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ABSTRACT One of the most important and recurring tasks in managing a store is to provide accurate,
up-to-date price information to customers on the shelves. Manual updating of price tags has been a time-
consuming, error-prone task with high labor costs. An Electronic shelf labels (ESL) system is becoming
an attractive alternative for this task because of the dynamic-price-updating and customer’s product-
evaluation-display features. A common ESL system configuration in a retail store includes thousands of
battery-powered ESL tags that are mostly connected wirelessly in a dense indoor environment. Raising the
success ratio of wireless communication is essential for the system’s viability due to its limited battery life.
Most of the ESL traffic is the image data of goods that appear on the tags, and reducing the amount of the
data is one of the most effective ways to enhance communication performance and reduce retransmission.
This paper proposes an ESL image compression mechanism based on chain coding that utilizes ESL images’
characteristics. The performance results show that the proposed mechanism could compress the ESL images

smaller and decompress faster.

INDEX TERMS Electronic shelf label, chain code, image compression.

I. INTRODUCTION

The e-commerce market has grown rapidly due to improved
Internet technology. Many online shopping sites have
emerged, and product evaluation services such as reviews and
star ratings are found on most of them. From the evaluation
services, customers get much clearer information about the
product they are considering buying, and it might lead to
lower return rates. Also, the manufacturer could get feedback
on the product and get an opportunity to improve it [2].
Providing evaluation data of products to customers at offline
stores has been possible with Electronic Shelf Labels (ESL)
systems.

ESL system could enhance the marketing competitive-
ness of the stores. It reduces price marking errors and the
management-labor costs, especially for changing the price of
goods on the way. The ability to change prices in real-time
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could allow retailers to adopt price strategies, such as chang-
ing prices based on the algorithms that consider competitor
prices, supply and demand, and other external factors in the
market. Because of these features, interests in ESL have been
gradually increased around the world [3], [11].

A typical ESL system configuration in a retail store
includes thousands of battery-powered ESL tags that are
mostly connected wirelessly in a dense indoor environment.
Raising the success ratio of wireless communication is essen-
tial for the system’s viability due to its limited battery life [1].
Most of the ESL traffic is the image data of goods that appear
on the tags, and reducing the amount of the data is one of the
most effective ways to enhance communication performance
and reduce retransmission. However, there are few studies on
how to compress images used in ESL systems. The images are
often compressed with typical compression algorithms such
as Run-Length Encoding and deflate in the fields.

In this paper, we propose a new compression mecha-
nism for compressing ESL images using chain coding. The
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mechanism is called ECO; ESL Image Compression. It
is specialized in compressing images consisting of simple
figures and texts. The performance results show that our
proposed compression algorithm could enhance the compres-
sion ratio and the decompression time than other algorithms.
Increasing the compression ratio contributes to the reduction
of traffic in wireless networks. A shorter decompression time
means fewer computational loads on ESL devices, thereby
prolonging ESL battery life.

The remainder of this paper consists as follows: We first
describe the background knowledge required for the pro-
posed mechanism in Section III. Next, describe the ECO
image compression and decompression process in detail in
Section IV. In Section V, we measure the performance of
ECO and other compression algorithms for ESL images.
Then, we present the evaluation results. Finally, we conclude
the paper in Section V1.

Il. RELATED WORKS
Lossless image compression algorithms can be classified as
follows [5], [7]:

Run-Length Encoding (RLE) is an elementary form of
lossless data compression that runs on sequences having the
same value occurring many consecutive times, and it encodes
the sequence to store only a single data value and its count.
RLE can effectively compress data containing consecutive
symbols, but results can be larger than the original data. An
example of generalized RLE schemes is PackBits.

Arithmetic coding is a form of entropy encoding used
in lossless data compression, in which the frequently seen
symbols are encoded with fewer bits than lesser-seen sym-
bols. JBIG2 is a monochrome image compression algorithm
developed by JBIG(Joint Bi-level Image Experts Group) [24],
and it is based on a form of arithmetic coding called the
MQ coder, which is an adaptive binary arithmetic coder
characterized by a multiplication-free approximation and
a renormalization-driven update of the probability estima-
tor [7]. JBIG2 supports both lossy and lossless compression
modes, and the lossless mode can generally compress 3 — 5
times more than G4 [26].

Huffman coding [6] is a lossless data compression algo-
rithm. In this algorithm, a variable-length code is assigned
to input different characters. The code length is related
to how frequently characters are used. The most frequent
character matches the shortest code. The less frequent the
character, the longer the code. Deflate is a lossless data
compression algorithm that uses the LZSS [23] algorithm
and Huffman coding. It is designed by Phil Katz and spec-
ified in RFC1951 [22]. The data format compressed by this
algorithm consists of a series of blocks, which correspond to
a series of blocks of input data. Each block is compressed
using the LZSS algorithm and Huffman coding. CCITT
Group 3 (G3) [25] 2-Dimensional (2D) and Group 4 (G4) [26]
are also based on the Huffman coding. These are compres-
sion algorithms developed by CCITT (Consultative Commit-
tee on International Telegraphy and Telephony), a standard
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FIGURE 1. The structure of the ESL system network.

organization that has developed protocols for transmitting
monochrome images to telephone lines and data networks.
The encoding and decoding of G3 algorithms are fast and
maintains a good compression ratio for various document
data. Besides, encoded data includes data that G3 decoder can
detect and correct errors. The G4 compresses monochrome
images more efficiently. Data compressed into G4 is about
half the size of data compressed into one-dimensional G3.
The G4 is quite challenging to implement efficiently, but it
encodes at least as fast as the G3, sometimes decoding faster
than the G3. The G4 does not contain the synchronization
code used to detect errors. These algorithms are non-adaptive
and do not adjust the encoding algorithm to encode each
bitmap with optimum efficiency.

Lempel-Ziv-Welch (LZW) is a widely known lossless data
compression algorithm created by Abraham Lempel, Jacob
Ziv, and Terry Welch [21]. The algorithm was published
in 1984 as an improved version of the LZ78 algorithm
published by Lempel and Ziv in 1978, and it is simple
to implement and can achieve very high throughput when
implemented with hardware. The main operating principle
is to register a recurring bit sequence in the dictionary
and replace the repeated pattern with the dictionary’s index
code. The generated dictionary does not need to be sent
to the decoder, and it is reconstructed during the decoding
process.

