
Received December 3, 2020, accepted December 20, 2020, date of publication January 8, 2021, date of current version January 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049868

Image Compression Using Chain Coding for
Electronic Shelf Labels (ESL) Systems
YOUNGJUN KIM 1, KI-HYUNG KIM2, (Senior Member, IEEE), AND WE-DUKE CHO3
1Department of Computer Engineering, Graduate School, Ajou University, Suwon 16499, South Korea
2Department of Cyber Security, Ajou University, Suwon 16499, South Korea
3Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, South Korea

Corresponding author: Ki-Hyung Kim (kkim86@ajou.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology under Grant 2018R1D1A1B07048697, in part by the Korea Institute
for Advancement of Technology (KIAT) grant funded by the Korea Government Ministry of Trade, Industry and Energy (MOTIE)
(The Competency Development Program for Industry Specialist) under Grant P0008703, and in part by the Ministry of Science and ICT
(MSIT), South Korea, through the Information Technology Research Center (ITRC) Support Program, supervised by the Institute for
Information & Communications Technology Planning & Evaluation (IITP), under Grant IITP-2020-2018-0-01396.

ABSTRACT One of the most important and recurring tasks in managing a store is to provide accurate,
up-to-date price information to customers on the shelves. Manual updating of price tags has been a time-
consuming, error-prone task with high labor costs. An Electronic shelf labels (ESL) system is becoming
an attractive alternative for this task because of the dynamic-price-updating and customer’s product-
evaluation-display features. A common ESL system configuration in a retail store includes thousands of
battery-powered ESL tags that are mostly connected wirelessly in a dense indoor environment. Raising the
success ratio of wireless communication is essential for the system’s viability due to its limited battery life.
Most of the ESL traffic is the image data of goods that appear on the tags, and reducing the amount of the
data is one of the most effective ways to enhance communication performance and reduce retransmission.
This paper proposes an ESL image compression mechanism based on chain coding that utilizes ESL images’
characteristics. The performance results show that the proposed mechanism could compress the ESL images
smaller and decompress faster.

INDEX TERMS Electronic shelf label, chain code, image compression.

I. INTRODUCTION
The e-commerce market has grown rapidly due to improved
Internet technology. Many online shopping sites have
emerged, and product evaluation services such as reviews and
star ratings are found on most of them. From the evaluation
services, customers get much clearer information about the
product they are considering buying, and it might lead to
lower return rates. Also, the manufacturer could get feedback
on the product and get an opportunity to improve it [2].
Providing evaluation data of products to customers at offline
stores has been possible with Electronic Shelf Labels (ESL)
systems.

ESL system could enhance the marketing competitive-
ness of the stores. It reduces price marking errors and the
management-labor costs, especially for changing the price of
goods on the way. The ability to change prices in real-time

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefano Scanzio .

could allow retailers to adopt price strategies, such as chang-
ing prices based on the algorithms that consider competitor
prices, supply and demand, and other external factors in the
market. Because of these features, interests in ESL have been
gradually increased around the world [3], [11].

A typical ESL system configuration in a retail store
includes thousands of battery-powered ESL tags that are
mostly connected wirelessly in a dense indoor environment.
Raising the success ratio of wireless communication is essen-
tial for the system’s viability due to its limited battery life [1].
Most of the ESL traffic is the image data of goods that appear
on the tags, and reducing the amount of the data is one of the
most effective ways to enhance communication performance
and reduce retransmission. However, there are few studies on
how to compress images used in ESL systems. The images are
often compressed with typical compression algorithms such
as Run-Length Encoding and deflate in the fields.

In this paper, we propose a new compression mecha-
nism for compressing ESL images using chain coding. The

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 8497

https://orcid.org/0000-0002-0652-0256
https://orcid.org/0000-0001-7643-2342


Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

mechanism is called ECO; ESL Image Compression. It
is specialized in compressing images consisting of simple
figures and texts. The performance results show that our
proposed compression algorithm could enhance the compres-
sion ratio and the decompression time than other algorithms.
Increasing the compression ratio contributes to the reduction
of traffic in wireless networks. A shorter decompression time
means fewer computational loads on ESL devices, thereby
prolonging ESL battery life.

The remainder of this paper consists as follows: We first
describe the background knowledge required for the pro-
posed mechanism in Section III. Next, describe the ECO
image compression and decompression process in detail in
Section IV. In Section V, we measure the performance of
ECO and other compression algorithms for ESL images.
Then, we present the evaluation results. Finally, we conclude
the paper in Section VI.

II. RELATED WORKS
Lossless image compression algorithms can be classified as
follows [5], [7]:

Run-Length Encoding (RLE) is an elementary form of
lossless data compression that runs on sequences having the
same value occurring many consecutive times, and it encodes
the sequence to store only a single data value and its count.
RLE can effectively compress data containing consecutive
symbols, but results can be larger than the original data. An
example of generalized RLE schemes is PackBits.

