − 1)[N̄ e

k (t)]
T

+ηk (t)K̄k (t)2e
k (t)Q̄vk (t)[ηk (t)K̄k (t)2

e
k (t)]

T

(25)

where X̂a,k (t) is the LKF, Q̄εk (t) is the covariance matrix
of innovation εk (t), K̄k (t) is the filtering gain matrix,
Z̄k (t−1) = 8k (t−1)− J̄k (t−1)9k (t−1) is the conservative
state transition matrix, and P̄k (t|t) is the estimation error
covariancematrix with the initial values X̂a,k (0)= col{µ0, 0},
P̄k (0|0) = diag{P̄0, 0}.

Proof: Replace Jk (t) in (18) as J̄k (t) in (22), and then
take the projective operation [44] to derive the relationship
between filtering and prediction filtering

X̂a,k (t|t−1)= Z̄k (t−1)X̂a,k (t−1)+J̄k (t−1)ȳe,k (t−1) (26)

Define prediction filtering error as: X̃a,k (t|t − 1) 1= Xa,k (t)−
X̂a,k (t|t−1). From (19) and (26), the prediction filtering error
is expressed by

X̃a,k (t|t − 1) = Z̄k (t − 1)X̃a,k (t − 1)+ ω̄k (t − 1) (27)

where ω̄k (t − 1) = 0k (t − 1)Wa,k (t − 1) − ηk (t − 1)J̄k (t −
1)2k (t − 1)vk (t − 1). Therefore, the prediction estimation
error covariance is calculated by

P̄k (t|t − 1) = E[X̃a,k (t|t − 1)X̃Ta,k (t|t − 1)]

= Z̄ ek (t − 1)P̄k (t − 1|t − 1)[Z̄ ek (t − 1)]T

+ Q̄ω(t − 1) (28)

where Z̄ ek (t) = E[Z̄k (t)] = 8e
k (t) − J̄k (t)9e

k (t). From the
recursive projection formula, the filtering can be written as

X̂a,k (t) = X̂a,k (t|t − 1)+ K̄k (t)εk (t) (29)

where εk (t) is defined in (25) and K̄k (t) =

E[Xa,k (t)εk (t)]Q̄−1εk (t). The one-step prediction of (15) is

ŷe,k (t|t − 1) = 9k (t)X̂a,k (t|t − 1) (30)

It follows from (15) and (30) that

εk (t) = 9k (t)X̃a,k (t|t − 1)+ ηk (t)2k (t)vk (t) (31)

and

E[Xa,k (t)εTk (t)] = P̄k (t|t − 1)[9e
k (t)]

T (32)
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The innovation covariance matrix Q̄εk (t) = E[εk (t)εTk (t)] is
given by

Q̄εk (t) = 9
e
k (t)P̄k (t|t − 1)[9e

k (t)]
T

+ ηk (t)2e
k (t)Q̄vk (t)[ηk (t)2

e
k (t)]

T (33)

From (26), (29), (32) and (33), X̂a,k (t) is expressed as

X̂a,k (t) = Z̄k (t − 1)X̂a,k (t − 1)

+ J̄k (t − 1)ȳe,k (t − 1)+ K̄k (t)εk (t) (34)

where K̄k (t) = P̄k (t|t − 1)[9e
k (t)]

T Q̄−1εk (t). Note that
X̃a,k (t−1)⊥ω̄k (t−1), X̃k (t−1)⊥vk (t), and vk (t)⊥ω̄k (t−1).
Therefore, it follows from (19), (31) and (34) that

X̃a,k (t) = H̄k (t)X̃a,k (t − 1)+ N̄k (t)ω̄k (t − 1)

− ηk (t)K̄k (t)2k (t)vk (t) (35)

where N̄k (t) = In+mk − K̄k (t)9k (t), H̄k (t) = N̄k (t)Z̄k (t − 1).

Define N̄ e
k (t)

1
= E[N̄k (t)] = In+mk − K̄k (t)9

e
k (t) and H̄

e
k (t)

1
=

E[H̄k (t)] = N̄ e
k (t)Z̄

e
k (t − 1). The Lyapunov equation of the

conservative estimation error covariance can be rewritten as

P̄k (t|t) = H̄ e
k (t)P̄k (t − 1|t − 1)[H̄ e

k (t)]
T

+ N̄ e
k (t)Q̄ω(t − 1)[N̄ e

k (t)]
T

+ ηk (t)K̄k (t)2e
k (t)Q̄vk (t)[ηk (t)K̄k (t)2

e
k (t)]

T (36)

This completes the proof.
Remark 4:Notice that the noise-correlated system is trans-

formed into a new system where the process noise and the
measurement noise are uncorrelated to each other. Its purpose
is to make the calculation easier in this paper. With the upper
bounds of actual covariances in (4) and (6), Theorem 1 pro-
vides a group of recursive equations for designing the optimal
LKF. Furthermore, the one-step predictor is yielded as a
byproduct. Since Xa,k (t)= col{x(t), ȳe,k (t − 1)}, the opti-
mal LKF of the state x(t) can be obtained by x̂k (t|t) =[
In 0

]
X̂a,k (t).

