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ABSTRACT Aiming at utilizing artificial neural networks to enhance intelligent filtering for interfered
wireless communication signal in harsh environments, a new method named convolutional neural filtering
is designed and presented in this paper. This method is based on model-driven deep learning princeple,
by analyzing the theoretical connection between the filter model and the convolutional neural layer,
it attempts to use one-dimensional convolution kernels to learn a matched or bandpass filter. Moreover,
the model introduces a kernel-wise attention mechanism between different convolution kernels to selectively
emphasize informative filters. The results show that in terms of interference and noise suppression for
received wireless signal, the filtering method has highlighted dynamic adaptability to variation of signals
and interference, and it also reveals that the performance is affected by the initialization parameters and the
number of convolution kernels. Based on this method an embeddable filtering unit fully based on neural
network is provided, which can be easily integrated into a deep learning network targeting such as wireless
signal detection and recognition applications, avoiding complex preprocessing for end-to-end wireless signal
learning.

INDEX TERMS Linear filter, convolution neural network, neural filtering, model-driven deep learning.

I. INTRODUCTION
For communications in harsh environments, an intelli-
gent physical (PHY) layer is fundamental and inevitable
to achieving the envisioned communication requirements.
Machine learning at PHY layer holds the potential to per-
form intelligent signal processing that can offer significant
performance enhancements over traditional approaches [1].
Basically, these approaches can be classified into two generic
groups: data-driven [2] and model-driven [3]. Among these
approaches, many of them are designed by taking radio
signals as the input of deep learning network, such as chan-
nel decoding, channel estimation and modulation classifi-
cation [2], [3]. However, due to the dynamics of wireless
transmission channels, there are random and burst variations
between training samples and test data. These factors may
be caused by interference generated by channel dynamics,
thermal noise fluctuations, adjacent band interference, etc,

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

which have seriously affected the generalization ability of the
deep learning network under actual channel conditions, and
even caused a sharp decline in performance.

To cope with the degraded generalization ability of deep
learning under actual wireless transmission conditions, con-
ventional solutions are to preprocess sampled signal, such as
channel equalization and interference suppression by through
adaptive filtering methods. However, the idea of filtering
preprocessing has disadvantages in two aspects. First of all,
these preprocessing before deep learning models are often
complicated and rely on manual labor, making it impossible
to support time-critical applications, and also destroying the
global optimization characteristics of end-to-end learning.
Secondly, to reduce the distribution difference between train-
ing samples and real samples, designing of filter in the above
preprocessing requires a priori or feedback of certain channel
influencing factors, otherwise the performance of the deep
learning model cannot be guaranteed.

Therefore, the challenge is that, can we resort to the ability
of deep learning to learn by itself an adaptive filtering method
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from the radio signals? The learned filter also is expected to
automatically track the target signal and improve the signal to
interference noise ratio, in other words, we expect that the raw
signal is fed into a neural layer to extract the band of interest
without preprocessing.

The idea of ‘‘neural filtering’’ is most likely the solution
which presented as early as the 1990s [4], [5], while it has
been recently applied and verified in deep learning applica-
tions outside of communication signals [6]–[8]. The work
of this paper will continue this way of neural filtering, but
put our focus on exploring the connection between com-
munication signal filtering and convolutional neural layer.
Our purpose is to establish a neural filtering unit through
model-driven way, which is adaptive to carrier frequency and
amplitude of signal, even to interference change.

First, in order to verify whether the convolutional layer
can independently learn a filter that eliminates out-of-band
interference, we construct an end-to-end learning network,
which is composed by a convolutional layer, a fully connected
layer and an activation function. The result is exactly the
same as we expected, and an effective band filter is obtained.
Second, in order to further optimize the effectiveness of the
filter in the convolutional layer, we introduced an attention
mechanism on the convolution kernels based on its contri-
bution to the filtering performance, and finally proposed a
convolutional neural filtering unit that combines the chan-
nel attention mechanism. We also proved that the unit has
excellent adaptability to changes in the signal-to-noise ratio,
interference frequency, and channel bandwidth (at least not
lower than the traditional filter method). It is worth noting
that what we propose is not a dedicated deep learning appli-
cation network, but a neural processing unit that completes
the adaptive filtering function. This unit can be arbitrarily
embedded in the end-to-end wireless communication deep
learning network, to improve the generalization ability of
deep learning in communication applications under actual
wireless propagation conditions.