Arithmetic coding is a form of entropy encoding used
in lossless data compression, in which the frequently seen
symbols are encoded with fewer bits than lesser-seen sym-
bols. JBIG2 is a monochrome image compression algorithm
developed by JBIG(Joint Bi-level Image Experts Group) [24],
and it is based on a form of arithmetic coding called the
MQ coder, which is an adaptive binary arithmetic coder
characterized by a multiplication-free approximation and
a renormalization-driven update of the probability estima-
tor [7]. JBIG2 supports both lossy and lossless compression
modes, and the lossless mode can generally compress 3 − 5
times more than G4 [26].

Huffman coding [6] is a lossless data compression algo-
rithm. In this algorithm, a variable-length code is assigned
to input different characters. The code length is related
to how frequently characters are used. The most frequent
character matches the shortest code. The less frequent the
character, the longer the code. Deflate is a lossless data
compression algorithm that uses the LZSS [23] algorithm
and Huffman coding. It is designed by Phil Katz and spec-
ified in RFC1951 [22]. The data format compressed by this
algorithm consists of a series of blocks, which correspond to
a series of blocks of input data. Each block is compressed
using the LZSS algorithm and Huffman coding. CCITT
Group 3 (G3) [25] 2-Dimensional (2D) andGroup 4 (G4) [26]
are also based on the Huffman coding. These are compres-
sion algorithms developed by CCITT (Consultative Commit-
tee on International Telegraphy and Telephony), a standard

FIGURE 1. The structure of the ESL system network.

organization that has developed protocols for transmitting
monochrome images to telephone lines and data networks.
The encoding and decoding of G3 algorithms are fast and
maintains a good compression ratio for various document
data. Besides, encoded data includes data that G3 decoder can
detect and correct errors. The G4 compresses monochrome
images more efficiently. Data compressed into G4 is about
half the size of data compressed into one-dimensional G3.
The G4 is quite challenging to implement efficiently, but it
encodes at least as fast as the G3, sometimes decoding faster
than the G3. The G4 does not contain the synchronization
code used to detect errors. These algorithms are non-adaptive
and do not adjust the encoding algorithm to encode each
bitmap with optimum efficiency.

Lempel-Ziv-Welch (LZW) is a widely known lossless data
compression algorithm created by Abraham Lempel, Jacob
Ziv, and Terry Welch [21]. The algorithm was published
in 1984 as an improved version of the LZ78 algorithm
published by Lempel and Ziv in 1978, and it is simple
to implement and can achieve very high throughput when
implemented with hardware. The main operating principle
is to register a recurring bit sequence in the dictionary
and replace the repeated pattern with the dictionary’s index
code. The generated dictionary does not need to be sent
to the decoder, and it is reconstructed during the decoding
process.

III. BACKGROUND
In the background section, we firstly describe the overall
ESL system architecture onwhich the proposed algorithm tar-
gets. Then, we describe the three image processing schemes
employed in the proposed algorithm in the next section.

A. ESL SYSTEM
The ESL system consists of servers, gateways and tags as
shown in Figure 1 [10]– [12]. The server manages all ESL
system information, such as the product information dis-
played on each tag and a list of tags that communicate with
each gateway. The gateway forms the wireless network and
manages the tags that have joined the network. It also acts
as an intermediary between the server and tags, supporting

8498 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

FIGURE 2. Example of ESL tags.

FIGURE 3. A example of MTFT.

communication between them. The tag receives the image
from the gateway and displays it on the screen. It works
in synchronization with the gateway. When the tag has no
more work to do, it goes into sleep mode to minimize power
consumption.

The image displayed on the tag is designed to communicate
the product information to customers effectively. In general,
the image consists of a small number of colors. Usually,
two colors (black, white) or three colors (black, white, red,
or yellow) are used as shown in Figure 2, and most areas
of the image are text. Product information such as product
name, price, and reviews of customers is displayed clearly.
Different text colors or background colors might emphasize
the information. The greater the number of colors that an
e-paper module can express, the higher its price and power
consumption.

B. MOVE-TO-FRONT TRANSFORM
Move-to-front Transform (MTFT) is a method to reduce the
entropy of data and compress it efficiently [14], [15]. This
algorithm replaces the input data with the index, and the
recently used symbol is moved to the beginning of the stack.
For example, if ‘‘ABBBCBBBBB’’ is entered in the MTFT,
it is processed as shown in Figure 3, resulting in conversion
to ‘‘01011021000’’. Meanwhile, MTFT is used in conjunc-
tion with Burrows-Wheller Transform (BWT) to reduce the
entropy more efficiently [17], [18].

FIGURE 4. Diagram showing how to convert 16,729 from decimal to
base-128 representation.

