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ABSTRACT Seismic exploration is a remote-sensing tool applied in a great many projects for engineering
and resource-exploration purposes. Random noise suppression is one of the key steps in seismic-signal
processing, especially those with important details and features. The threshold-shrinkage method based
on Shearlet transform has been effectively applied in seismic-signal denoising. However, the method
usually introduces the boundary effect, which influences the imaging quality. The denoising method of
total generalized variation (TGV) is easy to produce ‘oil painting’ effect, but it can effectively suppress
the boundary effect. This paper proposes a denoising method based on Shearlet threshold-shrinkage and
TGV for making full use of their characteristics, which can recover both edges and fine details much better
than the existing regularization methods. First, we use the Shearlet threshold-shrinkage result as the input
of TGV to obtain the primary denoising result and the residual profile. Second, we use the interactive
iteration of Shearlet threshold-shrinkage and TGV to extract the signals efficiently from the residual profile
and perform the effective signals stack continuously. During the processing, the adaptive-weight factor is
combined for estimating the optimal denoising result. Last, the final estimated denoising result is obtained
when the stopping criterion is met or the maximum number of iterations is reached. The synthetic and field
results show that the proposed method can effectively suppress random noise. In addition, it can also remove
the boundary effect and ‘oil painting’ effect, which further improves the signal-to-noise ratio (SNR).

INDEX TERMS Noise suppression, Shearlet transform, TGV, adaptive-weight factor, SNR.

I. INTRODUCTION
Seismic exploration, as one of the geophysical techniques,
is a significant remote-sensing tool and applied in a great
many projects for engineering and resource-exploration pur-
poses [1]–[3]. In seismic-data acquisition, it is usually
corrupted by various noise, such as the acquisition environ-
ment and acquisition devices. Seismic signals contain a large
amount of random noise, which reduces SNR and recogni-
tion accuracy. This is not conducive to subsequent process-
ing and final profile interpretation. Therefore, random noise
suppression [4]–[8] is one of the key steps in seismic-data
processing [9]–[10].
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Sparse-transform denoising is one of the main methods
for random noise suppression. According to the difference of
the corresponding coefficients between the effective signals
and random noise in the transform domain, the appropriate
threshold calculation method can be selected to separate the
effective signals and random noise for the denoising purpose.
The sparse-transform denoising methods usually include
Wavelet transform [11], Contourlet transform [12], Curvelet
transform [13], etc. They play important roles in the sparse
representation and image processing of two-dimensional and
high-dimensional signals. But their physical meanings are not
clear enough. The size of the coefficient matrix correspond-
ing to the special scale and angle in the transform domain is
different from the original data.

Shearlet transform [14]–[18], as a new sparse-transform
method, has the multi-scale and multi-direction
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characteristics. That can optimally describe the local char-
acteristics of the signals. Fewer coefficients are used for
approximating curves. Compared with other multi-scale anal-
ysis methods, Shearlet transform has a simpler mathematical
structure, which is more exquisite for characterizing the scale
and direction of the signals. That is suitable for processing
seismic data which contains texture, contour, and boundary
information. Liu et al. [19] introduced 2D-Shearlet trans-
form to suppress random noise of seismic data, and prove
the denoising effectiveness of Shearlet transform. On this
basis, Cheng et al. [20] proposed an adaptive threshold
during the Shearlet denoising for improving SNR while
retaining the effective signals to the maximum extent simul-
taneously. He also extended the adaptive-threshold denois-
ing to 3D-Shearlet transform [21]. This threshold-shrinkage
processing will introduce the boundary effect. That may
cause the false stratums, which has a negative impact on the
structure interpretation of seismic signals.

The total variation (TV) [22] method can preserve the
boundary information while suppressing random noise. How-
ever, it only considered the first derivative, which easily
causes ‘oil painting’ effect. Bredies et al. [23] proposed the
total generalization variation (TGV) method, which fully
considered the influence of higher order derivatives. On the
basis of the balance between the calculating time and the
imaging quality, they extended to the second derivative,
which suppresses the ‘oil painting’ effect to a certain extent.
That makes the quality of the denoising results are improved,
but sometimes it is still not ideal.