II. RELATED WORKS
Generally, there are two routes of machine learning
approaches at PHY layer: data-driven and model-driven
approaches. As a representative of full data-driven approach,
end-to-end learning communications [2] has recently
received widespread attention, because it gets rid of the
process of hand-crafted and explicit feature selection. Com-
pared with the traditional method based on feature engi-
neering, it has achieved performance great improvement.
Besides, model-driven deep learning on physical layer com-
munications design have emerged in recent years [9], [10],
in which the network is constructed based on known physical
mechanisms and domain knowledge for achieving intelligent
communications. The model-driven deep learning are proved
requiring less training data and training time because of not
heavily depending on the huge volume of labeled data.

Neural filtering was proposed to use a fully connected
layer of neural network to approximate IIR/FIR filters with a

nonlinear method [4], [5]. In [11], The author uses variable
time delay neural network to demodulate pulse amplitude
modulation(PAM) signal, and proved be able to learn feature
detection equivalent to a matched filter or equalizing filter,
depending on the modulation pulse shape. Different from
the neural structures used in these works, herein we want to
discover the capability of conventional neural layer other than
feed-forward neural network.

Moreover, as a popular structure of artificial neural net-
works, the convolutional neural layer is naturally consistent
with the filter in signal processing in terms of mathemati-
cal model representation. This has led to some research in
deep learning applications outside of communication sig-
nals, such as audio or electroencephalo-graph(EEG) signals,
to learn filtering for signal enhancement. In [12], where the
raw EEG signal is fed into a convolutional layer to extract
the band of interest without preprocessing, followed by a
feedforward convolutional neural network(CNN) model or
recurrent neural network(RNN) model for epileptic spike and
non-spike classification. Bell et al. [13] train a convolutional
neural network directly on raw acoustic-phonetic continu-
ous speech corpus waveforms, and show that the network
tends to learn matching filters when trained to do phone
classification. In [14], the 2-D spectro-temporal modulation
filters learned from the convolutional variational autoen-
coder(CVAE) model in an unsupervised fashion are used to
process the speech spectrogram for deriving robust spectro-
gram representations.

The above research results confirm the feasibility of the
convolutional neural network structure in signal equalization.
In the following work, we will innovatively use the linear
modeling theoretical model to supervise our utilization of
the convolutional neural layer on a different target, that is,
the communication signal, to realize the process of intelligent
filtering.

III. FROM LINEAR FILTERING TO CONVOLUTIONAL
NEURAL LAYER
Convolutional neural network is a multi-layer perceptron
specially designed for recognizing two-dimensional shapes.
This network structure is highly invariant to translation,
scaling, tilt, or other forms of deformation, but it is also
suitable for speech and text recognition applications. Some
well-known improved CNN models were proposed. In the
convolutional neural network, the convolutional layer is the
core unit. Assuming that the input layer is the (l-1)th layer,
its input characteristics are X (l−1) ∈ Rm×m,the corresponding
convolution kernelK (l) ∈ Rn×n, the output of the convolution
layer Z (l) ∈ R(m−n+1)×(m−n+1), and each output plus a bias
unit B(l−1) ∈ R1×n, then the mathematical process completed
by the convolution layer can be expressed as:

z(l)u,v =
∑n

i=1

∑n

j=1
x(l−1)
i+u,j+vk

(l)
i,j + b

(l) (1)

When the input is a one-dimensional sequence in the
time domain, such as in end-to-end learning of speech or
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communication signals, the mathematical expression of the
convolutional neural layer is:

z(l)u =
∑n

i=1
x(l−1)
i+u k(l)

i + b
(l) (2)

where the weights k(l)
i specify the convolution filter. It can be

seen that when the bias is removed, the process of the convo-
lutional neural layer in the above-mentioned one-dimensional
input case is a form of finite convolution sum. If the weight of
the convolution kernel is set as the filter time-domain impulse
response, the coefficient is equivalent to the bandpass filter of
length N .