Define conservative or actual Kalman estimation errors as
X̃a,k (t)

1
= Xa,k (t)−X̂a,k (t), where Xa,k (t) is conservative state

in (18). From (15), (18), (22), (31) and (34), it is easy to obtain
the state estimation error equation (i.e., Eq. (35)). According
to the calculation formula of the covariance matrix P̄k (t|t) =
E[X̃a,k (t)X̃Ta,k (t)], combined with Eq. (35), the Lyapunov
equation of the conservative estimation error covariance is
obtained (i.e., Eq. (36)).
Remark 5: Note that the matrix inverse operation in a

Kalman filter is the major computation burden, and its com-
putational complexity is O(π3), where π is the dimensional-
ity of the estimated state [46]. The centralized filter augments
all ρ measurements and needs a computational complexity of
O(ρ3 × π3), while the distributed fusion Kalman filter com-
puters ρ local filters in parallel such that the computational
complexity is reduced to O(ρ × π3). Similarly, the matrix
inverse computation of Q̄εk (t) in the formulation (25) is
the major computation burden. Since the dimension of
Q̄εk (t) is rk , the computational complexity of the proposed
conservative recursive Kalman filter is O(L × r3k ).

B. ROBUST WEIGHTED FUSION ESTIMATION UNDER DoS
ATTACKS
Lemma 1 (See [16]): If the n × n dimensional matrix B is a
positive semidefinite matrix, i.e., B ≥ 0, thus the nL × nL
dimensional matrix B is regarded as a positive semidefinite
matrix, i.e.,

B =

B · · · B
...

. . .
...

B · · · B

 ≥ 0 (37)

Lemma 2 (See [4]): According to the unbiased linear min-
imum variance (ULMV) criteria, the conservative optimal
DFKF is expressed as

x̂d (t|t) =
L∑
k=1

�̄d
k (t|t)x̂k (t|t) (38)

where the local optimal state estimator of the k-th sink node
is given by x̂k (t|t) = MX̂a,k (t)(k = 1, · · · ,L), M =

[
In 0

]
.

The row vector of the optimal matrix weighted coefficient
is defined by �̄d (t|t) = [�̄d

1 (t|t), · · · , �̄
d
L(t|t)], which is

calculated by �̄d (t|t) = (βT P̄−1f (t|t)β)−1βT P̄−1f (t|t), where
β = col{In, · · · , In}. The nL × nL dimensional augmented
covariance P̄f (t|t) is defind as

P̄f (t|t) = (P̄Wkj
(t|t))nL×nL(k, j = 1, · · · ,L) (39)

where P̄Wkj (t|t) = MP̄kj(t|t)MT , P̄kj(t|t) = E[X̃a,k (t)X̃Ta,j(t)]
is the conservative local estimation error cross-covariance.
Then the conservative estimation error cross-covariance of
the k-th and the j-th sink nodes can be calculated as

P̄kj(t|t) = H̄ e
k (t)P̄kj(t − 1|t − 1)[H̄ e

j (t)]
T

+ N̄ e
k (t)Q̄ω(t − 1)[N̄ e

j (t)]
T (k 6= j) (40)

with the initial value P̄kj(0|0) = P̄k (0|0). Therefore, the con-
servative fusion estimation error covariance can be computed
by

P̄d (t|t) = �̄d (t|t)P̄f (t|t)�̄T
d (t|t) (41)

According to Lemma 2, the actual fusion estimation error
covariance is written as

Pd (t|t) = �d (t|t)Pf (t|t)�T
d (t|t) (42)

where �d (t|t) = (βTP−1f (t|t)β)−1βTP−1f (t|t). The aug-
mented covariance Pf (t|t) is obtained by

Pf (t|t) = (PWkj
(t|t))nL×nL (43)

where PWkj (t|t) = MPkj(t|t)MT . The actual estimation error
covariance and the actual estimation error cross-covariance
are written as