C. CHAIN CODING
Chain coding encodes the direction of connection between
pixels that form the boundary of an image object. Encoded
chain code is typically compressed using algorithms such
as RLE or Huffman Coding. Freeman’s 8-directive chain
code (FCCE), which first appeared, represents the eight adja-
cent directions of the pixels in each symbol [16]. Since the
higher the number of symbols, the greater the number of
bits required to encode each symbol, then the chain code
algorithms with fewer symbols appear. As one of them,
Vertex Chain Code (VCC) [19], which uses three symbols,
encodes the number of adjacent boundary pixels at the vertex.
In another algorithm, Three OrThogonal symbol chain code
(3OT) [20] determines the symbol according to the direction
of the previous encoding direction. The ECO uses three sym-
bols, and details are covered in Section IV-B2.

D. VARIABLE-LENGTH INTEGER ENCODING
Variable-length integers encoding (VarInt) is an algorithm
to compress fixed-length integers into variable-length inte-
gers to save space. Base-128 is a kind of these algorithms.
Figure 4 shows how to convert 16,729 from decimal to base-
128 representation.

IV. PROPOSED MECHANISM
The main target of the mechanism is the images used in ESL
system. The images consist of text, barcodes, and simple fig-
ures. Text usually accounts for a large portion of the images.
Also, there are two or three colors used in the images.

In this section, the data structure, the compression, and
decompression of ECO are described in detail, and Figure 5
is used to help explain these processes.

A. DATA STRUCTURE
The compressed file format of ECO is shown in Figure 6. α is
the length of data bits in the variable-length integer encoding
described in Section III-D. It consists of 2 bits and represents
a value in the range of 1 to 4, as shown in Table 1. The width
and height of the image are expressed in VarInt format. There
are three types of chain code table items, and depending on

VOLUME 9, 2021 8499



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

FIGURE 5. A image for testing the proposed mechanism (26 × 24px).

FIGURE 6. Structure of image file compressed with ECO.

FIGURE 7. Variable-length Integer structure.

TABLE 1. Bit representation of α.

TABLE 2. Bit representation of type code.

which type is the most, Type Code is represented in 1 or 2 bits,
as shown in Table 2. The description of the types is covered
in Section IV-B3.
Color palette is the color range of an image. White is the

default color, and it is not counted in the size of the color

TABLE 3. Color palettes for image type.

TABLE 4. Examples of VarInt encoding.

palette. For example, the color palette size in Figure 5 is 2.
The color palettes of the images used in this paper are shown
in Table 3. The color palette size of an image is expressed in
VarInt format.
Table Sizes is a VarInt array that stores the number of chain

code table items by color. Because the number of table items
can be 0, the value plus one is stored.

Many fields in Figure 6 are encoded in the VarInt format.
The form of VarInt used in this paper consists of a series
of chunks comprising a sign bit and data bits, as shown
in Figure 7. If not the last chunk, its sign bit is 0; other-
wise, it is 1. The α-length data bit can represent an inte-
ger of 2α , and the range of integers a single chunk can
express is Equation 1. The integer used in ECO is always
greater than 0, the minimum value of Ii is 1. An inte-
ger encoded in VarInt can be decoded using Equation 2.
Table 4 is an example of a VarInt representation of decimal
values.

1 ≤ Ii ≤ 2α (0 ≤ i < n) (1)
n−1∑
i=0

Ii · 2αi (2)

B. COMPRESSION
The compression process is carried out in four stages,
as shown in Figure 8. The number of outputs for each stage
is N , the size of an image’s color palette.

1) COLOR SEPARATION AND BINARY MOVE-TO-FRONT
TRANSFORM
In this stage, an image is separated into several mono-color
images - one image for each color portion of the image.
Subsequently, these mono-color images are converted into
binary sequences: each pixel in the image changes to 0 if

8500 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

FIGURE 8. 4 stages of compression process.

FIGURE 9. Color separation and binary MTFT.

FIGURE 10. Two MTF-transformed bitstreams (Bbk ,Brd ).

it is white or 1 if it is not. Then, Binary MTFT is applied
to the sequences: the MTFT used in this paper is named
binary MTFT because it deals only with the sequences con-
sisting of two symbols. Figure 9 illustrates the process of
change in Figure 5 at this stage. A pseudo algorithm of the
process is shown in algorithm 1. The algorithm performs
color separation and binary MTFT in one cycle. The two
bitstreams in Figure 10 result from performing the algorithm
in Figure 5.

Algorithm 1 Color Separation and Binary MTFT
Input : A pixel array P of an image
Output: A array C[0..N ] of bitstreams
/* N is color palette size */

1 prev←−1
2 C[0..N ]← 0

3 for i← 0 to P.length do

4 idx ← Index of P[i] in color palette

5 for j← 0 to N do
6 if j is not idx then
7 if prev = j then
8 C[j][i]← 1
9 else if prev is not j then
10 C[j][i]← 1

11 end
12 prev← idx
13 end

FIGURE 11. Downward directions (Symbol: 0, 1, 2).