IIl. BACKGROUND

In the background section, we firstly describe the overall
ESL system architecture on which the proposed algorithm tar-
gets. Then, we describe the three image processing schemes
employed in the proposed algorithm in the next section.

A. ESL SYSTEM

The ESL system consists of servers, gateways and tags as
shown in Figure 1 [10]- [12]. The server manages all ESL
system information, such as the product information dis-
played on each tag and a list of tags that communicate with
each gateway. The gateway forms the wireless network and
manages the tags that have joined the network. It also acts
as an intermediary between the server and tags, supporting
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FIGURE 3. A example of MTFT.

communication between them. The tag receives the image
from the gateway and displays it on the screen. It works
in synchronization with the gateway. When the tag has no
more work to do, it goes into sleep mode to minimize power
consumption.

The image displayed on the tag is designed to communicate
the product information to customers effectively. In general,
the image consists of a small number of colors. Usually,
two colors (black, white) or three colors (black, white, red,
or yellow) are used as shown in Figure 2, and most areas
of the image are text. Product information such as product
name, price, and reviews of customers is displayed clearly.
Different text colors or background colors might emphasize
the information. The greater the number of colors that an
e-paper module can express, the higher its price and power
consumption.

B. MOVE-TO-FRONT TRANSFORM

Move-to-front Transform (MTFT) is a method to reduce the
entropy of data and compress it efficiently [14], [15]. This
algorithm replaces the input data with the index, and the
recently used symbol is moved to the beginning of the stack.
For example, if “ABBBCBBBBB” is entered in the MTFT,
it is processed as shown in Figure 3, resulting in conversion
to “01011021000”°. Meanwhile, MTFT is used in conjunc-
tion with Burrows-Wheller Transform (BWT) to reduce the
entropy more efficiently [17], [18].
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() Represent the value in binary notation.
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FIGURE 4. Diagram showing how to convert 16,729 from decimal to
base-128 representation.

C. CHAIN CODING

Chain coding encodes the direction of connection between
pixels that form the boundary of an image object. Encoded
chain code is typically compressed using algorithms such
as RLE or Huffman Coding. Freeman’s 8-directive chain
code (FCCE), which first appeared, represents the eight adja-
cent directions of the pixels in each symbol [16]. Since the
higher the number of symbols, the greater the number of
bits required to encode each symbol, then the chain code
algorithms with fewer symbols appear. As one of them,
Vertex Chain Code (VCC) [19], which uses three symbols,
encodes the number of adjacent boundary pixels at the vertex.
In another algorithm, Three OrThogonal symbol chain code
(30T) [20] determines the symbol according to the direction
of the previous encoding direction. The ECO uses three sym-
bols, and details are covered in Section IV-B2.

D. VARIABLE-LENGTH INTEGER ENCODING
Variable-length integers encoding (Varlnt) is an algorithm
to compress fixed-length integers into variable-length inte-
gers to save space. Base-128 is a kind of these algorithms.
Figure 4 shows how to convert 16,729 from decimal to base-
128 representation.

IV. PROPOSED MECHANISM
The main target of the mechanism is the images used in ESL
system. The images consist of text, barcodes, and simple fig-
ures. Text usually accounts for a large portion of the images.
Also, there are two or three colors used in the images.

In this section, the data structure, the compression, and
decompression of ECO are described in detail, and Figure 5
is used to help explain these processes.

A. DATA STRUCTURE

The compressed file format of ECO is shown in Figure 6. « is
the length of data bits in the variable-length integer encoding
described in Section III-D. It consists of 2 bits and represents
a value in the range of 1 to 4, as shown in Table 1. The width
and height of the image are expressed in VarInt format. There
are three types of chain code table items, and depending on
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FIGURE 5. A image for testing the proposed mechanism (26 x 24px).
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FIGURE 6. Structure of image file compressed with ECO.
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FIGURE 7. Variable-length Integer structure.

TABLE 1. Bit representation of «.

a Bit Representation
1 00
2 01
3 10
4 11

TABLE 2. Bit representation of type code.

The most frequent type Bit Representation
A 0

B 10

C 11

which type is the most, Type Code is represented in 1 or 2 bits,
as shown in Table 2. The description of the types is covered
in Section IV-B3.

Color palette is the color range of an image. White is the
default color, and it is not counted in the size of the color
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TABLE 3. Color palettes for image type.

Type Size Colors

Monochrome 1 Black

3-color 2 Black, Red

8-color 7 Black, Red, Blue, Orange, Magenta,

Green, Yellow

TABLE 4. Examples of Varint encoding.

Decimal Encoded as \ Decimal Encoded as

1 10 63 000000000010

2 11 126 010101010111

3 0010 127 00000000000010

6 0111 254 01010101010111

7 000010 255 0000000000000010

14 010111 510 0101010101010111

15 00000010 511 000000000000000010
30 01010111 1022 010101010101010111
31 0000000010 1023 00000000000000000010
62 0101010111 2046 01010101010101010111

palette. For example, the color palette size in Figure 5 is 2.
The color palettes of the images used in this paper are shown
in Table 3. The color palette size of an image is expressed in
Varlnt format.

Table Sizes is a Varlnt array that stores the number of chain
code table items by color. Because the number of table items
can be 0, the value plus one is stored.

Many fields in Figure 6 are encoded in the VarInt format.
The form of VarInt used in this paper consists of a series
of chunks comprising a sign bit and data bits, as shown
in Figure 7. If not the last chunk, its sign bit is O; other-
wise, it is 1. The «-length data bit can represent an inte-
ger of 2%, and the range of integers a single chunk can
express is Equation 1. The integer used in ECO is always
greater than 0, the minimum value of [; is 1. An inte-
ger encoded in VarInt can be decoded using Equation 2.
Table 4 is an example of a Varlnt representation of decimal
values.

1<; <2 (0<i<n) (1

n—1 )
> g2 @)
i=0

B. COMPRESSION

The compression process is carried out in four stages,
as shown in Figure 8. The number of outputs for each stage
is N, the size of an image’s color palette.