If the coefficient of the convolutional neural layer is X ,
it happens to form a matched filtering process:

z(l)u =
∑n

i=1
x(l−1)
i+u x(l−1)

i (3)

From theoretical point of view, each kernel of the convolu-
tional neural layer may learn to become a bandpass filter or a
matched filter. In addition, the weight parameters in the con-
volutional neural layer are obtained through training, which is
based on the backward propagation(BP) algorithm, the key is
to solve the loss function minimization problem to perform
parameter estimation and update the weight according to
the obtained gradient. This is completely consistent with the
idea of obtaining filter weighting coefficients by minimizing
the average error method in the least mean square(LMS) or
normalized LMS adaptive filter. The possible difference is
that when the error is propagated by BP, the error that the
convolutional neural layer may get is the result of nonlinear
processing, such as the error output of the pooling layer or
Rectified Linear Units(ReLU).

Therefore, it is theoretically feasible to use convolutional
neural layers to learn adaptive filters. In addition, since the
convolutional neural layer in general deep learning generally
has multiple convolution kernels, training is equivalent to
obtaining multiple filters which have different filtering char-
acteristics. In some research on speech processing, it is also
confirmed that different convolution kernels are equivalent to
learning a filter bank of bandpass filter. This also reminds
us that the diverse filter can be optimized for specific task.
For example, it can improve the adaptive ability to noise and
interference changes.

IV. LEARNING FILTERING WITH SINGLE
CONVOLUTIONAL LAYER
In order to verify that the convolutional layer of the neural
network can also learn an adaptive filter with noise reduction
and interference cancelation, we built a simple convolutional
neural network around the convolutional layer(Fig.1). This
is a simple signal detection application in cognitive radio.
By inputting labeled noise only and noisy binary phase shift
keying(BPSK) signals, we expect the model can correctly
judge whether the sample contain the signal of interest. Com-
pared with the traditional CNN network, we did not use a
pooling layer (because we did not use too many kernels), only

FIGURE 1. Learning filter through a simple convolutional neural network
with single convolutional.

with a convolutional layer, activation function, and softmax
layer.

Specifically, convolutional layer consists of several filters
whose parameters are optimized by the back-propagation
algorithm. The output of each filter is passed through a ReLU
unit, which is used as activation function. Softmax layer acts
as a classifier in the whole network. A cross entropy is used
as a loss function to measure the difference between the two
signal types, and then adjust the parameters during training
to reduce this difference.

When training the network to achieve convergence and the
detection accuracy reaches more than 95%, we analyze the
current convolutional layer with updated parameters. In order
to analyze whether we learned a needed filter from the data,
we performed FFT transformation on each convolution kernel
to observe the frequency domain characters of the filter.
At the same time, for observing the effect of convolution
filtering, we directly take out the output of the convolution
layer, and analyze it separately from its constellation diagram
in time domain.

First of all, we considered an extreme configuration case:
the convolutional layer has only one kernel, which is dif-
ferent from the usual CNN applications. Either in image or
natural language processing, multiple kennels are often used
to extract multiple channels feature. However, here we want
to explore if we want to learn a unique feature of matched
filter. The result proves that under the constraint of such loss
function, the frequency domain characteristics learned by the
only convolution kernel (as shown in the Fig. 2), its passband
and stopband characteristics are consistent with the features
of model-based matched filter we designed exactly for this
signal of interest.