2) DOWNWARD DIRECTION CHAIN CODE (DCC)
The bitstreams of the previous stage are encoded using a
chain code in this stage. The chain code encodes only three
directions, as shown in Figure 11. Because the direction of
progress of the encoding is from top-left to bottom-right of an
image, only the downward directions are needed for the chain
code. After running binaryMTFT, the probability of encoding
to the pixel’s left and right directions is very low. A pseudo
algorithm of the encoding process is shown in algorithm 2.
Table 5 is the chain code table that results from applying the
algorithm to the previous stage results.

3) TRANSFORMATION OF CHAIN CODE TABLES
This section covers the preparatory stage for converting the
chain code tables of the previous stage into bitstreams.

Initially, each item on the tables is classified according to
Table 6. For example, The codes of the 2nd, 4th, 5th, 6th, 13th
and 15th items in CTbk are empty. Thus, the type of these
items is A. Similarly, the type of the 2nd and 3rd in CTrd is
also A. The code of the 12th item of CTbk is the same as that
of the 11th. So, the type of it is B. The type of the others is C .

Secondly, the 1i of each item in the chain code tables is
calculated using Equation 3. This equation ensures that1i is
always an integer greater than zero.

1in =

{
in + 1, if n = 1
in − in−1, otherwise

(3)

VOLUME 9, 2021 8501



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

Algorithm 2 Downward Direction Chain Code
Input : A bitstream B of a monocolor image
Output: Chain code table T
/* W is the width of the image */

1 c← 0
2 L ← B.length

3 for i← 0 to L do

4 if B[i] is 1 then
5 B[i]← 0
6 T [c].i← i
7 T [c].code← empty
8 j← i
9 while j < L do
10 K ← j+W
11 if K < L and B[K ] = 1 then
12 B[K ]← 0
13 T [c].code = T [c].code+ 0
14 j← K
15 else if K − 1 < L and B[K − 1] = 1 then
16 B[K − 1]← 0
17 T [c].code = T [c].code+ 1
18 j← K − 1
19 else if K + 1 < L and B[K + 1] = 1 then
20 B[K + 1]← 0
21 T [c].code = T [c].code+ 2
22 j← K + 1
23 else
24 break
25 end
26 c← c+ 1

27 end

Thirdly, the 1n of the B type items are calculated, and
the Length of the code of C type items are measured. The
1n is the number difference between an item and the pre-
vious item with the same code. Through the steps so far,
TTbk and TTrd are obtained from CTbk and CTrd , as shown
in Table 7.

Lastly, The codes of the C type items are combined into
one. For example, the concatenated chain codes (CCbk ,CCrd )
obtained from CTbk and CTrd are as follows:

CCbk = 1010020000010120210100202220110002201

00102002000

CCrd = 2002000001022000000011

4) BITSTREAM ENCODING AND FILE FORMATTING
This section covers the final stage of the compression process.
The transformed chain code tables and the concatenated chain
codes are encoded as bitstreams, and the results are formatted
as shown as Figure 6. In the example of this stage, the α
is 1.

TABLE 5. Chain code tables of two bitstreams (CTbk ,CTrd ).

TABLE 6. Item types.

TABLE 7. Transformed chain code tables (TTbk , TTrd ).

a: ENCODING TRANSFORMED CHAIN CODE TABLES AS
BITSTREAMS
Each item in the transformed chain code tables is encoded
as bitstreams, in order of Type, 1i, 1n, or Length. Before

8502 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

TABLE 8. Chain code bit transformation table.

encoding Type, it is necessary to identify which type of item
has themost frequent. Themost frequent type is encoded as 0.
The following type in alphabetical order is encoded as 10, and
the other is encoded as 11. Subsequently, 1i, 1n and Length
are encoded as VarInt. For example, The most frequent type
of item on Table 7 is C , so this type is encoded as 0, A type is
encoded as 10, andB type is encoded as 11. As a consequence,
the table is encoded as follows:

E(TTbk ) = 001010101111010011100101011011100001

00101001010110100000011001101011100001

011100011100000011100011000011000110

00001000100101011111010000101010001

1000101011011100100000111

E(TTrd ) = 00000000100011101001110001010

01010110001010111000111

b: ENCODING CONCATENATED CHAIN CODES TO
BITSTREAMS
The concatenated chain codes are encoded as bitstreams
using Table 8. The encoding result of the current symbol
depends on the previous symbol. The series of symbol 0 is
abbreviated to symbol R if its length is longer than Rmin. Rmin
can be obtained as Equation 4.