In order to make up for the drawbacks of sparse-transform
and TGV denoising methods and make full use of the advan-
tages of both, Sylvain and Jacques [24] combined the wavelet
de-noising and TV regularization methods to realize the
advantageous complementarities. Hu et al. [25] introduced
TV model to Shearlet de-noising for suppressing random
noise and preserving the edge information effectively. Tang
and Ma [26] extended Curvelet de-noising and TV methods
to 3D seismic data by the same way. In order to suppress
the boundary effect caused by threshold de-noising in the
Shearlet domain, Kong and Peng [27] combined with TGV
regularization for random noise suppression.

TGV can preserve the boundaries but suffer from
‘oil-painting’ artifacts. Shearlet-based denoising method can
suppress random noise well, but often suffer from unwanted
artifacts, e.g., the boundary effect. To overcome these draw-
backs, a joint framework using TGV and Shearlet is proposed
for seismic random noise suppression. The results of Shearlet
threshold shrinkage is used as input to the TGV method,
which can be used to suppress the boundary effect. By this
way, the ‘oil painting’ effect caused by TGV can be reduced at
the same time. During the iterations, the weight factors of the
regularized item are adaptively changed. The best denoising
results can be estimated by extracting the effective informa-
tion from the residual profile. By this way, the imaging quality
can be improved well by taking advantage of the fact that two
techniques benefit from each other. This approach performs

a nearly artifact-free signals denoising. The synthetic and
field data are used for testing to verify the effectiveness and
accuracy of the proposed method, respectively.

II. SHEARLET DE-NOISING METHOD
A. SHEARLET TRANSFORM
The affine system formed by Shearlet is composed of expan-
sion and translation parts. The expansion part contains an
anisotropic parabolic scale matrix and a shear matrix. In order
to define the Shearlet system, the parabolic scale matrix and
the shear matrix are defined as Ac, c ∈ R+ and Sb, b ∈ R,
respectively, expressed as follows

Ac =
(
c
0

0
√
c

)
Sb =

(
1
0
−b
1

)
(1)

Then, the Shearlet system can be expressed as{
ψg,h,m(x) := 2−

3
2 gψ(S−hA4−gx − m) : g, h ∈ Z,m ∈ Z2

}
(2)

In the formula, g is the scale parameter, h is the angle param-
eter and m is the position parameter. By choosing

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2
/
ξ1) (3)

Here, ψ1 ∈ L2(R) is a discrete wavelet,
∑

g∈Z

∣∣∣ψ̂1(4gω)
∣∣∣2 =

1, ω ∈ R, ψ̂1 ⊂
[
−1,−1

/
4
]
∪
[
1
/
4, 1

]
, ψ2 ∈ L2(R)

is a Bump function. ψ̂2 ∈ C∞(R), ψ̂2 ⊂ [−1, 1],∑
h∈Z

∣∣∣ψ̂2(h+ ω)
∣∣∣2 = 1. ξ1, ξ2 ∈ R. The Shearlet transform

of an arbitrary function f can be expressed as

SHψ f (g, h,m) =
〈
f , ψg,h,m

〉
(4)

B. CHARACTERISTICS OF SHEARLET TRANSFORM
Figures 1 and 2 show the shapes of the Shearlet-basis func-
tions in the frequency and time domains respectively. Figure 1
shows the Shearlet-basis functions in different directions at
the third scale. Figure 2 shows the Shearlet-basis functions at
the second, third and fourth scales in the 45-degree direction.
Figures 1 and 2 show the multi-scale and multi-directional
characteristics of Shearlet transform.
The multi-scale and multi-directional characteristics of

Shearlet transform can effectively divide the seismic signals,
as shown in Figure 3. Figure 3a is the synthetic seismic sig-
nals. Figure 3b-e are part of the synthetic-signal coefficients
in the Shearlet domain, which shows the ability of dividing
the seismic signals.
We also compare Shearlet transform with Curvelet trans-

form and Contourlet transform at the aspect of the sparsity.
The seismic signals of Figure 3a is decomposed with different
transform methods. The coefficients are arranged from large
to small, and different percentages of coefficients are retained
for reconstruction. The error between the reconstructed and
original signals is calculated. Figure 4 shows a comparison
of the reconstruction errors of the three transforms, with
the maximum percentage of coefficients retained ranging
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FIGURE 1. Different direction in third scale of Shearlet-basis function.