We compare the constellation diagrams of BPSK sig-
nal(as shown in the Fig. 3) after convolution filtering at
−8dB signal to noise ratio(SNR), and it can be clearly seen
that the aggregation of the constellation diagrams has been
greatly improved after filtering, this result is verymeaningful.
Although we only design the loss function with signal detec-
tion as the application goal, the convolution filter learned
by training not only obtains spectral domain features that
support signal detection, but also the phase and amplitude
characteristics are also retained and even improved, and it is
expected to support afterward signal processing.

Based on the above results, we expand the convolu-
tion kernel to multiple, expecting to explore the filter
characteristics learned by different convolution kernels under
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FIGURE 2. Frequency domain characteristics of Chebyshev bandpass
filter(left) and Learned filter(right).

FIGURE 3. Constellation diagrams of BPSK signal, before(left) and
after(right) convolutional neural filtering.

FIGURE 4. Frequency domain characteristics of 4 learned convolution
kernels.

this condition. As shown in Fig.4, we obtain the frequency
domain characteristics of the convolutional layer under the
scenario where other parameters are unchanged and only
increased to 4 convolution kernels. It can be seen that the
first and third convolution kernels learn the frequency domain
filtering and denoising characteristics of the signal of interest
well, but the second and fourth learn some other characteris-
tics that we cannot explain. The results of these four sets of
convolution kernels are passed to the next layer of network
indiscriminately, but it is obvious that the contributions of
these four sets of learning results to the final filter denoising
goal are various. This reminds us that if the learning of the
neural network is not guided, the computing resources are not
effectively used, and it is hoped that the resource consumption
of the performance improvement brought by multiple convo-
lution kernels will be wasted. Therefore, in the next section,
we will try to add the attention mechanism on the convolution

FIGURE 5. Convolutional Neural Filtering with Channel Attention.

kernels to help us selectively emphasize informative filters
and suppress less useful ones.

V. CONVOLUTIONAL NEURAL FILTER ENHANCED BY
ATTENTION MECHANISM
There are many types of attention mechanism under the
deep learning framework. For example, Inception Archi-
tectures [12] which improve accuracy through embedding
multi-scale processes, and attention mechanism of spa-
tial dependence [13]. But here, we need the convolution
kernel-wise or channel-wise attention, so we chose squeeze-
and-excitation block(abbreviated SEnet) [14] to explicitly
model interdependencies between channels to recalibrate fil-
ter responses. Based on multiple convolution kernels and
convolution kernels, we construct the learning filer unit based
on convolutional neural layer with SEnet as the Fig.5:

In the above model, the processing process of the con-
volutional layer with multiple kernels can be expressed as
follows. Let V = [v1, v2, · · · , vC ] denote the learned group
of filter kernels, where vi refers to the parameters of the i-th
filter. The outputs of convolution layer can be expressed as
U = [u1,u2, · · · ,uC ], where

ui = vi ∗ X =
∑P

s=1
vsi × x

s (4)

Here i = 1, 2, · · ·C and (∗) and (×) denote convolution
and product operator, P is the number of kernel parameters,
vi= [v1i , v

2
i , · · · , v

P
i ] and X = [x1, x2, · · · , xP]. vsi is the s-th

coefficient of one-dimensional kernel vi which acts on the
corresponding channel of X.

To obtain the global information of each filter, we perform
a squeeze operation on the output of each filter above to
obtain a filter descriptor. The squeeze operation has uses
global average pooling in the original research. However
max-pooling is used in this article, which is expected approx-
imate to the abstraction of the impulse response of the signal
filter. A statistic z is output by shrinking U, the i-th element
of z is achieved by:

zi = Fsq (ui) = max(ui) (5)

To apply the above aggregated information for adaptive recal-
ibration, we also use simple gating mechanism with a sig-
moird activation on z.Finally, use the generated scalar to
rescaling the filter output:

x̃i = ui · zi (6)
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FIGURE 6. Frequency domain characteristics of 4 learned convolution
kernels and their scalar value.