1) COLOR SEPARATION AND BINARY MOVE-TO-FRONT
TRANSFORM

In this stage, an image is separated into several mono-color
images - one image for each color portion of the image.
Subsequently, these mono-color images are converted into
binary sequences: each pixel in the image changes to O if
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FIGURE 9. Color separation and binary MTFT.
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FIGURE 10. Two MTF-transformed bitstreams (Bpy, B,4)-

it is white or 1 if it is not. Then, Binary MTFT is applied
to the sequences: the MTFT used in this paper is named
binary MTFT because it deals only with the sequences con-
sisting of two symbols. Figure 9 illustrates the process of
change in Figure 5 at this stage. A pseudo algorithm of the
process is shown in algorithm 1. The algorithm performs
color separation and binary MTFT in one cycle. The two
bitstreams in Figure 10 result from performing the algorithm
in Figure 5.
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Algorithm 1 Color Separation and Binary MTFT
Input : A pixel array P of an image
Output: A array C[0..N] of bitstreams
/* N is color palette size */

1 prev <— —1
2 C[0..N] <0

3 fori < 0 to P.length do

4 idx < Index of P[{] in color palette
5 forj < OtoN do

6 if j is not idx then

7 if prev = j then

8 | Cljllil <1

9 else if prev is not j then

10 | Cll] <1

11 end

12 prev < idx

13 end

FIGURE 11. Downward directions (Symbol: 0, 1, 2).

2) DOWNWARD DIRECTION CHAIN CODE (DCC)

The bitstreams of the previous stage are encoded using a
chain code in this stage. The chain code encodes only three
directions, as shown in Figure 11. Because the direction of
progress of the encoding is from top-left to bottom-right of an
image, only the downward directions are needed for the chain
code. After running binary MTFT, the probability of encoding
to the pixel’s left and right directions is very low. A pseudo
algorithm of the encoding process is shown in algorithm 2.
Table 5 is the chain code table that results from applying the
algorithm to the previous stage results.

3) TRANSFORMATION OF CHAIN CODE TABLES
This section covers the preparatory stage for converting the
chain code tables of the previous stage into bitstreams.
Initially, each item on the tables is classified according to
Table 6. For example, The codes of the 2nd, 4th, 5th, 6th, 13th
and 15th items in CTp; are empty. Thus, the type of these
items is A. Similarly, the type of the 2nd and 3rd in CT}4 is
also A. The code of the 12th item of CT}y is the same as that
of the 11th. So, the type of it is B. The type of the others is C.
Secondly, the Ai of each item in the chain code tables is
calculated using Equation 3. This equation ensures that A is
always an integer greater than zero.

j 1, ifn=1
Aig =t Hr= 3)
in —ip—1, otherwise
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Algorithm 2 Downward Direction Chain Code

Input : A bitstream B of a monocolor image
Output: Chain code table T
/* W is the width of the image */

1¢c<«0
2 L < B.length

3 fori < OtoL do

4 if B[i]is 1 then

5 B[i] <0

6 Tlcli<«i

7 T[c).code < empty

8 j<i

9 while j < L do

10 K<«~j+W

1 if K < L and B[K] = 1 then
12 B[K] <0

13 T[c].code = T|c].code + 0
14 j< K

15 elseif K — 1 < L and B[K — 1] = 1 then
16 BIK —1] <0

17 T[c].code = T|c].code + 1
18 j<«< K—-1

19 elseif K + 1 < L and B[K + 1] = 1 then
20 BIK+1] <0

21 T[c].code = T[c].code + 2
22 j<— K+1

23 else

24 | break

25 end

26 c<c+1

27 end

Thirdly, the An of the B type items are calculated, and
the Length of the code of C type items are measured. The
An is the number difference between an item and the pre-
vious item with the same code. Through the steps so far,
TTpr and TT,; are obtained from CTp; and CT,4, as shown
in Table 7.

Lastly, The codes of the C type items are combined into
one. For example, the concatenated chain codes (CCpg, CCyy)
obtained from CTp; and CT,, are as follows:

CCpr = 1010020000010120210100202220110002201
00102002000
CCry = 2002000001022000000011

4) BITSTREAM ENCODING AND FILE FORMATTING

This section covers the final stage of the compression process.
The transformed chain code tables and the concatenated chain
codes are encoded as bitstreams, and the results are formatted
as shown as Figure 6. In the example of this stage, the o
is 1.

8502

TABLE 5. Chain code tables of two bitstreams (CTp, CT,g).

No ‘ i Code

1 61 1

2 67 -

3 96 01

4 115 -

5 144 -

6 161 -

7 163 00200000101202
8 185 1010020222
9 203 011000220
10 207 100102002
11 290 0

12 292 0

13 477 -

14 506 00

15 556 -

No. | i Code

1 137 200200000102
2 140 -

3 169 -

4 199 2000000011

TABLE 6. Item types.

Type Condition

The length of the code is 0
Some of the previous items have the same code
Otherwise

Qe

TABLE 7. Transformed chain code tables (TTp, TT,4).

No. | Type Ai Length An || Encoded

1 C 62 1 - 00101010111 10

2 A 6 - - 100111

3 C 29 2 - 001010110 11

4 A 19 - - 10 00010010

5 A 29 - - 1001010110

6 A 17 - - 10 00000110

7 C 2 14 - 011010111

8 C 22 10 - 000010111 000111
9 C 18 9 - 000000111 000110
10 C 4 9 - 00011000110

11 C 83 1 - 0000100010010 10
12 B 2 - 1 111110

13 A 185 - - 10 00010101000110
14 C 29 2 - 001010110 11

15 A 50 - - 10 0100000111

No. | Type Ai Length || Encoded

1 C 138 12 0 00000001000111 010011
2 A 3 - 10 0010

3 A 29 - 1001010110

4 C 30 10 001010111 000111

a: ENCODING TRANSFORMED CHAIN CODE TABLES AS
BITSTREAMS

Each item in the transformed chain code tables is encoded
as bitstreams, in order of Type, Ai, An, or Length. Before
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TABLE 8. Chain code bit transformation table.

w 0 1 2 R
Prev

0 0 10 11
R - 0 1 -
Other 0 110 111 10

encoding Type, it is necessary to identify which type of item
has the most frequent. The most frequent type is encoded as 0.
The following type in alphabetical order is encoded as 10, and
the other is encoded as 11. Subsequently, Ai, An and Length
are encoded as VarInt. For example, The most frequent type
of item on Table 7 is C, so this type is encoded as 0, A type is
encoded as 10, and B type is encoded as 11. As a consequence,
the table is encoded as follows:

E(TTy) = 001010101111010011100101011011100001
00101001010110100000011001101011100001
011100011100000011100011000011000110
00001000100101011111010000101010001
1000101011011100100000111

E(TT,4) = 00000000100011101001110001010
01010110001010111000111

b: ENCODING CONCATENATED CHAIN CODES TO
BITSTREAMS

The concatenated chain codes are encoded as bitstreams
using Table 8. The encoding result of the current symbol
depends on the previous symbol. The series of symbol O is
abbreviated to symbol R if its length is longer than R,;,,. Rpyin
can be obtained as Equation 4.