FIGURE 2. Different scales in 45 degree direction of Shearlet-basis
function.

from 0.5% to 30%. When the maximum coefficient of 4%
is retained, the reconstruction error of Shearlet transform is
almost zero. While Curvelet transform and Contourlet trans-
form retain the maximum coefficient of 10%, the reconstruc-
tion error is nearly zero. That indicates Shearlet transform has
the better sparsity.

C. SHEARLET THRESHOLD SHRINK DE-NOISING
The noise signals u can be expressed as the sum of effective
signals u0 and random noise n, which can be defined by the
following model

u = u0 + n (5)

In the Shearlet domain, the effective signals can be sepa-
rated from random noise by setting appropriate thresholds.
The hard threshold function T used can be defined
as

T (s) =

{
s, |s| ≥ C · λ · σ
0, |s| < C · λ · σ

(6)

In the formula, s represents the Shearlet coefficient. C is a
constant. λ is the root mean square of the Shearlet coefficient
at a certain scale and angle, which changes with the change
of scale and angle. σ is the standard deviation of noise. Then,
the inverse Shearlet transform is performed on the retained
coefficients to obtain the denoising result.

III. TGV DE-NOISING METHOD
Total variation (TV) is widely used in signal processing
because of its good characteristics. TV minimization means
that the L1 norm of the first-order derivative of the input
data is the smallest. However, TVminimization uses the first-
order derivative, which will cause the ‘oil painting’ effect.
Therefore, TGV method is proposed. The purpose of using
TGV regularization constraints is to preserve the boundaries
and suppress the introduced ‘oil painting’ effect.

For u ∈ L1loc(�), the t-th order TGV can be defined as

TGV t
α(u) = sup

{∫
� u · div

twdx|w ∈ C t
c[�, Sym

t (Rd )],∥∥divlw∥∥
∞
≤ αl, l = 0, · · · , t − 1

}
(7)

In the formula, α = (α0, · · ·αt−1) is a weight factor which
is fixed to be positive. t ≥ 1 represents a derivative order.
C t
c[�, Sym

t (Rd )] is a tightly supported symmetric vector
space. In fact, TVGmethod uses a balance between first-order
and the t-order derivative. When t = 1 and α = 1, TVG is
equivalent to TV. TVG usually uses 2-nd order derivative for
data processing, which is defined as follows

TGV 2
α (u) = sup

{∫
�
u · div2wdx|w ∈ C2

c (�,R
d×d )],

‖w‖∞ ≤ α1, ‖divw‖∞ ≤ α2

}
(8)

In the formula, div represents the scatter of the sampled data.
The first and second order derivative can be defined as

(divw)i =
d∑
j=1

∂wij
∂xj

div2w =
d∑
j=1

∂2wij
∂x2j
+ 2

∑
i<j

∂2wij
∂xi∂xj

(9)

TGV can be rewritten as a combination of p and its derivatives
ζ (p), defined as follows

TGV 2
α (u) = α0 ‖∇u− p‖1 + α1 ‖ζ (p)‖1

ζ (p) =
[
∂xp1
1
2 (∂xp2 + ∂yp1)

1
2 (∂xp2 + ∂yp1)
∂yp2

]
(10)

Which p is the estimated first-order derivative. α0 and α1 are
weight factors.

IV. JOINT DENOISING METHOD OF SHEARLET AND TGV
The threshold shrinkage method in the Shearlet domain has
strong denoising ability. Due to the change of Shearlet coeffi-
cients, it usually causes the boundary effect and influences the
imaging quality. The TGV denoising method, under the inter-
ference of random noise, usually produces the ‘oil painting’
effect. The ‘oil painting’ effect can be reduced significantly
by using the Shearlet threshold denoising results as the input
of TGV. TGV can only be used to remove the boundary effect
caused by the Shearlet threshold method. However, TGV
has a strong damage to the effective signals. Therefore, the
interactive iteration between Shearlet denoising and TGV is
needed. That can continuously extract effective signals from
the residual profile. In this way, the satisfying results can be
obtained.