Rmin = α + 3 (4)

The α used in the example is 1, so Rmin is 4. Therefore,
the series of symbol 0 in the length of more than four is abbre-
viated. Meanwhile, behind the symbol R comes the VarInt
encoded difference between the length of the symbol 0 series
and the Rmin. There is only one series inCCbk that is over four
in length, and its length is five. That is consequently encoded
in 1010. CCbk and CCrd are finally encoded as bitstreams as
follows:

E(CCbk ) = 1100100011101000101110111100100011011

1111110101100001111101000100110011000

E(CCrd ) = 1110011101000111111000100110

c: FILE FORMATTING
This step creates a header and associates it with the bitstreams
in the previous stage to make a compressed file as Figure 6.
For example, the header of Figure 5 and the compressed result
is as follows. It is 358 bits in size, about 45 bytes.

Header

= α + VarInt(Width)+ VarInt(Height)

FIGURE 12. 4 stages of decompression process.

+TypeCode+ VarInt(ColorPaletteSize)

+VarInt(ThesizeofTTbk + 1)

+VarInt(ThesizeofTTrd + 1)

= 00+ 01000111+ 01000011

+11+ 11

+00000011

+0110

= 0001000111010000111111000000110110

Comp(Figure 5)

= Header + E(TTbk )+ E(TTrd )+ E(CCbk )+ E(CCrd )

= 000100011101000011111100000011011000101010111

10100111001010110111000010010100101011010000

00110011010111000010111000111000000111000110

000110001100000100010010101111101000010101000

110001010110111001000001110000000010001110100

111000101001010110001010111000111110010001110

100010111011110010001101111111101011000011111

010001001100110001110011101000111111000100110

C. DECOMPRESSION
The decompression process is carried out in four stages,
as shown as Figure 12.

1) HEADER PARSING
At this stage, the header part of the compressed image file
is parsed. The headers of the Comp(Figure 5) are parsed
in the following order: (1) Obtain the value of α from the
first two bits. These two bits are ‘‘00’’, so α is 1. (2) Parse
Width and Height . These are encoded as VarInt. So, split the
data into a chunk unit and read them until the first bit of a
chunk is 1. As a result, Width is ‘‘01000111’’, and Height is
‘‘01000011’’. Decoding these two values using Equation 2
results in 26 and 24. (3) Read two bits to find out the most
frequent type of chain code table items. These two bits are

VOLUME 9, 2021 8503



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

Algorithm 3 Decoding Concatenated Chain Codes With
a Transformed Chain Code Table
Input : A transformed chain code table TT
Output: A bitstream B
/* W is the width of the header */
/* H is the height of the header */

1 B[0..W ∗ H ]← 0
2 idx ←−1

3 for i← 0 to TT .length do

4 item← TT [i]
5 idx ← idx + item.1i
6 B[idx]← 1
7 if item.type is A then
8 continue
9 else if item.type is B then
10 code← TT [i+ item.1n].code
11 length← TT [i+ item.1n].length
12 else if item.type is C then
13 item.code← getChainCodes(item.length)
14 code← item.code
15 length← item.length

16 c← idx
17 for j← 0 to length do
18 if code[j] is 0 then
19 c← c+W
20 B[c]← 1
21 else if code[j] is 1 then
22 c← c+W − 1
23 B[c]← 1
24 else if code[j] is 2 then
25 c← c+W + 1
26 B[c]← 1
27 end

28 end

FIGURE 13. Decompression results (Obk ,Ord ).

‘‘11’’, so the most frequent type is C . This value is used
when decoding chain code tables. (4) Parse the color palette
size encoded as VarInt. The encoded value is ‘‘11’’, so the
color palette size is 2. (5) Read the table-size as many times
as the color palette size. In this case, the color palette size

Algorithm 4 Reverse Binary Move-to-Front Transform
Input : A bit array B
Output: A bit array B

1 p← 0

2 for i← 0 to B.length do
3 b← B[i]

4 if b is 1 then
5 if p is 1 then
6 p← 0
7 else
8 p← 1
9 B[i]← p
10 end

Algorithm 5 Reverse Binary Move-to-Front Transform
Using Transition Table
Input : A byte array B
Output: A byte array B

1 T = Transition table of two dimensional array format (2
× 256)

2 p← 0

3 for i← 0 to B.length do
4 B[i], p← T (B[i], p)
5 end

FIGURE 14. Images of decompression results (Obk ,Ord ).

is 2, so two table-sizes are read. The two read values are
‘‘00000011’’ and ‘‘0110’’, and these are decoded into 16 and
5. The values reduced by 1 to these are the size of the chain
code tables. As a result, the size of the first chain code table
is 15, and the size of the second chain code table is 4.

2) DECODING TRANSFORMED CHAIN CODE TABLES
At this stage, the transformed chain code tables are decoded.
To get a transformed chain code table, read the transformed
chain code table item repeatedly as its table size in the header.
For example, since we knew the size of the first and second
tables in the previous stage, parse items as much as the table
size from the remaining data Rstage1 as shown below.