Ryin =a +3 4

The o used in the example is 1, so Ry, is 4. Therefore,
the series of symbol 0 in the length of more than four is abbre-
viated. Meanwhile, behind the symbol R comes the Varlnt
encoded difference between the length of the symbol O series
and the R,;,;,. There is only one series in CCyy that is over four
in length, and its length is five. That is consequently encoded
in 1010. CCypg and CC,4 are finally encoded as bitstreams as
follows:

E(CCpr) = 1100100011101000101110111100100011011

1111110101100001111101000100110011000
E(CCy) = 1110011101000111111000100110

c: FILE FORMATTING
This step creates a header and associates it with the bitstreams
in the previous stage to make a compressed file as Figure 6.
For example, the header of Figure 5 and the compressed result
is as follows. It is 358 bits in size, about 45 bytes.

Header

= o + Varlnt(Width) + Varlnt(Height)
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Compressed Image File

+

Header Parsing

l Header

Decoding Transformed Chain Code Tables

l N Transformed Chain Code Tables

Decoding Concatenated Chain Codes

l N Color Bitstreams (MTFT)

Reverse Binary MTFT

+

N Color Bitstreams

FIGURE 12. 4 stages of decompression process.

+TypeCode + VarInt(ColorPaletteSize)
+Varlnt(Thesizeof Ty + 1)
+Varint(ThesizeofTT,y + 1)

= 00+ 01000111 4 01000011
+11 + 11
400000011
40110

= 0001000111010000111111000000110110

Comp(Figure 5)

= Header + E(TTy;) + E(TT,q) + E(CCpi) + E(CCyy)

= 000100011101000011111100000011011000101010111
10100111001010110111000010010100101011010000
00110011010111000010111000111000000111000110
000110001100000100010010101111101000010101000
110001010110111001000001110000000010001110100
111000101001010110001010111000111110010001110
100010111011110010001101111111101011000011111
010001001100110001110011101000111111000100110

C. DECOMPRESSION
The decompression process is carried out in four stages,
as shown as Figure 12.

1) HEADER PARSING

At this stage, the header part of the compressed image file
is parsed. The headers of the Comp(Figure 5) are parsed
in the following order: (1) Obtain the value of o from the
first two bits. These two bits are “00”’, so « is 1. (2) Parse
Width and Height. These are encoded as Varlnt. So, split the
data into a chunk unit and read them until the first bit of a
chunk is 1. As a result, Widrh is ““01000111”°, and Height is
“01000011”. Decoding these two values using Equation 2
results in 26 and 24. (3) Read two bits to find out the most
frequent type of chain code table items. These two bits are
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Algorithm 3 Decoding Concatenated Chain Codes With
a Transformed Chain Code Table
Input : A transformed chain code table 77
Output: A bitstream B
/* W is the width of the header */
/+ H is the height of the header */

1 B[0.W xH] <0

2 idx < —1

3 fori < 0to TT .length do

4 item < TT|i]

5 idx < idx + item.Ai

6 Blidx] <1

7 if item.type is A then

8 ‘ continue

9 else if item.type is B then

10 code < TT|i + item.An].code
11 length <— TT[i + item.An].length
12 else if irem.type is C then

13 item.code < getChainCodes(item.length)
14 code < item.code

15 length < item.length

16 c < idx

17 for j < 0to length do

18 if code[j] is O then

19 c<—c+W

20 Blc] <1

21 else if codelj] is 1 then

22 c<«c+W-—-1

23 B[c] <1

24 else if code[j] is 2 then

25 c<—c+W+1

26 Blc] < 1

27 end

28 end
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el clolelalololololololololeolola B ala)
00— —2 2000000000000 —-—==00
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FIGURE 13. Decompression results (Opy, O,q)-

“11”, so the most frequent type is C. This value is used
when decoding chain code tables. (4) Parse the color palette
size encoded as Varlnt. The encoded value is “11”°, so the
color palette size is 2. (5) Read the table-size as many times
as the color palette size. In this case, the color palette size

8504

Algorithm 4 Reverse Binary Move-to-Front Transform

Input : A bit array B
Output: A bit array B

1p<0
2 for i < 0 to B.length do

3 b < BJi]

4 if b is 1 then

5 if p is 1 then
6 | p<0

7 else

8 ‘ p <1

9 Bli] < p

10 end

Algorithm 5 Reverse Binary Move-to-Front Transform
Using Transition Table

Input : A byte array B
Output: A byte array B

1 T = Transition table of two dimensional array format (2
x 256)

2p<«0

3 for i < 0 to B.length do
4 | Blil,p < T(BIil, p)
5 end

FIGURE 14. Images of decompression results (Op, 0,4)-

is 2, so two table-sizes are read. The two read values are
00000011 and <0110, and these are decoded into 16 and
5. The values reduced by 1 to these are the size of the chain
code tables. As a result, the size of the first chain code table
is 15, and the size of the second chain code table is 4.

2) DECODING TRANSFORMED CHAIN CODE TABLES

At this stage, the transformed chain code tables are decoded.
To get a transformed chain code table, read the transformed
chain code table item repeatedly as its table size in the header.
For example, since we knew the size of the first and second
tables in the previous stage, parse items as much as the table
size from the remaining data Ryg., as shown below.

Rytage; = 0010101011110100111001010110111000010010
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FIGURE 15. The ESL images for the performance evaluation.