Pk (t|t) = H e
k (t)Pk (t − 1|t − 1)[H e

k (t)]
T

+N e
k (t)Qω(t − 1)[N e

k (t)]
T

+ ηk (t)Kk (t)2e
k (t)Qvk (t)[ηk (t)Kk (t)2

e
k (t)]

T

(44)
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Pkj(t|t) = H e
k (t)Pkj(t − 1|t − 1)[H e

j (t)]
T

+N e
k (t)Qω(t − 1)[N e

j (t)]
T (k 6= j) (45)

where the initial value Pkj(0|0) = Pk (0|0) = P̄kj(0|0).
Theorem 2: For the compensation systems (14) and (15),

the actual DFKF is a guaranteed robust DFKF with the upper
bound covariances Q̄w(t), Q̄vk (t) and P̄0. Then for all admis-
sible actual covariances Qw(t), Qvk (t) and P0 satisfying (4)
and (6), one has

Pd (t|t) ≤ P̄d (t|t) (46)

where P̄d (t|t) is the minimum upper bound for all admissible
uncertain noise covariances.

Proof: By Lemma 2, the global Lyapunov equation can
be written as

P̄f (t|t) = MP̄λ(t|t)MT (47)

P̄λ(t|t) = H̄ (t)P̄λ(t − 1|t − 1)H̄T (t)

+ N̄ (t)Q̄λ(t − 1)N̄T (t)

+4(t) ◦ K̄ (t)6(t)R̄(t)6T (t)K̄T (t) (48)

where

H̄ (t) = diag{H̄ e
1 (t), · · · , H̄

e
L(t)}

N̄ (t) = diag{N̄ e
1 (t), · · · , N̄

e
L(t)}

K̄ (t) = diag{K̄1(t), · · · , K̄L(t)}
4(t) = diag{η1(t)η1(t)Im1 , · · · , ηL(t)ηL(t)ImL }
6(t) = diag{2e

1(t), · · · ,2
e
L(t)}

R̄(t) = diag{Q̄v1 (t)I1, · · · , Q̄vL (t)IL}

Q̄λ(t − 1) =


Q̄ω(t − 1) · · · Q̄ω(t − 1)

...
. . .

...

Q̄ω(t − 1) · · · Q̄ω(t − 1)


Similarly, it follows from (47) and (48) that the global actual
fusion estimation error covariance is calculated by

Pf (t|t) = MPλ(t|t)MT (49)

Pλ(t|t) = H (t)Pλ(t − 1|t − 1)HT (t)

+N (t)Qλ(t − 1)NT (t)

+4(t) ◦ K (t)6(t) R(t)6T (t)KT (t) (50)

where

H (t) = diag{H e
1 (t), · · · ,H

e
L(t)}

N (t) = diag{N e
1 (t), · · · ,N

e
L(t)}

K (t) = diag{K1(t), · · · ,KL(t)}
R(t) = diag{Qv1 (t)I1, · · · ,QvL (t)IL}

Qλ(t − 1) =


Qω(t − 1) · · · Qω(t − 1)

...
. . .

...

Qω(t − 1) · · · Qω(t − 1)


Subtracting (49) from (47), we denote P̃f (t|t)

1
= P̄f (t|t) −

Pf (t|t), P̃λ(t|t)
1
= P̄λ(t|t) − Pλ(t|t). Thus the Lyapunov

equation is given by

P̃f (t|t)=MP̃λ(t|t)MT (51)

P̃λ(t|t)= H̄ (t)P̄λ(t − 1|t − 1)H̄T (t)− H (t)

×Pλ(t − 1|t − 1)HT (t)+ N̄ (t)Q̄λ(t − 1)N̄T (t)

−N (t)Qλ(t−1)NT (t)+4(t) ◦ [K̄ (t)6(t)R̄(t)

×6T (t)K̄T (t)−K (t)6(t)R(t)6T (t)KT (t)] (52)

It follows from (24), (23) and (4) that Q̄ω(t)−Qω(t) ≥ 0 and
Q̄vk (t)−Qvk (t) ≥ 0. By Lemma 1, Q̄λ(t − 1)−Qλ(t − 1) ≥
0 and R̄(t) − R(t) ≥ 0 are obtained. Let Pkj(0|0) = P(0),
P̄kj(0|0) = P̄(0). And then PWkj

(0|0) = MPkj(0|0)MT
= P0,

P̄Wkj
(0|0) = P̄0(k, j = 1, · · · ,L). The initial value of the

augmented matrix can be obtained by (47) and (48), which
means that

P̄f (0|0) =


P̄0 · · · P̄0
...