Rstage1 = 0010101011110100111001010110111000010010

8504 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

FIGURE 15. The ESL images for the performance evaluation.

100101011010000001100110101110000101110

001110000001110001100001100011000001000

10010101111101000010101000110001010110

1110010000011100000000100011101001110001

01001010110001010111000111110010001110

100010111011110010001101111111101011000

01111101000100110011000111001110100011

1111000100110

The first item of the first transformed chain code table is
decoded as follows. (1) The bit part of Type is ‘‘0’’. So the
most frequent type is C . (2) Parse the 1i encoded as VarInt.
It is ‘‘0101010111’’. Therefore, the1i is 62. (3) Because the
type of this item is C , Length should also be parsed. The bit
part of Length is ‘‘10’’, so the Length is 1. The decoding of
the first item is complete. After parsing all the items in the
same way, Table 7 is created and the remaining data Rstage2 is
as follows.

Rstage2 = 110010001110100010111011110010001101111

11110101100001111101000100110011000

1110011101000111111000100110

3) DECODING CONCATENATED CHAIN CODES
After the previous stage, the remaining encoded parts are
the concatenated chain codes. In the decoding process of the
encoded parts, we first create a bitstream that is the same

size as the image, initialized to zero, and analyze the items
in the transformed chain code table one by one to change part
of the bitstream to one. Depending on the decoded item’s
type, the concatenated chain codes are also decoded using
Table 8. A pseudo algorithm of the decoding process is shown
in algorithm 3. For example, the1i of the first item in TTbk is
62, so Bbk [61] is set to 1. Since the type of this item is C and
Length is 1, one code is decoded from Rstage2 using Table 8.
And the result is 1, so Bbk [87] is set to 1. As a result of this
stage, Bbk and Brd are obtained as shown in Section IV-B1.

4) REVERSE BINARY MTFT
This stage is the final of the decompression process. Reverse
Binary MTFT is performed on the bitstream generated from
the previous stage. A pseudo algorithm of the transform
process is shown in algorithm 4. It could be improved to work
faster like algorithm 5, which uses more memory. Bbk and
Brd are converted to Obk and Ord in this stage as shown in
Figure 13.

These represent images, as shown in Figure 14. These
bitstreams may be passed on to the e-paper module and used
butmay require additional conversion processes. This process
depends on themanufacturer of themodule and is not covered
in this paper.

V. PERFORMANCE EVALUATION
In this section, we evaluated the performance of the pro-
posed algorithm with six well-known compression algo-
rithms, such as PackBits, LZW, Deflate, G3, G4, and JBIG2.

VOLUME 9, 2021 8505



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

TABLE 9. The size and color composition information of the images.

Three performance items were measured: compressed file
size, compression time, and decompression time.

Figure 15 shows thirty-six images used for the evaluation.
The images are classified into three categories by the number
of colors: monochrome, 3-colors, and 8-colors. Note that
due to ESL tags’ limited resource constraints, only limited
colored tags have been deployed in the markets. The size
and color composition information of the images is shown
in Table 9.

In the performance evaluation, we converted multi-colored
images into multiple monochrome images because G3, G4,
and JBIG2 can compress only monochrome images. For
PackBits, LZW, and Deflate, we compared two different
versions of images: one multi-colored image (A) and multi-
ple converted monochrome images (B). For instance, Pack-
Bits (A) refers to the performance result for the original
multi-colored image, while PackBits (B) refers to the result
for the converted monochrome images.

For the evaluation, we used the source codes of all the
compression algorithms except ECO from JBIG2 [27], [28]
and LibTiff [29]. The performance of all algorithms was
measured in the same environment.1 All measurements were

1Hardware: Intel(R) Core(TM) i7-5650U CPU @ 2.20GHz; 2 Cores,
4 logical Processors; 8 GB RAM Software: Xcode version 11.2.1, macOS
10.15 (Catalina)

repeated 1000 times, and the average value was used for the
comparison.

Table 10 shows the comparison of compressed image sizes
with each algorithm. For the monochrome images, ECO
and JBIG2 showed the lowest BPP (bits-per-pixel), indicat-
ing the highest compression ratio. However, for the 3-color
and 8-color images, ECO showed the highest compression
ratio. It can be seen that the larger the color palette’s size,
the better the ECO’s compression efficiency than the other
algorithms.

Table 11 shows the comparison of the compression time
for each algorithm. Figure 17 shows the average compression
time for each group of the images. For the monochrome
images, ECO and JBIG2 showed longer compression time
than the other algorithms. However, for the 3-color and
8-color images, ECO showed shorter compression time than
JBIG2.