100101011010000001100110101110000101110
001110000001110001100001100011000001000
10010101111101000010101000110001010110
1110010000011100000000100011101001110001
01001010110001010111000111110010001110
100010111011110010001101111111101011000
01111101000100110011000111001110100011
1111000100110

The first item of the first transformed chain code table is
decoded as follows. (1) The bit part of Type is “0”. So the
most frequent type is C. (2) Parse the Ai encoded as Varlnt.
Itis 0101010111, Therefore, the Aiis 62. (3) Because the
type of this item is C, Length should also be parsed. The bit
part of Length is ““10”, so the Length is 1. The decoding of
the first item is complete. After parsing all the items in the
same way, Table 7 is created and the remaining data Ryge, 1S
as follows.

Rstage, = 110010001110100010111011110010001101111
11110101100001111101000100110011000
1110011101000111111000100110

3) DECODING CONCATENATED CHAIN CODES

After the previous stage, the remaining encoded parts are
the concatenated chain codes. In the decoding process of the
encoded parts, we first create a bitstream that is the same
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size as the image, initialized to zero, and analyze the items
in the transformed chain code table one by one to change part
of the bitstream to one. Depending on the decoded item’s
type, the concatenated chain codes are also decoded using
Table 8. A pseudo algorithm of the decoding process is shown
in algorithm 3. For example, the Ai of the first item in TTpy is
62, so Bpi[61] is set to 1. Since the type of this item is C and
Length is 1, one code is decoded from Ryge, using Table 8.
And the result is 1, so Bp;[87] is set to 1. As a result of this
stage, By and B, are obtained as shown in Section IV-B1.

4) REVERSE BINARY MTFT

This stage is the final of the decompression process. Reverse
Binary MTFT is performed on the bitstream generated from
the previous stage. A pseudo algorithm of the transform
process is shown in algorithm 4. It could be improved to work
faster like algorithm 5, which uses more memory. Bpr and
B4 are converted to Opr and O,y in this stage as shown in
Figure 13.

These represent images, as shown in Figure 14. These
bitstreams may be passed on to the e-paper module and used
but may require additional conversion processes. This process
depends on the manufacturer of the module and is not covered
in this paper.

V. PERFORMANCE EVALUATION

In this section, we evaluated the performance of the pro-
posed algorithm with six well-known compression algo-
rithms, such as PackBits, LZW, Deflate, G3, G4, and JBIG2.
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TABLE 9. The size and color composition information of the images.

ID Format File Size Width Height Black Red Pix-  Blue Pix-  Orange Magenta Green Yellow White

Pixels els els Pixels Pixels Pixels Pixels Pixels
LabelO1 PBM 23115 152 152 5531 - - - - - - 17573
Label02 PBM 23115 152 152 8073 - - - - - - 15031
Label03 PBM 23115 152 152 12494 - - - - - - 10610
Label04 PBM 23115 152 152 14674 - - - - - - 8430
Label05 PBM 32779 250 128 6533 - - - - - - 25467
Label06 PBM 32779 250 128 13152 - - - - - - 18848
Label07 PBM 32779 250 128 19242 - - - - - - 12758
Label08 PBM 32779 250 128 23649 - - - - - - 8351
Label09 PBM 120011 400 300 24454 - - - - - - 95546
Label10 PBM 120011 400 300 58921 - - - - - - 61079
Labell 1 PBM 120011 400 300 74136 - - - - - - 45864
Label12 PBM 120011 400 300 87614 - - - - - - 32386
Labell3 PPM 69327 152 152 3985 1546 - - - - - 17573
Label14 PPM 69327 152 152 3623 4449 - - - - - 15032
Labell5 PPM 69327 152 152 2112 10382 - - - - - 10610
Labell6 PPM 69327 152 152 1865 12809 - - - - - 8430
Labell7 PPM 96015 250 128 4164 2369 - - - - - 25467
Labell8 PPM 96015 250 128 4201 8951 - - - - - 18848
Labell9 PPM 96015 250 128 2383 16859 - - - - - 12758
Label20 PPM 96015 250 128 1149 22500 - - - - - 8351
Label21 PPM 360015 400 300 11830 12624 - - - - - 95546
Label22 PPM 360015 400 300 16277 42644 - - - - - 61079
Label23 PPM 360015 400 300 6579 67557 - - - - - 45864
Label24 PPM 360015 400 300 5525 82089 - - - - - 32386
Label25 PPM 69327 152 152 1632 1546 1226 4398 520 607 6510 6665
Label26 PPM 69327 152 152 2325 2477 2843 258 169 5275 4753 5004
Label27 PPM 69327 152 152 963 9488 4323 1730 313 1580 1512 3195
Label28 PPM 69327 152 152 1865 4114 5419 544 282 1750 2994 6136
Label29 PPM 96015 250 128 2285 4871 2349 12631 520 1379 5048 2917
Label30 PPM 96015 250 128 3073 3582 1128 5249 3207 2162 7773 5826
Label31 PPM 96015 250 128 1234 1462 13865 1885 2681 1542 5101 4230
Label32 PPM 96015 250 128 850 10100 7740 4660 299 780 1946 5625
Label33 PPM 360015 400 300 10236 1842 12981 47724 18518 8558 10782 9359
Label34 PPM 360015 400 300 16277 18401 19401 2564 4842 18190 27386 12939
Label35 PPM 360015 400 300 6579 30611 10545 13382 7391 16173 15957 19362
Label36 PPM 360015 400 300 4878 1702 4717 32158 12361 14832 21683 27669

Three performance items were measured: compressed file
size, compression time, and decompression time.

Figure 15 shows thirty-six images used for the evaluation.
The images are classified into three categories by the number
of colors: monochrome, 3-colors, and 8-colors. Note that
due to ESL tags’ limited resource constraints, only limited
colored tags have been deployed in the markets. The size
and color composition information of the images is shown
in Table 9.

In the performance evaluation, we converted multi-colored
images into multiple monochrome images because G3, G4,
and JBIG2 can compress only monochrome images. For
PackBits, LZW, and Deflate, we compared two different
versions of images: one multi-colored image (A) and multi-
ple converted monochrome images (B). For instance, Pack-
Bits (A) refers to the performance result for the original
multi-colored image, while PackBits (B) refers to the result
for the converted monochrome images.