VOLUME 9, 2021 6663



X. Wang et al.: Joint Framework for Seismic Signal Denoising Using TGV and Shearlet Transform

FIGURE 3. (a) Synthetic data. (b)-(e) Part of coefficients of synthetic data in the Shearlet domain.

FIGURE 4. Comparison of the reconstruction error.

Here, QSH represents the result of the Shearlet denoising
method. QSH can be expressed as

QSH(u) = SH−1(T (SH(u))) (11)

In the formula, SH represents the Shearlet forward trans-
form. SH−1 represents the inverse Shearlet transform. Sub-
stituting QSH into TGV, it can be expressed as

˜u =QSHTGV (u) = TGV (QSH) (12)

where ũ is the estimated de-noising result. QSHTGV is the
denoising result after Shearlet and TGV denoising methods.
The calculation model can be expressed as

min
QSH,p

1
2

∥∥QSH − ũ
∥∥2
2 + α0

∥∥∇QSH − p
∥∥
1 + α1 ‖ζ (p)‖1 (13)

Using the auxiliary variables z1 and z2, the above formula
can be rewritten as

min
QSH,p

1
2

∥∥QSH − ũ
∥∥2
2 + α0 ‖z1‖1 + α1 ‖z2‖1

s.t.z1 = ∇QSH − pz2 = ζ (p) (14)

The above formula is a constrained optimization problem,
which can be converted into a non-constrained optimization
problem for solving.

min
QSH,p

1
2

∥∥QSH − ũ
∥∥2
2 + α0 ‖z1‖1 + α1 ‖z2‖1

+
µ

2

∥∥z1 −∇QSH + p− z̃1
∥∥2
2 +

µ

2
‖z2 − ζ (p)− z̃2‖

2
2

(15)

The parameter µ is a Lagrangian multiplier. The iterative
optimization steps according to ADMM can be defined as
follows

zn+11 = argmin
z1

α0 ‖z1‖1

+
µ

2

∥∥z1 −∇Qn
SH + p

n
− z̃n1

∥∥2
2 (16)

zn+12 = argmin
z2

α1 ‖z2‖1

+
µ

2

∥∥z2 − ζ (pn)− z̃n2∥∥22 (17)

(Qn+1SH , pn+1) = min
u,p

1
2
‖QSH − ũ‖

2
2

+
µ

2

∥∥∥zn+11
−∇QnSH + p

n
− z̃n

1

∥∥∥2
2

+
µ

2

∥∥∥zn+12
− ζ (pn)− z̃n

2

∥∥∥2
2

(18)

z̃n+11 = z̃n1 + µ(∇Q
n+1
SH − p

n+1
− zn+11 ) (19)

z̃n+12 = z̃n2 + µ(ζ (p
n+1)− zn+12 ) (20)

By the calculation above, the output can be obtained

ũ = Qk=1
SHTGV (u) = Qn+1

SH (21)

uk=1R = u− Qk=1
SHTGV (22)

where k denotes the residual iteration number, and uR denotes
the residual result. Due to the damage of TGV to the effec-
tive signals, only one iteration is not the best. It requires
multiple iterations to extract the effective information from
the residual profile and perform the effective signals stack
continuously. Beginning the residual iteration as follow

Qk+1
SHTGV = TGV (SH−1(T (SH (ukR)))) (23)

ũ = ũ+ Qk+1
SHTGV (24)

uk+1R = ukR − Q
k+1
SHTGV (25)

The calculation process is shown in Figure 5. Since random
noise contained in the result of each iteration is different,
the weight factors α0 and α1 in the TGV need to be updated.
Given the initial value, the adaptive weights change as the
residual profile changes, which are defined as follows

α0 = α0 ×
uk+1R

ukR
α1 = α1 ×

uk+1R

ukR
(26)
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FIGURE 5. Flow chart of iteration for random noise suppression.

Through iterative calculation, the final estimated denoising
result ũ is given until the stopping criterion is met or the
maximum number of iterations is reached.

V. SYNTHETIC SEISMIC SIGNALS DE-NOISING TEST
In order to verify the effectiveness of the proposed method,
this paper uses the synthetic single-shot seismic signals for
verification. As shown in Figure 6 (a), the seismic signals
include multiple effective reflected-wave events. The number
of the detector is 200. The sampling interval is 0.001s. The
number of sampling points is 800. The Gaussian random
noise is added into the synthetic seismic signals. The SNR
of the seismic signals with random noise is 6.43dB, as shown
in Figure 6 (b), which is used to test the denoising ability of
the proposed method.

