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ABSTRACT A third of the final electricity in the EU is consumed by households. The increased usage of
multiple electrical devices, electromobility, self-generation and consumption of electricity as well as work-
from-home will fundamentally change the residential electricity load profile, so a deep understanding of the
current state of residential electricity load profile modelling is necessary. The objective of this paper is to
perform a literature review, evaluate the current state of the residential electricity load profile modelling,
categorise the models, propose future research directions and applications, identify the challenges the
researchers face when building these models and offer possible solutions. Thirty two residential electricity
load profile models are identified and a new definition of the residential electricity load profile model
is proposed. A new categorisation system based on the identification of the main features of these thirty
two studies is introduced. Future research directions and applications are presented and the most important
challenges that modellers face when attempting to build such models are identified and discussed. The most
important challenge identified is the privacy concerns of the participants or potential participants. These
concerns are at least partially responsible for the existence of the rest of the challenges. The creation and
implementation of an anonymisation algorithm, before any human has access to any measured datasets,
the implementation of a crowd sourcing approach which addresses the privacy concerns of the citizens
and increased funding for the installation of privacy-proof smart-meters by the public and measurement
campaigns are identified as possible solutions to the challenges faced by modellers.

INDEX TERMS Load modeling, demand forecasting, load management, smart homes, power demand,
electricity consumption, residential electricity load profile model, demand-side management, household
electricity load profile model, residential power demand.

I. INTRODUCTION
Modern societies use an ever increasing number of elec-
tric and electronic devices. At present, on average 19 %
of a European nation’s energy is consumed by household
electrical devices such as smartphones, televisions, gaming
consoles, kitchen appliances, interior smart heating, water
heaters, smart appliances, virtual assistants, interior and exte-
rior lighting, and electric cars [19].

For decades research has heavily focused on power grid
loadmodels. Suchmodels include the total electricity demand
loads in the grid, from factories to small businesses, street
lighting, the electricity demand of electric buses, trams,
trains, household electricity demand and any and all other
sources of electricity demand in the grid. During all this
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time it has been widely believed that residential load demand
(which focuses specifically on the electricity demand load
of households) does not vary strongly from house to house
regardless of the socio-economic circumstances of its inhab-
itants and the number of people living in it, whether it be a
single family house, an apartment or an apartment building.
Therefore, it could be easily predicted on a quarter-hourly
basis. As a result, the electricity providers of each country are
using a single electricity consumption profile (known as the
standard load profile (SLP)) to forecast the electricity con-
sumption profile of all the houses of the country [12]. Some
countries even use the same residential standard load profile,
e.g., Germany and Austria. The German standard load profile
(H0 SLP), which was created by the German Federal Asso-
ciation of Energy and Water Management (Bundesverband
der Energie- und Wasserwirtschaft e. V. (BDEW)) [12] is
also used by the Austrian government regulator for electricity
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and natural gas markets (Energie-Control Austria für die Reg-
ulierung der Elektrizitäts- und Erdgaswirtschaft also know as
E-Control [18]).

Recent measurements of residential load profiles using
smart meters have shown that the residential load profile is
neither easily predictable nor easy to model because indi-
viduals use electricity-powered devices at different times
depending on their own individual schedules and lifestyles
[48]. As Stokes et al. [48] reported ‘‘Whilst some elements
of the demand (e.g. lighting during hours of darkness) are
less diversified, others (e.g. use of kettles or hobs) can be
very different from one consumer to another’’. This house-
hold individuality means not only the presence of jumps and
troughs in the electricity consumption profile when a device
is turned On/Off, but also the presence of high levels of
temporal variability, especially for sampling rates higher than
15 minutes (which is the sampling rate of the H0 SLP [12]).

In the next decades, the residential load profile will change
radically due to the rise of electro-mobility, the surge in own-
ership of electricity-power devices, the projected increase of
the Earth’s population to 10 billion humans, the rise of new
social conditions (e.g. working from home) as well as the
self-generation and consumption of electricity through the
installation of photovoltaic panels on the external surfaces of
houses. In order to be able to study, understand and forecast
these changes, a solid understanding of the residential load
profile and its modelling in its present state is needed. At the
time of writing of this paper, there is only one review of
residential electricity load profile models, written by Grand
Jean et al. [23], but it only focused on bottom-up residential
electricity load profile models. A review of all the existing
residential load profile models is, hence, necessary.