For the evaluation, we used the source codes of all the
compression algorithms except ECO from JBIG2 [27], [28]
and LibTiff [29]. The performance of all algorithms was
measured in the same environment.! All measurements were

'Hardware: Intel(R) Core(TM) i7-5650U CPU @ 2.20GHz; 2 Cores,

4 logical Processors; 8 GB RAM Software: Xcode version 11.2.1, macOS
10.15 (Catalina)
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repeated 1000 times, and the average value was used for the
comparison.

Table 10 shows the comparison of compressed image sizes
with each algorithm. For the monochrome images, ECO
and JBIG2 showed the lowest BPP (bits-per-pixel), indicat-
ing the highest compression ratio. However, for the 3-color
and 8-color images, ECO showed the highest compression
ratio. It can be seen that the larger the color palette’s size,
the better the ECO’s compression efficiency than the other
algorithms.

Table 11 shows the comparison of the compression time
for each algorithm. Figure 17 shows the average compression
time for each group of the images. For the monochrome
images, ECO and JBIG2 showed longer compression time
than the other algorithms. However, for the 3-color and
8-color images, ECO showed shorter compression time than
JBIG2.

Table 12 shows the comparison of the decompression time
for each algorithm. Figure 18 shows the average decompres-
sion time for each group of the images. For the monochrome
and 3-color images, ECO showed the shortest decompression
time. For the 8-color images, PackBits(A), LZW(A), and
Deflate(A) showed shorter decompression times than ECO;
Note that they showed relatively lower compression ratio than
ECO as shown in Table 10.
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TABLE 10. Compressed size of the images (in bytes).

D Uncompressed PackBits(A) PackBits(B) LZW(A) LZW(B) Deflate(A) Deflate(B) G3 G4 JBIG2 ECO
LabelO1 23115 2092 - 1390 - 1064 - 2094 1092 700 784
Label02 23115 2320 - 1464 - 1110 - 2226 1070 812 806
Label03 23115 1992 - 1330 - 972 - 2020 944 742 711
Label04 23115 2336 - 1506 - 1058 - 2404 1126 876 791
Label05 32779 2342 - 1506 - 1108 - 2344 1174 718 806
Label06 32779 3104 - 1776 - 1270 - 2682 1194 907 857
Label07 32779 2508 - 1512 - 1012 - 2248 970 726 688
Label08 32779 2810 - 1688 - 1138 - 2420 1112 910 830
Label09 120011 7336 - 3960 - 2552 - 5494 2116 1317 1588
Label10 120011 8428 - 4316 - 2920 - 6148 2194 1604 1692
Labelll 120011 7384 - 4010 - 2510 - 5882 2108 1540 1583
Label12 120011 7966 - 4286 - 2668 - 6494 2328 1692 1688
Labell3 69327 11446 4172 2154 2542 1608 1258 2710 1260 831 787
Label14 69327 19760 4592 2328 2840 1724 1312 2866 1242 940 820
Labell5 69327 36154 4486 2094 2494 1582 1186 2650 1114 879 717
Label16 69327 43910 5238 2246 2904 1768 1268 3046 1296 998 812
Labell7 96015 14876 5244 2600 2744 1740 1320 2920 1338 868 815
Label18 96015 34484 6336 3128 3584 2062 1488 3276 1360 1039 876
Labell19 96015 56388 5812 2460 2964 1764 1230 2840 1136 858 694
Label20 96015 72240 6232 2784 3282 1954 1334 3016 1280 1041 839
Label21 360015 55288 16208 7822 8182 4274 2776 6748 2306 1486 1593
Label22 360015 143550 17882 8642 9456 4816 3194 7424 2396 1769 1707
Label23 360015 217038 18700 8208 8382 4462 2746 7094 2300 1729 1603
Label24 360015 260840 20368 9032 8996 4684 2916 7748 2522 1841 1671
Label25 69327 49204 4940 2136 5690 3360 2616 6460 2430 1851 1124
Label26 69327 51902 5076 2216 6050 3510 2676 6606 2412 1961 1167
Label27 69327 60176 5082 2078 6098 3682 2792 6608 2490 2117 1290
Label28 69327 50204 5488 2320 5800 3324 2516 6440 2332 1914 1039
Label29 96015 85328 6668 2756 6510 4186 3102 7072 2878 2252 1511
Label30 96015 75576 7208 3070 7208 4234 3058 7038 2558 2115 1285
Label31 96015 83796 6636 2412 6532 3922 2794 6536 2420 2042 1187
Label32 96015 80458 6710 2764 5936 3682 2642 6294 2386 1951 1129
Label33 360015 313382 20954 7718 17126 8872 5686 15740 4388 3441 2659
Label34 360015 284428 20782 8666 18104 9114 5622 15314 4044 3211 2445
Label35 360015 294152 20976 8880 15134 7914 4582 14228 3756 3117 2087
Label36 360015 275372 21070 9084 14178 7368 4558 14300 3842 2942 2024
(A) Monochrome
0.8 0.76 067 0.76 = Group1
I 0.61
0.6 0.52 0.49 | Group2
041 0.36 | 0.40 0.37 = Group3
0.4 0.28 —0.28 | — 028
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0.2 i | : 0.10 | 0.1
b Al . = I
PackBits LZW Deflate G3 G4 JBIG2 ECO
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= 160 1.48
i L2 076000 0% 098 .
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FIGURE 16. Average bits-per-pixel comparison for each group.
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TABLE 11. Compression time comparison (in milli-seconds).