Were X̃ = [x̃1, x̃2, · · · , x̃C ], which is channel-wise multipli-
cation between scalar and feature map.

When training the above-mentioned convolution filter unit
with the attention mechanism, in the same way we added
two fully connected layers after the entire unit. The goal
of network training is to distinguish pure noise from noisiy
signal. The signal is a BPSK signal with a carrier fre-
quency of 100Khz. For analyzing what the convolutional
layer and attention mechanism have learned, we extracted
the convolution kernel coefficients and its scalar generated
by the attention mechanism from the trained model, and
combined the scalar and the frequency characteristic of the
corresponding convolution kernel are put together. Fig.6 and
Fig.7 show the results when the number of convolution ker-
nels is 4 and 16 respectively. It can be seen that in both
cases, the amplitude-frequency characteristics of the convo-
lution kernel with the maximum scalar value are closest to
the signal of interest. We infer that the convolutional layer
based on the attention mechanism has learned a matched
filter of the signal in the signal detection scenario. In the
following experiments in section VI, when the training sam-
ple includes out-of-band interference, the learned filter tends
to be a bandpass filter. In addition, it is obvious that when
the convolution kernel is 16 than the convolution kernel is 4,
the learned convolution filter has significantly better suppres-
sion of noise. However, does the more convolution kernels
bring better performance? We will analyze this issue in next
section.

In addition to analyzing the amplitude-frequency charac-
teristics of the convolution kernel coefficients, we compared
the constellation diagrams of the signals before and after
filtering (take the received BPSK signal at SNR 0dB as an
example) to explore whether the filtered signal retains the
modulation symbol information to the best extent. From the
constellation diagram shown in Fig.8, it can be seen that the
noise impact after filtering is significantly reduced, which is
greatly improved compared to the effect of only using the
convolution unit in the previous section. In addition, we com-
pared the time-domain waveforms of the same signal segment
before and after filtering.

FIGURE 7. Frequency domain characteristics of 16 learned convolution
kernels and their scalar value.

FIGURE 8. Constellation diagrams of BPSK signal(SNR=0dB), before(a)
and after(b) convolutional neural filtering.

VI. PERFORMANCE ANALYSIS, OPTIMIZATION AND
APPLICATION
A. ADAPTIVITY TO SIGNAL VARIATION
Firstly, considering that in practical applications, the band-
width, frequency offset and other parameters of the signal
of interest may change. We hope that the above learning
model has sufficient adaptability to these changes, that is,
the convolutional neural filter can still learn from the data the
corresponding filter without relying on a priori for parameter
adjustment. Such performance is very useful for spectrum
sensing applications, which has sufficient adaptive and iden-
tification capabilities for specific signals.

We first consider the scenario where the effective band-
width of the signal changes. We still use signal detection
as the learning task. We use two types of training sets.
In both data sets, the signals to be identified are BPSK
signals with a carrier frequency of 100Khz. However the
bandwidth of the former type of BPSK signal is 80Hz,
the latter type of signal bandwidth is 20Hz. Fig.8 shows
the frequency domain characteristics of the convolution fil-
ter obtained through the same network and training condi-
tions. By measuring its 3dB bandwidth, we can find that the
learned filter is well matched to the bandwidth change of the
signal.

8216 VOLUME 9, 2021



Z. Sun et al.: Convolutional Neural Filtering for Intelligent Communications Signal Processing in Harsh Environments

FIGURE 9. Frequency domain characteristics of learned filter for signal
with different bandwith.

Second, we considered the scenario when the carrier fre-
quency of the signal of interest changes. Similarly, using
signal detection as the learning task. The only difference
between the two types of signals is that the carrier frequencies
are 100Khz and 200Khz respectively. It shows the frequency
domain characteristics of the convolution filter learned under
the unchanged condition of network and training. It can be
clearly seen that the filter has accurately track signal carrier
frequency.