TGV, Wavelet, Curvelet and Shearlet denoising method
are used respectively to compare with the proposed method.
The denoising results are shown in Figure 7. Figure 7(a) is
the Wavelet denoising result. The scale parameter used is
4. In figure 7(a), random noise is suppressed well, but the
boundary effect caused by the threshold shrinkage is obvious.
Figure 9(a) is the corresponding residual profile. Part of the
events can been seen, which indicates effective signals are
damaged. Figure 7(b) is the Curvelet denoising result. The
scale and angle parameters used are 4 and 16, respectively.
In figure 7(b), random noise is suppressed well, and the
boundary effect caused by the threshold shrinkage becomes
alleviated. That is because Curvelet is sparser than Wavelet.

FIGURE 6. Single-shot record of synthetic data.

Figure 9(b) is the corresponding residual profile. It can also
see part of effective signals.

Figure 7(c) is the result of the Shearlet denoising method.
The scale and angle parameters used are 4 and [1 1 2 2].
Random noise is adequately suppressed and the imaging
quality becomes better than theWavelet and Curvelet denois-
ing results. That is because Shearlet is sparsest. Figure 9 (c)
shows the corresponding residual profile. The existence of
effective signals is almost invisible. Due to the threshold
shrinkage, the boundary effect are produced in Figure 7(c).
In order to show the boundary effect better, the local place
enclosed by the red dotted line in Figure 7(c) is enlarged,
as shown in Figure 8(a). There are obvious ‘burrs’ on the
boundary of the events.

Figure 7(d) is the TGV result. The maximum iteration
number is 100. The values of weight factors α0 and α1 are
0.1 and 0.15, which are set according to the noise level
contained in the signals. Different values of weight factors
will affect the number of iterations. Random noise has been
suppressed to a certain degree. But the boundary of the
reflection events are preserved well. However, the obtained
result is not ideal. Due to the interference of random noise,
the ‘oil painting’ effect appears in the result, which influences
the seismic imaging quality. Figure 9(d) is the corresponding
residual profile. The continuous events can be seen clearly,
indicating the effective signals are damaged seriously by
TGV.

Figure 7(e) shows the result of the proposed method. The
scale and angle parameters used of Shearlet transform are
also 4 and [1 1 2 2]. The maximum iteration number of
TGV is 100. The initial values of TGV weight factors α0
and α1 are 0.03 and 0.05. Compared with TGV, Wavelet,
Curvelet and Shearlet methods, the denoising result obtained
by the proposed method is better. Random noise is sup-
pressed more thoroughly, and the artificial effects introduced
are minimized. The boundary effect and the ‘oil painting’
effect cannot been seen almost. We enlarge the local place
enclosed by the red dotted line in Figure 7(e) as the same
as the Shearlet denoising result, as shown in Figure 8(b).
The boundary of the events are preserved effectively.
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FIGURE 7. De-noising results.

FIGURE 8. Local part comparison of seismic de-noising results.

In order to show the difference between figure 8(a) and 8(b)
obviously, the residual profile between them is shown in
figure 8(c). It proves the effectiveness of the proposed
method.

Here, the denoising process of the proposed method is
given. The denoising results and their corresponding residual
profiles of k = 1, k = 3, k = 5 and k = 10 iterations are
shown in Figure 10, respectively. It can obverse that, at the
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FIGURE 9. Residual profile between noise and de-noising data.

beginning of the iteration, the effective signals contained in
the residual profile is relatively obvious. It is necessary to
continuously extract the remaining effective signals from the
residual profiles and stack until the maximum number of
iterations is reached or the mean square error reaches the
set minimum value. In this way, the high SNR and fidelity
denoising results can be obtained.

In order to quantify the effectiveness of the proposed
method, the SNR, peak signal-to-noise ratio (PSNR), mean
square error (MSE) and edge-preserving index (EPI) corre-
sponding to different results are calculated in Table 1. It can
be seen that in the synthetic data test, compared with other
four methods, the proposed method has higher SNR, PSNR
and EPI, respectively. At the same time, the MSE of the
results obtained by this method is the smallest.