Table 12 shows the comparison of the decompression time
for each algorithm. Figure 18 shows the average decompres-
sion time for each group of the images. For the monochrome
and 3-color images, ECO showed the shortest decompression
time. For the 8-color images, PackBits(A), LZW(A), and
Deflate(A) showed shorter decompression times than ECO;
Note that they showed relatively lower compression ratio than
ECO as shown in Table 10.

8506 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

TABLE 10. Compressed size of the images (in bytes).

FIGURE 16. Average bits-per-pixel comparison for each group.

VOLUME 9, 2021 8507



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

TABLE 11. Compression time comparison (in milli-seconds).

FIGURE 17. Average compression time comparison for each group (in milli-seconds).

8508 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

TABLE 12. Decompression time comparison (in milli-seconds).

FIGURE 18. Average decompression time comparison for each group (in milli-seconds).

VOLUME 9, 2021 8509



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

FIGURE 19. Performance results of the algorithms for the images with Label12, 24, and 36.

TABLE 13. Compression ratio comparison of the algorithms.

In Figure 19, we compared the algorithms on the images
with the same contents but different color-palettes. For
instance, Label12, Label24, and Label36 have the same char-
acteristics, such as size, structure, and contents, but different
colors. Overall, as the number of colors increases, all of
the algorithms showed the lower compression ratio and took
more time in compression and decompression. Notice that

ECO showed relatively lower performance variations for the
color-palette change.

Table 13 shows the comparison of the compression ratio
CR of each algorithm which is defined by Equation 5. It also
shows CR/CRECO, a relative compression ratio to ECO. For
instance, if it is greater than 1, it indicates that the algorithm
generates smaller compressed image than ECO. Notice that

8510 VOLUME 9, 2021



Y. Kim et al.: Image Compression Using Chain Coding for ESL Systems

the relative compression ratios are less than 1 in most cases
in Table 13.

CR =
uncompressed size
compressed size

(5)

VI. CONCLUSION
An Electronic shelf labels (ESL) system is becoming an
attractive alternative for managing up-to-date price tag infor-
mation because of the dynamic-price-updating and cus-
tomer’s product-evaluation-display features. A common ESL
system configuration in a retail store includes thousands of
battery-powered ESL tags that are mostly connected wire-
lessly in a dense indoor environment. Raising the success
ratio of wireless communication is essential for the system’s
viability due to its limited battery life. In this paper, we pre-
sented ECO, a new chain coding based image compression
algorithm suitable for the ESL system. We evaluated the per-
formance of ECO against six other well-known algorithms.
ECO showed the best results in the compression ratio and the
decompression time in most cases. Achieving high compres-
sion ratio and short decompression time together is one of the
most important factors for prolonging the battery lifetime of
ESL tags.

REFERENCES
[1] H. A. Al-Kashoash, F. Hassen, H. Kharrufa, and A. H. Kemp, ‘‘Analytical

modeling of congestion for 6LoWPAN networks,’’ ICT Exp., vol. 4, no. 4,
pp. 209–215, 2018.

[2] N. Sahoo, C. Dellarocas, and S. Srinivasan, ‘‘The impact of online product
reviews on product returns,’’ Inf. Syst. Res., vol. 29, no. 3, pp. 723–738,
Sep. 2018.

[3] J. Xu and W. Li, ‘‘Design of electronic shelf label based on electronic
paper display,’’ in Proc. 3rd Int. Conf. Consum. Electron., Commun. Netw.,
Nov. 2013, pp. 250–253.

[4] D. Rohm, M. Goyal, H. Hosseini, A. Divjak, and Y. Bashir, ‘‘A simulation
based analysis of the impact of IEEE 802.15.4 MAC parameters on the
performance under different traffic loads,’’ Mobile Inf. Syst., vol. 5, no. 1,
pp. 81–99, 2009.

[5] M. A. Rahman andM. Hamada, ‘‘Lossless image compression techniques:
A state-of-the-art survey,’’ Symmetry, vol. 11, no. 10, p. 1274, Oct. 2019.

[6] D. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[7] K. Khursheed, M. Imran, N. Ahmad, and M. O’Nils, ‘‘Selection of bi-
level image compression method for reduction of communication energy
in wireless visual sensor networks,’’ Proc. SPIE, vol. 8437, May 2012,
Art. no. 84370M.

[8] J. Sung, ‘‘End of paper labels: Emerging smart labels toward Internet
of Things,’’ in Proc. IEEE 2nd World Forum Internet Things (WF-IoT),
Dec. 2015, pp. 216–221.

[9] IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air
Interface for Fixed Broadband Wireless Access Systems, IEEE Standard
802.16-2004, IEEE 802.16 Working Group, 2004.

[10] C. H. Zhou, P. Mei, L. W. Huang, K. Z. Liu, and Y. Q. Wen, ‘‘An elec-
tronic shelf label system based on WSN,’’ Adv. Mater. Res., vol. 765,
pp. 1718–1721, Sep. 2013.