This review paper aims to perform a literature review of all
the existing residential load profile models, assess the state of
the art, and answer the following questions:

1) What is the definition of the residential electricity load
profile model?

2) How can the existing residential electricity load profile
models be categorised?

3) What approaches have been used to model the residen-
tial electricity load profile?

4) What are the parameters commonly used in residential
load profile modelling?

5) What are the future research directions and applications
of residential electricity load profile models?

6) What challenges do the researchers who build such
models face?

7) How can these challenges be overcome?

This paper will be of especially high interest to electrical grid,
demand sidemanagement and residential demand researchers
and engineers alike.

In Section II, a definition of the residential load pro-
file model is suggested and the methodology used in
this review is described. In Section III, the approaches
presently used to model the residential load profile are pre-

sented and a new model categorisation system is suggested.
In Section IV, the parameter identification methods com-
monly used in load profile modelling as well as the major
residential electricity loads and their categorisation are pre-
sented. In Section V, future research directions and future
applications of residential electricity load profile models are
presented. In Section VI, the challenges that researchers face
are presented and in Section VII ways to address these chal-
lenges are suggested. Lastly, the conclusions are presented in
Section VIII.

II. DEFINITIONS AND METHODOLOGY
A. DEFINITION OF A RESIDENTIAL LOAD PROFILE MODEL
Before beginning the review, the term ‘‘residential load pro-
file model’’ must be defined. The first step is to define the
individual components of the term:

Residential: private residences, with no commercial
usage, occupied by one or more persons either full-
time or part time during a calendar year.

Load: the electricity that all the electricity-powered
devices in the household consume in unit time.

Profile: a graph representing the significant features of the
electricity load over time.

Model: ‘‘a formal system that represents the combined pro-
cesses’’ [29] of electricity consumption by all the electricity
powered devices in a private residence/number of residences.

Because this review focuses on models that can reproduce
the residential load profile in a calendar day, demand-side
management electricity consumption models were generally
excluded unless they could reproduce the residential load pro-
file of a household for a minimum of one calendar day. When
the above definitions and limitations are combined together,
they produce the following definition of the residential load
profile model:

The residential load profile model is a formal system that
can reproduce the combined electricity consumption of all the
electricity powered devices in a single/number of private/non-
commercial residences. The residence/s must be occupied by
at least one person for at least part of the calendar year. The
input data are parameters that characterise the household, its
occupants and their behaviour.

B. REVIEW METHODOLOGY
A literature survey revealed that different sectors, disci-
plines and applications use different terms to refer to mod-
els that fit the above definition. In order to collect all
the relevant studies on the subject, the following list of
different keyword combinations were used: load profile
modelling, load profile generation, end-use electricity con-
sumption model, home electricity consumption model, res-
idential power demand model, home power demand model,
household electricity load profile model, residential load
profile model, domestic electricity load profile model, end-
use electricity load profile model, NILM electricity con-
sumption model, NILM load profile model, NILM electricity
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FIGURE 1. Distribution of publication dates of the collected papers. The
majority of the models were published after 2002, with only four
published between 1980 and 2002.

demand model, disaggregation load profile model, disaggre-
gation electricity consumption model, disaggregation elec-
tricity demand model. It is worth noting that no online search
engine or database exists that contains all the relevant publi-
cations. As a result, literature searches in both the ISI Web of
Knowledge and Google Scholar were performed.

Both searches excluded all publications whose contents
did not fit the above definition. The Google scholar search
produced 25 relevant publications. The Web of Knowledge
the search produced a total of 28 relevant publications.
It is worth noting that the searches using the ‘‘end-use
electricity load model’’, ‘‘end-use electrical load model’’,
‘‘end-use electricity load profile’’, ‘‘NILM electricity con-
sumption model’’, ‘‘NILM load profile model’’, ‘‘NILM
electricity demand model’’, ‘‘disaggregation load profile
model’’,’’disaggregation electricity consumption model’’,
‘‘disaggregation electricity demand model’’ keyword combi-
nations did not return any relevant results. By merging the
two lists and eliminating any duplicates, the total number of
relevant publications identified through the Google Scholar
and Web Knowledge search was 32.