D PackBits(A)  PackBits(B) ~ LZW(A) LZW(B) Deflate(A)  Deflate()  G3 G4 JBIG2 ECO
Label01 0.2845 > 0.4038 = 0.5893 5 0.3694 0.4466 1.4975 1.1274
Label02 0.2860 - 0.4048 - 0.5860 - 0.3718 0.4506 1.5238 1.1355
Label03 0.2824 = 0.4004 = 0.5847 5 0.3658 0.4372 1.5306 1.0972
Label04 0.2855 - 0.4064 - 0.5625 - 0.3762 0.4562 1.5255 1.1704
Label05 0.2871 = 0.4071 = 0.5915 5 0.3816 0.4720 1.5991 1.3138
Label06 0.2915 - 0.4159 - 0.6165 - 0.3887 0.4868 1.7176 1.3681
Label07 0.2859 = 0.4107 = 0.5747 5 0.3751 0.4503 1.5835 1.2667
Label08 0.2899 - 0.4146 - 0.5843 - 0.3808 0.4679 1.5758 1.3482
Label09 0.3363 > 0.5491 = 0.8627 5 0.4922 0.6642 3.5688 3.4804
Label10 0.3452 - 0.5458 - 1.0323 - 0.4995 0.6783 3.2219 3.6091
Label11 0.3365 - 0.5253 - 0.7949 2 0.4917 0.6656 3.5396 3.6276
Label12 0.3386 - 0.5393 - 0.8175 - 0.5071 0.6931 3.3415 3.6991
Labell3 04123 0.7644 13957 1.3560 1.5740 1.8704 1.4816 15558 2.8553 1.2602
Label 14 0.4547 0.7688 1.5375 1.3612 1.5776 1.8828 1.4891 1.5652 2.8829 1.2495
Labell5 0.5195 0.7681 1.4388 1.3737 1.5913 1.8929 1.5017 1.5690 2.8779 1.2064
Label16 0.5496 0.7798 1.5375 1.3890 1.6070 1.8876 1.5235 1.6068 2.9079 1.2971
Labell7 0.4536 0.9037 1.6031 1.4854 1.7107 2.0024 1.6223 1.7164 3.1334 1.4859
Labell8 0.5431 0.9274 2.0032 1.5085 1.7361 2.0553 1.6495 1.7427 32351 1.5309
Label19 0.6303 0.9205 1.6310 1.5214 1.7458 2.0212 1.6444 17253 3.1773 1.4314
Label20 0.6963 0.9220 1.7931 1.5413 1.7646 2.0417 1.6716 1.7654 3.1992 1.5264
Label21 0.9255 23132 4.1030 27744 3.0943 3.5427 2.9684 3.1498 6.9584 41102
Label22 1.2731 2.3469 4.8619 2.8883 32121 3.7658 3.0805 3.2706 6.5890 4.2031
Label23 1.5539 2.3627 4.4959 29151 3.2433 3.6381 3.1110 3.2982 7.0799 4.2388
Label24 1.7276 2.3991 4.9748 2.9809 33014 3.7185 3.1895 3.3811 6.9604 43517
Label25 0.5532 0.7710 14592 32107 3.9591 48510 35572 36717 6.6183 2.0544
Label26 0.5617 0.7655 1.5359 3.1359 3.8796 4.7850 3.4806 3.5999 6.5851 2.0645
Label27 0.5920 0.7665 1.3947 3.1812 3.9283 4.8346 3.5324 3.6530 6.7536 2.1061
Label28 0.5600 0.7663 1.5398 3.1286 3.8948 47173 3.4939 3.5944 6.5621 2.0284
Label29 0.7040 0.9196 1.7452 3.3933 41719 5.0867 3.7684 3.9348 7.6741 27520
Label30 0.6935 0.9132 1.9561 3.4094 4.1843 5.0985 37676 3.9163 7.4146 2.6077
Label31 0.7108 0.9051 1.5765 3.4078 4.1881 5.0388 37452 3.8887 7.4021 2.5665
Label32 0.7171 09114 1.7046 3.4369 42215 5.0303 37870 3.9169 7.4040 25338
Label33 1.8541 2.3941 41273 5.3793 6.4213 7.7056 5.8316 6.1441 15.8971 8.2895
Label34 1.8046 2.3767 4.6854 5.3695 6.4238 7.8205 5.8065 6.0718 15.1071 8.1834
Label35 1.8295 2.4042 4.9235 53126 6.3811 7.4063 5.7526 6.0032 15.4273 7.9932
Label36 1.7101 2.4199 4.8496 5.2923 6.3393 7.3886 5.7356 5.9826 14.6490 8.0444
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FIGURE 17. Average compression time comparison for each group (in milli-seconds).
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TABLE 12. Decompression time comparison (in milli-seconds).