[11] J.-S. Park and B.-J. Jang, ‘‘Electronic shelf label system employing a
visible light identification link,’’ in Proc. IEEE Radio Wireless Symp.
(RWS), Jan. 2016, pp. 219–222.

[12] J. Ock, H. Kim, H.-S. Kim, J. Paek, and S. Bahk, ‘‘Low-power wireless
with denseness: The case of an electronic shelf labeling system—Design
and experience,’’ IEEE Access, vol. 7, pp. 163887–163897, 2019.

[13] C. E. Sannon, ‘‘Amathematical theory of communication,’’ Bell Syst. Tech.
J., vol. 27, no. 3, pp. 379–423, 1948.

[14] B. Y. Ryabko, ‘‘Data compression by means of a ‘book stack,’’’ Problemy
Peredachi Informatsii, vol. 16, no. 4, pp. 16–21, 1980.

[15] B. Y. Ryabko, ‘‘Comments to: ‘A locally adaptive data compression
scheme’ by JL Bentley, DD Sleator, RE Tarjan, and VK Wei,’’ Commun.
ACM, vol. 30, no. 9, pp. 792–796, 1987.

[16] H. Freeman, ‘‘On the encoding of arbitrary geometric configurations,’’ IRE
Trans. Electron. Comput., vol. 2, pp. 260–268, Jun. 1961.

[17] B. Žalik and N. Lukač, ‘‘Chain code lossless compression using move-to-
front transform and adaptive run-length encoding,’’ Signal Process., Image
Commun., vol. 29, no. 1, pp. 96–106, Jan. 2014.

[18] B. Žalik, D. Mongus, K. R. Žalik, and N. Lukač, ‘‘Chain code compression
using string transformation techniques,’’ Digit. Signal Process., vol. 53,
pp. 1–10, Jun. 2016.

[19] E. Bribiesca, ‘‘A new chain code,’’ Pattern Recognit., vol. 32, no. 2,
pp. 235–251, 1999.

[20] H. Sanchez-Cruz and R. M. Rodrguez-Dagnino, ‘‘Compressing bi-level
images by means of a 3-bit chain code,’’ Opt. Eng., vol. 44, no. 9, pp. 1–8,
2005.

[21] T. A.Welch, ‘‘A technique for high-performance data compression,’’Com-
puter, vol. 17, no. 6, pp. 8–19, Jun. 1984.

[22] P. Deutsch,DEFLATECompressed Data Format Specification Version 1.3,
document RFC 1951, 1996.

[23] J. A. Storer and T. G. Szymanski, ‘‘Data compression via textual substitu-
tion,’’ J. ACM, vol. 29, no. 4, pp. 928–951, 1982.

[24] JBIG2 Bi-Level Image Compression Standard, Standard ISO/IEC 14492,
ITU-T Rec. T.88, 2000.

[25] Standardization of Group 3 Facsimile Terminals for Document Transmis-
sion, document ITU-T Rec. T.4, 2003.

[26] Facsimile Coding Schemes and Coding Control Functions for Group 4
Facsimile Apparatus, document ITU-T Rec. T.6, 1988.

[27] A. Langley. (2019). JBIG2 encoder. GitHub. [Online]. Available:
https://github.com/agl/jbig2enc

[28] R. Giles. (2019). JBIG2 decoder. GitHub. [Online]. Available:
https://github.com/rillian/jbig2dec

[29] (2019). LibTiff—TIFF Library and Utilities. [Online]. Available:
https://http://www.libtiff.org

YOUNGJUN KIM received the B.S. degree in
information and computer engineering from Ajou
University, in 2010, where he is currently pursuing
the Ph.D. degree with the Department of Com-
puter Engineering. His research interests include
designing protocols and techniques for themassive
Internet of Things (IoT).

KI-HYUNG KIM (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in electri-
cal and electronic engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), in 1990 and 1996, respectively. He is
currently a Professor with the Department of
Cyber Security, College of Information Technol-
ogy. His research interests include blockchain,
cybersecurity, the IoT, and embedded systems.

WE-DUKE CHO received the M.S. and Ph.D.
degrees in electrical and electronic engineering
from the Korea Advanced Institute of Science
and Technology (KAIST), in 1983 and 1987,
respectively. He is currently a Professor with the
Department of Electronics Engineering, College of
Information Technology. He is also the Director
of the Ubiquitous Convergence Research Institute
(UCRI). He is also with the Life-Care Science
Laboratory, Ajou University, South Korea. He is

also the Director of the Korea Association of Smart Home (KASH). He is
also an Adjunct Professor with Stony Brook University (SUNY), Stony
Brook, NY, USA. He presented a talk entitled ‘‘A design for lifestyle analyzer
based on IoT Big data with Human Behavior Recognition’’. His research
interests include signal processing, the IoT data pattern modeling, and care
system design.

VOLUME 9, 2021 8511