The identified studies span the last four decades, with the
majority of them published after 2002 (the median year is
2009). The distribution of the publication dates can be seen
in Figure 1. As can be seen, this review reports the state-of-
the-art practices.

III. MODELLING APPROACHES
At present, residential load profile models are divided in two
categories: bottop-up and top-down models. In this section,
a new categorisation system is proposed based on the identifi-
cation of the main features of the thirty two studies presented
in the previous Section. These features are:

Method: This feature describes themethods used to build a
residential load profile model. For example, if the electricity
consumption of multiple devices in a household were used
to calculate the electricity consumption of the household,
then the model is assigned to the bottom-up model subgroup
whereas if macro-economic parameters were used to calcu-

late the electricity consumption of the household, then the
model is assigned to the top-down subgroup.

Sampling rate: This feature describes the finest grain
output that themodel can generate. The output, rather than the
input, was chosen because models can have multiple inputs
with multiple sampling rates, but their outputs usually have a
single sampling rate. This considerably simplifies the model
comparison. So, a model that uses quarter-hourly occupancy
profiles as input to calculate the hourly electricity consump-
tion of a household is classified as having an hourly sampling
rate. However, if quarter-hourly occupancy profiles were used
to calculate the quarter-hourly electricity consumption of a
household, then the sampling rate would be classified as
quarter-hourly.

Application: This feature describes the model’s primary
intended application. If the output of the model or the model
itself was to be used in demand side management, then the
model is assigned to the demand side management subcate-
gory. However, if it was to be used for planning and control
design of energy systems and distributions grids, then the
model is assigned to the planning and control design of
energy systems and distributions grids subcategory. Lastly,
if a model’s only goal was to model the electricity consump-
tion of a single house or a group of houses, then it is assigned
to the residential load profiles subcategory.

Statistical techniques: This feature describes themain sta-
tistical technique/s used to model the residential load profile.
If the main statistical technique used in a model was the
Markov Chain technique, then the model is assigned to the
Markov chain subgroup. If, on the other hand, a Monte Carlo
technique was used, then the model is assigned to the Monte
Carlo subgroup.

These categories together with their subcategories are pre-
sented below.

A. BASED ON THE METHOD
The most commonly used categorisation is the one based on
the method used to calculate the electricity consumption of
the household. Under this categorisation scheme, the models
have historically been divided into bottom-up and top-down
models. Recently, models who share characteristics with both
the bottom-up and the top-down subcategories have been
built to support demand side management. These models
cannot be placed in either category. Since the use of demand
side management technologies is expected to increase, a new
subcategory of ‘‘Hybrid models’’ should be introduced. The
three categories, with their characteristics, their advantages,
their disadvantages and the categorisation of each model are
presented below.

1) BOTTOM-UP MODELS
Bottom-up residential load profile models ‘‘calculate the
individual dwelling energy or electricity consumption and
extrapolate these results over a target area or region’’ [49].
They are built by identifying the electricity consumption of
each appliance in a household, the household occupant’s
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behaviour patterns, their related use of appliances and then
aggregating them together to produce the total household
electricity consumption profile.

Depending on the intended usage of the model, its input
data might also include the characteristics of the house (e.g.
size, layout, building materials), the weather conditions and
the heating/cooling characteristics of the house (when they
are electricity based). They can generate very detailed, single
household electricity load profiles which can be adjusted
to include or exclude appliances, include different device
usage patterns and include future technologies, such as new
devices with demand side management capabilities. As a
result, they can help identify the influence of individual
households or technology contributions to the electricity con-
sumption profile of a residential block and are imminently
suited for simulations investigating the effects of different
technologies, policy decisions or energy optimisation tech-
niques. They can also be used for demand forecasting at the
utilities level. From there, they can then extrapolate the house-
hold electricity consumption profile to the village/city/federal
state/country level. By calculating the energy consumption
of groups of houses and then aggregating them, they can then
create a SLP [41]. This extrapolation is usually accomplished
by assigning a weight on each house or groups of houses.
The weight assigned depends on the number of houses it
represents [41].