In summary, through the test of the synthetic signals, the
proposed method in this paper not only removes random
noise, but also suppresses the boundary effect caused by
the Shearlet threshold shrinkage and the ‘oil painting’ effect
of TGV, which improves the SNR and fidelity of seismic
data. The holistic imaging quality of seismic signals has
been improved significantly. The proposed method utilizes
the interaction iteration between Shearlet shrinkage threshold

TABLE 1. SNR, PSNR, MSE and EPI of noise seismic data before and after
denoising.

and TGV to extract the effective signals from the residual
profile. Since the effective signals gradually reduces in the
residual profile, the iteration number of TGV will reduce
significantly as the input data changes. So the computational
complexity of the proposed algorithm won’t get very high.

VI. FIELD SEISMIC SIGNALS DENOISING TEST ONE
Based on the results obtained by the synthetic signals,
the method proposed in this paper is applied to field seismic
signals. The post-stack profile of the field seismic signals
which is used for testing is shown in Figure 11. The post-stack
profile contains the fold structures obviously. Random noise
influence the identification and judgment of the structure
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FIGURE 10. Extracted effective-signal results during iteration and corresponding residual profiles.

FIGURE 11. Stacking profile of the field seismic data.

boundaries. In Figure 11, some events with strong energy
have good continuity. That can be effectively identified.
On the other hand, the events with weak energy are drowned
by random noise, which is difficult to identify due to the poor
continuity. That influences the interpretation and judgment of
the geological structures.

TGV, Wavelet, Curvelet, Shearlet denoising method and
the proposed method in this paper are used to suppress
random noise for the post-stack profile of the field seismic
signals. Figure 12(a) shows the Wavelet denoising result.
The scale parameter is 4. Figure 13(a) is the corresponding
residual profile. There are almost no effective signals. But the

de-noising result in figure 12(a) is not ideal. Random noise
is not suppressed well. That influences the boundary judge-
ment. Moreover, the boundary effect is shown at the arrow
locations obviously due to the threshold shrinkage influence.
The red dotted line frame is enlarged in Figure 14(a) in order
to better show the boundary effect.

Figure 12(b) is the Curvelet de-noising results with the
scale parameter 4 and angle parameter 16. Random noise is
suppressed well. That indicates Curvelet transform is sparser
than Wavelet transform. But it also cause the boundary effect
at the arrow locations due to the threshold shrinkage influ-
ence, which is enlarged in figure 14(b). Figure 13(b) is the
corresponding residual profile, which almost do not contain
effective signals.

Figure 12 (c) is the result of the Shearlet denoising method.
The scale and angle parameters are 4 and [1 1 2 2]. Random
noise is suppressed well. The effective signals with weak
energy are presented, which also have good continuity, espe-
cially in the fold structure. All the events can be distinguished
and identified effectively. The texture information of the post-
stack profile is preserved, and the imaging quality is better.
Figure 13(d) is corresponding residual profile. We almost
cannot observe the continuous events. That illustrates the
Shearlet denoising method has less damage to the effec-
tive signals. However, some part of the post-stack profile
appear the boundary effect due to the threshold shrinkage in
the Shearlet domain. As shown in Figure 14(c), the ‘burrs’
located at the two arrows of the fold structure between 80 and
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FIGURE 12. De-noising results of the field seismic profiles.

100 is produced due to the bending fold structure. In addition,
comparing with the original post-stack profile, it can be seen
that a false stratum appears at the arrow in the upper right
corner of the post-stack profile.

Figure 12(d) shows the TGV denoising result. The maxi-
mum iteration number is 100. The values of weight factors α0
and α1 are 10 and 11. Random noise is suppressed, and the
events drowned are presented now. However, the strong ‘oil
painting’ effect is produced due to the influence of random
noise and the structure complexity. That seriously influences
the imaging quality of the post-stack profile, especially the
part corresponding to the folds. The poor continuity of the
events damages the texture information of the post-stack
profile. Figure 13(d) is the residual profile corresponding to
the TGV method, which can observe the continuous events.
TGV has serious damage to the field seismic profile.