It can be seen from the above results that the convolutional
neural filter with attention mechanism has good learning
and adaptability for target signals with different parameters.
Compared with traditional adaptive filter signal processing,
the advantage of our proposed convolutional neural filter is
that when the filtered target signal has bandwidth and carrier
frequence variation, it does not need to be manually updated
prior to the signal change.

B. ROBUSTNESS TO DYNAMIC INTERFERENCES
In complex spectrum sensing scenarios, there are often
unknown and variable interferences in the monitoring band-
width where the target signal is located, such as unlicensed
signals, single-frequency interference, etc. These interfer-
ences often need to be suppressed by effective bandpass
filters. In order to verify the robustness of our proposed
convolutional neural filter for out-of-band dynamic interfer-
ence suppression, we conducted corresponding experimental
verification.

It is worth noting that in order to explore the robust-
ness of the convolutional neural filter, especially to changes
in the signal-to-noise ratio and interference, we only input
signals under the influence of Gaussian white noise during
training, while the test signals are subject to interference of
out-of-band signals and single-frequency signals of different
carrier frequencies. At the same time, we also set the signal-
to-noise ratio of the test signal to be different from that
during training. Specifically, in the learning task of signal
detection, the training signal is a BPSK signal, with carrier
frequency of 100Khz and signal-to-noise ratio of -2dB, and
noise with the same power spectral density. During the test,
we respectively showed the frequency domain characteristics
of the filter learned under the conditions of three different
interference scenarios.

The spectral characteristics of the filtered signal, as shown
in Fig.10. In the first test scenario, we first keep the signal-
to-noise ratio between the test signal and the training signal

FIGURE 10. Three test scenarios from top to down, signal before (left)
and after filtering(right).

unchanged, and only add an out-of-band BPSK interference
signal to the test signal with a carrier frequency interval
of 200Khz. Obviously, it can be seen from the filtered sig-
nal and the learned filter amplitude-frequency characteristics
that it is ideal for suppression of interference BPSK signal
and noise. In the second scenario, we increased the signal-
to-noise ratio of the test signal to 6dB, but in addition to
the out-of-band BPSK interference signal, we also added
a strong single-frequency interference whose instantaneous
amplitude was even greater than target signal. Even in this
complex interference situation, the whole sidelobe decay is
very ideal, except that the suppression of single-frequency
interference is worse than the BPSK signal that is farther from
the carrier frequency. The third scenario is more challenging.
In addition to the signal-to-noise ratio will be −6dB, two
BPSK signals are placed outside the test signal band. The
carrier frequency of the interference BPSK signal is only
100Khz from the target signal, and the average amplitude
is higher than the target signal. It can be seen that although
compared with the previous two scenarios, mainlobe power
are somewhat leaky, the overall interference and noise are still
much reduced compared to before filtering. We also show the
frequency domain characteristics of the filter learned under
this condition, and obviously the bandpass characteristics are
still ideal.

C. OPTIMIZATION OF PARAMETERS
1) FILTER QUANTITY
In the convolution filter layer composed of multiple con-
volution kernels, in fact, each convolution kernel learns a
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TABLE 1. Average accuracy in different models.

certain characteristic filter. But, is it better to have more
convolution kernels, especially for simple applications like
signal perception? To verify this assumption, we tested the
noise signal from −14dB to 2dB, and compared the 5 cases
of convolution filtering with 1 core, 4 cores, and 16 cores, and
4 cores and 16 cores with attention. It can be seen from the
results in Table 1 that the performance of the model trained
in this application scenario has increased by about 1% from
1 core to 4 cores, but the performance has dropped somewhat
from 4 cores to 16 cores. This is an interesting result, which
shows that in the use of deep learning for filter learning, due
to the diverse nature of neural network learning, it is not
that the more convolution kernels, the better the application
performance, and there is likely a ceiling threshold.