The common procedure to develop a bottom-up model is
the following:

1) Step 1: Determine the micro-variables of the model,
i.e., the end-use equipment present in the household/s
(e.g., the electrical appliances, the electrical space heat-
ing and the electrical water heating)

2) Step 2:Determine the human activity patterns for using
these appliances from existing data (e.g., time use data)

3) Step 3: Generate the individual load profiles of each
appliance of the household together with space and
water heating for a period of time ranging from one day
to several years

4) Step 4: Aggregate these individual load profiles from
a single or multiple households for a period of time
ranging from one day to several years

5) Step 5:Validate themodel by comparing the simulation
results with measured data

Bottom-up models have three main advantages: (a) they do
not require the existence of historical electricity consumption
data to determine the electricity consumption of the resi-
dential sector, (b) they are very well suited for studying the
effects of different technologies, policy decisions or energy
optimisation techniques on the household load profile, (c)
they provide very detailed results. Their main disadvantages
are: (a) they are very computationally heavy, as the high
level of details introduce high levels of complexity in the
models and (b) they have very high input data requirements
such as active occupancy patterns, the equipment used in the
households and information about the different time-uses of

electricity consumers. Twenty one papers with sampling rates
spanning from 1 hour to 1 second belong in this category and
can be seen in Table 1.

2) TOP-DOWN MODELS
Top-down residential load profile models, on the other hand,
‘‘use the total energy or electricity consumption estimates
to assign them to the characteristics of the building stock’’
[49]. They use macro-variables (data collected at an aggre-
gate level) and/or stochastic predictors to predict the house-
hold energy consumption profile and use them to derive
relationships between them and the electricity consump-
tion. The most used macro-variables are the total residential
sector electricity consumption, the structural characteris-
tics of the dwellings, the number, age, sex, race/ethnicity,
income, level of education and family type of occupants
and their behaviour, as well as historical energy consump-
tion data, weather conditions and macro-economic indica-
tors. Household age (the ages of the household residents) is
often used as a proxy for the amount of time people spend
indoors and thereby the opportunity to consume energy. The
stochastic predictors are based on time series analysis, such
as auto-regressive moving average methods. According to
Paatero et al. [52], they are more suitable for demand fore-
casting at the utility level because the end-use consumption
of individual households is not usually distinguishable at the
utility level. As a result, they are not as computationally
intensive as bottom-up models.

The common procedure to develop a top-down model is
the following:

1) Step 1: Find historical electricity datasets that have the
proper sampling rates for the model

2) Step 2: Determine the macro-variables needed for the
model (e.g., historical yearly electricity consumption,
characteristics of the residents, historical weather data
etc.)

3) Step 3: Categorise different combinations of macro-
variables (e.g., a single family building where a couple
with 2 school age children of ethnicity A who earn B
euros per year in the North of Germany live versus an
apartment where a single female of ethnicity C who
earns D euros per year in the South of Germany live.)

4) Step 4: Perform time series analysis on the historical
data to determine the stochastic predictors to be used
in the model (if any)

5) Step 5: Combine the stochastic predictors with the
macro-variable categories to generate the load profile
of the house/s for a period of time ranging from one
day to several years

6) Step 6:Validate themodel by comparing the simulation
results with measured data

The two main advantages of top-down models compared
to bottom-up models are that (a) they do not require infor-
mation about individual electric appliances and (b) they have
a low level of complexity because they do not require the
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modelling of the usage of every single appliance in the
household and are, therefore, not as computationally heavy
as bottom-up models. Their main disadvantages are that (a)
they require the existence of historical data of residential
electricity consumption profiles of households to determine
the energy consumption of the residential sector and (b) have
large computational time steps (usually between 15 minutes
and 1 hour [17]). This results in the loss of information as
only certain statistical criteria can be fulfilled [13]. Top-down
models are imminently suited for simulations studying the
demand-response, the transformer and storage sizing, as well
as the distribution networks. Seven papers with sampling
rates between 1 hour and 30 minutes belong to this category
and can be seen in Table 1. As can be seen, there are far fewer
top-down models than there are bottom-up ones.