Figure 12(e) is the denoising result of the proposedmethod.
The scale and angle parameters used of Shearlet transform
are also 4 and [1 1 2 2]. The maximum iteration number of
TGV is 100. The initial values of TGV weight factors α0 and
α1 are 1 and 3. Comparing with TGV, Wavelet, Curvelet and
Shearlet denoising method, it can be seen that the proposed
method not only effectively suppresses random noise, but

also preserves effective texture information. As shown by the
corresponding arrow positions in Figure 14 (e), the ‘burrs’
and false stratum generated during the calculation process
are eliminated. At the same time, the influence of the ‘oil
painting’ effect is subtracted. The SNR and fidelity of the
field seismic profile are improved. Figure 13(e) is the corre-
sponding residual profile. The continuous events are hardly
observed, indicating that the proposed method has a strong
ability to extract effective signals. And the damage to the
effective signals is minimal.

VII. FIELD SEISMIC DATA DE-NOISING TEST TWO
Another field seismic signals are used to test the proposed
method. The seismic post-stack profile is shown in figure 15,
which structure is more complex. Random noise influences
the imaging quality of the seismic post-stack profile. The
events with weak energy are almost drowned by random
noise, which is difficult for the identification and judgment
of the structure boundaries.

TGV, Wavelet, Curvelet, Shearlet de-noising method and
the proposed method are used to suppress random noise for
the post-stack profile. Figure 16(a) is the Wavelet denoising
result. The scale parameter is 4. Random noise is suppressed,
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FIGURE 13. Residual profiles of the field seismic de-noising results.

FIGURE 14. Local part comparison of the field seismic de-noising results.
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FIGURE 15. Stacking profile of the field seismic data.

but the boundary effect caused is very serious, which reduces
the boundary-identification precision, especially at the arrow

locations. Figure 17(a) is the corresponding residual profile,
which contains less effective signals. Figure 16(b) is the
Curvelet denoising result. The scale and angle parameters
are 4 and 16. As Curvelet transform is sparser than Wavelet
transform, random noise is better suppressed. The boundary
effect becomes alleviated. Figure 17(b) is the corresponding
residual profile. Figure 16(c) is the Shearlet denoising result.
The scale and angle parameters are 4 and [1 1 2 2]. Compare
with Wavelet and Curvelet, Shearlet transform is sparser,
so the de-noising result obtained is best. The boundary effect
becomes alleviated further.

Figure 16(d) is the TGV result. The maximum iteration
number is 100. The values of weight factors α0 and α1 are
10 and 11. Random noise is suppressed well. But the ‘oil
painting’ effect appears in the result. And the ‘oil painting’

FIGURE 16. De-noising results of the field seismic profiles.
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FIGURE 17. Residual profiles of the field seismic de-noising results.

effect becomes more serious at where the structure is com-
plex. Figure 17(d) is the corresponding residual profile, which
the event shape of the effective signals is obvious.

Figure 16(e) is the de-noising result obtained by the
proposed method. The scale and angle parameters used of
Shearlet transform are also 4 and [1 1 2 2]. The maximum
iteration number of TGV is 100. The initial values of TGV
weight factors α0 and α1 are 1 and 3. Random noise is
suppressed effectively. And the texture information is pre-
served. As shown by the corresponding arrow positions in
Figure 16 (e), the boundary effect generated during the calcu-
lation process are eliminated. At the same time, the influence

of the ‘oil painting’ effect is subtracted. Figure 17(e) is the
corresponding residual profile.

VIII. CONCLUSION
This paper proposes a joint framework for seismic signal
de-noising using Shearlet threshold shrinkage and TGV,
which makes full use of their characteristics. Through
the interactive iteration between Shearlet threshold shrink-
age and TGV, the best estimated denoising result can be
obtained. Comparing with wavelet, Curvelet, Shearlet and
TGV de-noising methods through the synthetic and field
seismic data, it proves that the proposed method not only
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can suppress random noise, but also preserve the boundary
and texture information effectively. And it improves the SNR
and fidelity of the seismic data significantly. Through the
research, we can find that one specific denoising method is
not possible, as all de-noising methods have their individual
benefits and drawbacks. The joint denoising method is our
future development direction.
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