2) FILTER QUANTITY
In the previous filter learning process, we randomly ini-
tialize the convolution kernel coefficients. However, in the
deep learning of speech signals, it has been verified that
the initialization filter kernel has a certain influence on
the learning results. Therefore, here we also want to verify
whether different initializations have an effect on the results.
We selected the designed Chebyshev filter coefficients to
initialize the convolution kernel coefficients, and used the
above-mentioned signal perception accuracy as the evalua-
tion standard. In practice, we test both two models of the sin-
gle convolution filter layer and it combined with the attention
mechanism. As a result in Table 2, we do not see the vari-
ation of detection performance under different initialization
conditions. This also shows that under the two initialization
conditions, the finally learned filter characteristics should
be consistent. However, a significant change is that time
consumption of training process with coefficients initialized
Chebyshev filter coefficients are much shorter than that under
the condition of random initialization.

D. DEMONSTRATION OF APPLICATION
We give a network construction method of signal detection
applications with the corresponding embedded convolutional
neural filter unit. It demonstrats how the proposed convo-
lutional neural filter can be embedded in the deep learning
application network, and verifies the performance improve-
ment for signal deep learning tasks. In the same time, we com-
pare it with the original performance without neural filter unit

TABLE 2. Average accuracy in different models.

FIGURE 11. A baseline model: Chebyshev bandpass filter as feature
extractor and DNN classifier.

FIGURE 12. Performance of detection accuracy.

is added. In particular, we also show the two training methods
of the proposed convolutional neural filter unit, that is, the
application network is jointly trained, and the convolution
filter unit and application network are trained separately.

We built corresponding signal detection networks on the
convolutional neural filter unit with the attention mechanism
and without it respectively as shown in Fig.11. A similar fully
connected layer is added after the convolutional neural filter
with attention, its input is the filtered signal, and the output is
the result of whether the signal is detected.

For evaluation the performance of traditional preprocess-
ing methods, we also constructed a baseline model. Tradi-
tional recognition task is to extract signal features manually
then do classification. We choose the Chebyshev bandpass
filter as feature extractor whose efficients are designed using
Matlab tool, The extracted results are sent into a DNN clas-
sifier. The left boundary of the passband is 80kHz, the right
boundary of the passband is 120kHz, the attenuation cutoff is
60kHz to the left boundary, the attenuation cutoff is 140kHz,
the attenuation of the sideband is 0.1, the attenuation of the
cutoff is 20, and the sampling frequency is 1MHz.

The data to be tested includes two types, one is white
noise plus a single-frequency interference and a BPSK inter-
ference signal, and the other is the BPSK signal of interest
superimposed on the above noise and interference. The BPSK
signal of interest does not overlap with single-frequency
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interference and interference signals in the frequency domain.
We have calculated the detection accuracy of convolutional
neural filtering with or without attention mechanism under
the baseline model and different core configurations under
different signal-to-noise ratios (from −14dB to 2dB). It can
be seen from the results in Fig.12 that the signal-to-noise
ratio is below −5dB, and the convolutional neural filter and
its attention enhancement version are better than the baseline
model, especially the best performance is the model that com-
bines the attentionmechanism and 4 convolution kernels., It is
5% more accurate than the baseline model. However, as the
signal-to-noise ratio increases, the accuracy of each model
basically tends to be the same level.

VII. CONCLUSION
Based on the analysis of the theoretical connection between
the filter model and the convolutional neural layer, this article
leverages the convolutional neural structure to learn signal
filtering, which follows a model-driven route for combining
known filtering mechanisms. We analyzed the performance
of convolutional neural filtering from the number of con-
volution kernels, parameter initialization, attention mecha-
nism, etc. The results show that the learned filter has better
dynamic adaptability to signals and interference. However,
it should be pointed out that the method used in this article
is still composed by offline training combined with online
applications, which is difficult for some signal processing
applications that do not have offline training data. Therefore,
a research idea that can be considered is that the convolutional
neural filter proposed in this paper has the online learning
ability, and the training of the neural filter is completed in the
application at the same time, which will effectively improve
the practicability of the method.
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