. . .
...

P̄0 · · · P̄0


P̄λ(0|0) =


P̄(0) · · · P̄(0)
...

. . .
...

P̄(0) · · · P̄(0)


The actual initial value can be obtained in the same way.
It follows from (6) that P̄0 − P0 ≥ 0, then one has
P̄f (0|0) − Pf (0|0) ≥ 0. Therefore, after a few simple steps
on (52), P̃f (0|0) = P̄f (0|0) − Pf (0|0) ≥ 0, then P̃λ(0|0) =
P̄λ(0|0)−Pλ(0|0) ≥ 0. From (52), one has P̃λ(1|1) ≥ 0, then
P̃f (1|1) ≥ 0. By mathematical induction, P̃λ(t|t) ≥ 0, one
has P̃f (t|t) ≥ 0, which implies

P̄f (t|t)− Pf (t|t) ≥ 0 (53)

It follows from (41), (42) and (53) that the inequality can be
calculated by

P̄d (t|t)− Pd (t|t) ≥ 0 (54)

Obviously, one has Pd (t|t) ≤ P̄d (t|t). Therefore, (46) is true
for all admission uncertain covariance Qw(t), Qvk (t) and P0
satisfing (4) and (6). Suppose that P̄∗d (t|t) is an arbitrary upper
bound estimation error covariance matrix for Pd (t|t). When
Qw(t) = Q̄w(t), Qvk (t) = Q̄vk (t) and P0 = P̄0, then (4)
and (6) are satisfied. Thus, Pd (t|t) satisfies Pd (t|t) ≤ P̄∗d (t|t).
In addition, it is known that P̃f (t|t) = 0 for any time t ≥ 0,
then P̄d (t|t) = Pd (t|t). Therefore, P̄d (t|t) ≤ P̄∗d (t|t), which
means that P̄d (t|t) is the minimum upper bound covariance of
the actual fusion estimation error covariance Pd (t|t). In this
case, the actual DFKF is robust according to Definition 1.
This completes the proof.
Remark 6: For the compensation systems (14) and (15)

under DoS attacks and bandwidth constraints, our objective
is to design the robust DFKF by weighting the local state esti-
mators with weighting matrices �̄d (t|t) and�d (t|t), and then
obtain the conservative and actual weighted fusion Kalman
estimation error covariances, respectively. In this sense,
actual state estimation error covariances Pd (t|t) yielded by all
admissible uncertain noise covariances Qw(t), Qvk (t) and P0
satisfying (4) and (6) have the corresponding minimal upper
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bound P̄d (t|t). Therefore, the robustness of the DFKF can be
guaranteed in this paper.

IV. SIMULATION EXAMPLES
Consider the systems (1) and (2) with the following
parameters:

A(t) =


0.9 0.1 0 0
0 0.25 0 cos(t − 1)
0 0 0.46 0
0 0.67 0 sin2 (t − 1)


B(t) =

[
0.1+ sin(t3) 1 1 0.02× t

2

]T
C1(t) =

 0 1 0 1
1 0 1 0
0 0 1 0

C2(t) =

 1 0 1 0
0 1 0 0
1 0 0 1


The system noises of w(t), v1(t) and v2(t) are uncorre-
lated zero-mean Gaussian white noises. To show that the
conservative error covariance P̄d (t|t) is an upper bound
of actual error covariance Pd (t|t), three groups of exper-
iments are carried out with different actual noise covari-
ances, where the upper bounds of actual noise covariances
in these groups are identical. Concretely, Qw,1 = 0.8,
Qv1,1 = diag{0.4, 0.7, 0.8}, Qv2,1 = diag{0.3, 0.54, 0.8} for
the first group, Qw,2 = 0.1, Qv1,2 = diag{0.1, 0.5, 0.3},
Qv2,2 = diag{0.1, 0.14, 0.18} for the second group,
Qw,3 = 0.05, Qv1,3 = diag{0.05, 0.09, 0.07}, Qv2,3 =
diag{0.03, 0.05, 0.08} for the third group, and their corre-
sponding upper bounds are set to be Q̄w = 1, Q̄v1 =
diag{0.6, 0.9, 1.0}, Q̄v2 = diag{0.46, 0.68, 0.9}. The initial
states are generated by a random variable with µ0 = 0
and P0 = I4, and the corresponding known upper bound is
assumed to be P̄0 = diag{1.12, 1.18, 1.05, 1.09}.