D PackBits(A)  PackBits(B) ~ LZW(A) LZW(B) Deflate(A)  Deflate(B)  G3 G4 JBIG2 ECO
Label01 0.5303 - 0.6076 - 0.5774 - 0.6441 0.6444 04514 0.3478
Label02 0.5274 - 0.6118 - 0.5768 - 0.6395 0.6493 0.5020 0.3420
Label03 0.5275 = 0.6117 = 0.5712 5 0.6383 0.6382 0.5204 0.3201
Label04 0.5337 - 0.6102 - 0.5709 - 0.6420 0.6493 0.5288 0.3488
Label05 0.5772 = 0.6576 5 0.6236 5 0.6930 0.6940 0.4932 0.3608
Label06 0.5729 - 0.6537 - 0.6246 - 0.6950 0.6959 0.5958 0.3702
Label07 0.5751 - 0.6509 - 0.6166 - 0.6862 0.6853 0.5752 0.3209
Label08 0.5759 - 0.6649 - 0.6144 - 0.6859 0.6987 0.5969 0.3563
Label09 1.0057 - 1.1298 - 1.0336 - 1.1753 1.2010 1.2684 0.6017
Label10 1.0300 - 1.1227 - 1.0454 - 1.1875 1.1628 1.2063 0.6133
Label11 1.0097 = 1.3228 = 1.0297 5 1.1480 1.1204 1.3407 0.6035
Label 12 0.9788 - 1.0731 - 1.0360 - 1.1622 1.1383 1.2318 0.6297
Label13 0.5815 0.7583 0.6649 1.0607 1.1997 1.1405 12256 12167 0.7289 04523
Label 14 0.5862 0.7566 0.6583 1.0594 1.1981 1.1671 1.2396 1.2254 0.7488 0.4472
Label15 0.5907 0.7565 0.6530 1.0563 1.2023 1.1461 1.2363 1.2140 0.8035 0.4187
Label16 0.6066 0.7626 0.6449 1.0600 1.2003 1.1440 1.2384 1.2252 0.8067 0.4527
Label17 0.6389 0.8606 0.7572 1.1528 1.2874 1.2416 1.3334 1.3034 0.7810 0.4679
Label 18 0.6494 0.8688 0.7434 1.1587 1.2841 1.2365 1.3452 1.3138 0.8144 0.4784
Label19 0.6581 0.8753 0.7354 1.1598 1.2855 1.2308 1.3336 1.2987 0.8575 0.4302
Label20 0.6651 0.8632 0.7216 1.1395 1.2829 1.2326 1.3343 1.2996 0.8789 0.4691
Label21 1.2001 1.8646 1.5809 2.0185 2.1837 2.1602 2.2903 2.1599 1.5885 0.7827
Label22 1.2467 1.8738 1.4933 2.0430 2.1568 2.1669 2.2922 2.1852 1.4244 0.7914
Label23 1.2603 1.9137 1.4661 1.9981 2.1567 2.1247 2.2474 2.1918 1.6614 0.7923
Label24 13051 1.8963 1.4461 2.0368 2.1387 2.1288 2.2591 22472 1.5463 0.8099
Label25 0.5811 0.7617 0.6446 3.6469 41928 3.9802 41616 41362 2.2697 0.9362
Label26 0.5817 0.7628 0.6426 3.6672 4.1544 3.9676 4.1695 41311 2.2808 0.9316
Label27 0.5837 0.7675 0.6450 3.6833 41742 3.9778 4.1493 4.1383 2.3205 0.9593
Label28 0.5918 0.7633 0.6441 3.6676 4.1668 3.9510 4.1629 4.1330 22914 0.9134
Label29 0.6505 0.8670 0.7255 4.0034 4.4856 4.3064 4.4869 4.4608 25018 1.0704
Label30 0.6557 0.8736 0.7191 3.9730 4.5042 4.3069 4.4674 4.4681 24379 0.9962
Label31 0.6500 0.8704 0.7260 3.9079 44981 43140 44772 43952 24163 0.9836
Label32 0.6512 0.8737 0.7201 3.9579 4.4909 43150 44624 43913 24137 0.9680
Label33 1.2416 1.9364 1.4506 6.9010 7.5138 7.2049 7.5947 7.4953 3.9541 1.8057
Label34 1.2699 1.9272 1.4915 6.9437 7.5828 7.2256 7.5421 75124 3.6873 1.7375
Label35 1.2729 1.9471 1.4784 6.9453 75737 7.2674 7.5414 7.4634 3.9580 1.6650
Label36 1.2573 1.9593 1.5004 6.8711 7.4480 7.2567 7.5106 74573 3.1668 1.7002
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FIGURE 18. Average decompression time comparison for each group (in milli-seconds).
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FIGURE 19. Performance results of the algorithms for the images with Label12, 24, and 36.
TABLE 13. Compression ratio comparison of the algorithms.
‘ Values ECO PackBits(A) PackBits(B) LZW(A) LZW(B) Deflate(A) Deflate(B) G3 G4 JBIG2
Monochrome Group 1 CR 29.97 10.63 - 16.29 - 22.04 - 10.62 21.95 29.76
CR/CRgco 1.00 0.35 - 0.54 - 0.74 - 0.35 0.73 0.99
Group 2 CR 41.51 12.32 - 20.33 - 29.15 - 13.58 29.66 40.74
CR/CREgco 1.00 0.30 - 0.49 - 0.70 - 0.33 0.71 0.98
Group 3 CR 73.57 15.48 - 29.01 - 45.23 - 20.06 54.97 78.70
CR/CRgco 1.00 0.21 - 0.39 - 0.61 - 0.27 0.75 1.07
3-Color Group 1 CR 88.68 25.84 3.27 41.59 15.10 55.27 31.48 24.67 56.64 76.38
CR/CRgco 1.00 0.29 0.04 0.47 0.17 0.62 0.36 0.28 0.64 0.86
Group 2 CR 120.05 30.86 3.07 51.33 16.35 71.83 35.29 31.96 7547 101.79
CR/CREco 1.00 0.26 0.03 0.43 0.14 0.60 0.29 0.27 0.63 0.85
Group 3 CR 219.24  41.26 3.01 79.13 19.82 124.24 42.85 49.76 151.41 212.39
CR/CREgco 1.00 0.19 0.01 0.36 0.09 0.57 0.20 0.23 0.69 0.97
8-Color Group 1 CR 60.39 11.74 1.32 20.02 13.49 26.20 31.75 10.62  28.71 35.44
CR/CREgco 1.00 0.19 0.02 0.33 0.22 0.43 0.53 0.18 0.48 0.59
Group 2 CR 76.05 14.74 1.18 24.04 14.12 33.26 35.16 14.29 37.70 46.07
CR/CRgco 1.00 0.19 0.02 0.32 0.19 0.44 0.46 0.19 0.50 0.61
Group 3 CR 158.25 22.52 1.24 43.61 17.19 71.23 42.09 2422 90.16 113.65
CR/CREco 1.00 0.14 0.01 0.28 0.11 0.45 0.27 0.15 0.57 0.72

In Figure 19, we compared the algorithms on the images
with the same contents but different color-palettes. For
instance, Label12, Label24, and Label36 have the same char-
acteristics, such as size, structure, and contents, but different
colors. Overall, as the number of colors increases, all of
the algorithms showed the lower compression ratio and took
more time in compression and decompression. Notice that

8510

ECO showed relatively lower performance variations for the
color-palette change.

Table 13 shows the comparison of the compression ratio
CR of each algorithm which is defined by Equation 5. It also
shows CR/CREco, a relative compression ratio to ECO. For
instance, if it is greater than 1, it indicates that the algorithm
generates smaller compressed image than ECO. Notice that
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the relative compression ratios are less than 1 in most cases

in Table 13.
uncompressed size

R = 5)

compressed size

VI. CONCLUSION

An Electronic shelf labels (ESL) system is becoming an
attractive alternative for managing up-to-date price tag infor-
mation because of the dynamic-price-updating and cus-
tomer’s product-evaluation-display features. A common ESL
system configuration in a retail store includes thousands of
battery-powered ESL tags that are mostly connected wire-
lessly in a dense indoor environment. Raising the success
ratio of wireless communication is essential for the system’s
viability due to its limited battery life. In this paper, we pre-
sented ECO, a new chain coding based image compression
algorithm suitable for the ESL system. We evaluated the per-
formance of ECO against six other well-known algorithms.
ECO showed the best results in the compression ratio and the
decompression time in most cases. Achieving high compres-
sion ratio and short decompression time together is one of the
most important factors for prolonging the battery lifetime of
ESL tags.
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