The dimensionality reduction strategy is employed in this
example with r1 = 2 and r2 = 1. It means that only
two components of the measurement in the first sink node
and one component of the measurement in the second sink
can be transmitted to the estimator. Moreover, the numbers
of the selected components correspond to sink node are
11 = 12 = 3. On the other hand, the transmitted mea-
surement may suffer from DoS attacks, where the energy of
the attack is always finite during a period of time. Therefore,
the maximum numbers of consecutive DoS attacks are 3 and
1 in each transmission channel.

Fig. 2, Fig. 3 and Fig. 4 are obtained from the actual noise
covariances and their upper bounds of the first group. A clear
trajectory comparison is performed in Fig. 2 to verify the
effectiveness of the DFKF, where the LKF x̂k (t|t) calculated
by Theorem 1, the DFKF x̂d (t|t) yielded by Lemma 2 and the
state x(t). It can be seen that the designed DFKF estimates the
real state better. The Monte Carlo method is used to calculate
the mean square errors (MSEs) with an average of 100 runs.
Subsequently, Fig. 3 shows the MSEs results of the LKF and
the DFKF. As can be observed, the fusion filter outperforms
each local estimator in estimation accuracy, which is consis-
tent with the advantages of the fusion method. Furthermore,

FIGURE 2. Trajectories of each components of the state x(t), the LKFs
x̂(t |t) and DFKF x̂d (t |t).

FIGURE 3. Mean square error of the LKFs and DFKF.

FIGURE 4. (a) The traces of the actual and conservative estimation error
covariances; (b) the sum of traces of the actual and conservative
estimation error covariances.

the comparison of traces of the actual and conservative esti-
mation error covariance is illustrated in Fig. 4 (a) to evaluate
the robustness of robust LKF/ DFKF, including the conserva-
tive local estimation error covariance P̄k (t|t) yielded by The-
orem 1, the conservative fusion estimation error covariance
P̄d (t|t), and their actual ones Pk (t|t) and Pd (t|t). The com-
parison result shows that the traces of their actual estimation
error covariance are smaller than that of conservative estima-
tion error covariance matrix. Furthermore, by the cumulative
summations of the actual and conservative local/fusion esti-
mation error covariance matrix traces, the trajectory compar-
ison in Fig. 4 (b) shows the robustness of robust LKF/ DFKF.
In order to analyze the robustness of distributed fusion esti-
mators clearly, three groups of different actual noise covari-
ances are first presented, and their actual fusion estimation
error covariances Pd (t|t) are obtained respectively. It can
be seen from Fig. 5 that the increase of the actual noise
covariance will result in large actual fusion estimation error
covariance. Then they were compared with the conservative
fusion estimation error covariance P̄d (t|t), and it is tightly
bounded with conservative fusion estimation error covariance
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FIGURE 5. The traces of the actual and conservative fusion estimation
error covariance.

FIGURE 6. Comparison of the estimation performance of the DFKF with
known and unknown upper bounds of the noise covariances.

and the conservative fusion estimation error covariance was
the upper bound of the actual fusion estimation error covari-
ances. It is obvious from the above analysis that the actual
DFKFwas a guaranteed robust DFKF, which has been proved
by Theorem 2. Moreover, the performance of the proposed
DFKF under known and unknown upper bounds of noise
covariances is compared. The result can be seen from Fig. 6.
It is observed that the performance of the proposed DFKF
with known upper bounds of noise covariances is far more
better.

V. CONCLUSION
This paper has studied the distributed robust fusion estima-
tion problem for the NMFE systems under DoS attacks and
uncertain convariances, where DoS attacks were character-
ized by a binary variable without distributed information.
The dimensionality reduction strategy was utilized for net-
work communication with limited bandwidth capacity, and
the compensation strategy was proposed to keep estimated
performance against both dimensionality reduction and DoS
attacks. Based on the upper bounds of the noise covariances
of the conservative system in the worst case, the conserva-
tive optimal LKF/DFKF was derived, which depends on the
ULMV estimation criterion. Meanwhile, the robust LKF was
obtained in the actual system, then the optimal LKF/DFKF
was derived. Further, the problem was transformed into a
positive semidefinite decision problem about the Lyapunov
equation solution, thus the robustness of robust DFKF was
strictly proved. Finally, an illustrative example was exploited
to demonstrate the effectiveness of the proposed methods.

In practical applications, due to random disturbances,
unmodeled dynamics and measurement errors, the system
model is often approximate and uncertain. Therefore, how
to design a distributed robust fusion estimator for uncer-
tain time-varying systems in the presence of bandwidth

constraints, unknown disturbances and DoS attacks will be
our future work.
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