3) HYBRID MODELS
Hybrid models are a fairly recent addition to residential load
profile models (with the exception of [10]). As the name
implies, combine methods and elements used in both bottom-
up and top-down models. Bottom-up elements include, but
are not limited to, occupancy models, electrical appliance
usage, consumption load profiles, lighting usage, hot water
demand and natural ventilation. Top-down elements include,
but are not limited to, building archetypes, which are rep-
resentative of a group of buildings and their electricity con-
sumption profiles.

The common procedure to develop a Hybrid model is the
following:

1) Step 1: Determine which micro- and which macro-
variables will be used in the model

2) Step 2: Use the bottom-up model procedure steps a) –
c) for the micro-variables

3) Step 3: Use the top-down model procedure steps a) –
d) for the macro-variables

4) Step 4: Combine the micro- and macro-variables to
generate load profiles for a single or multiple house-
holds for a period of time ranging from one day to
several years

5) Step 5:Validate themodel by comparing the simulation
results with measured data

Most hybrid models were created to support demand side
management efforts (more specifically, demand forecasting
using smart meters). As a result, each model incorporates a
different set of techniques and input parameters depending on
the problem they were meant to solve. Therefore, the char-
acteristics they share with bottom-up and top-down models
strongly vary frommodel to model. It is not possible to create
a list of advantages and disadvantages because each hybrid
model combines different elements of bottom-up and top-
down downmodels. Four papers with a sampling rate ranging
from 1 hour to 2 seconds belong to this category (see Table 1).
As can be seen, hybrid models are the least numerous but
this will most likely change as demand side management and
smart meters become more widely used.

B. BASED ON THE SAMPLING RATE
The literature research showed that the models can be divided
into three broad categories: low resolution models, middle
resolution models and high resolution models.

Low resolution models (see Table 1) are models with a
sampling rate less than fifteen minutes. All but one such
models were created before 2015 and could be divided into
two broad categories. Those belonging to the first category
aim to model the end-use electricity of a region, i.e., neigh-
bourhoods, districts, cities or provinces. Depending on the
model the region could be composed of hundreds ([10], [20],
[47]) to hundred of thousands of households ([14], [32], [45],
[52], [57]). Those belonging to the second category aim to
model the electricity load profile of different types of houses
( [3], [37], [42], [53], [54], [56]) or study the impact of
different energy prices on the residential load profile [22] and,
hence, only modelled single houses.

Middle resolution models (see Table 1) are models that
have a sampling rate between fifteen minutes and one minute.
They are by far the least numerous and, at the time of writing
of this review, only four such models exist (see Table 1).
All of these models were created after 2000. In general, they
simulated the residential load profiles of single houses that
could then be studied individually.

High resolution models are models with a sampling rate
of one minute or more. All were published after 2010, with
the notable exception of [48] which was published in 2005.
Such models are much more likely to have been built using
not only measurements of the main power supply but also of
household electrical devices, who have internal time scales of
milliseconds ([11], [28]). Of the high resolution models, only
one has a sampling rate of two seconds [88] and none exist
with a sampling rate of the order of milliseconds. It is worth
noting that, when most publications refer to high-resolution
residential load models, they are actually referring to middle
resolution models because no models with a sampling rate of
the order of seconds existed when they were published.

All residential load profiles are dynamic models in the
sense that the generated electricity consumption depends on
the time of the day, the number of household residents present
at any given time and their occupancy and appliance usage
patterns. However, models with low sampling rates (of the
order of hours to 15 minutes) display far fewer changes of
state than models with high sampling rates (1 minute to Hz).
The reason for this is that most low sampling rate models
are attempting to replicate H0 SLP-like profiles produced in
different countries. The H0 SLP was created using ≈ 90%
hourly sampling rate data and≈ 10% quarterly hour sampling
rate data [12], i.e., the hourly sampling rate data recorded
one value every hour while the quarterly hour sampling rate
data recorded one value every 15 minutes. The hourly data
were then upsampled to a sampling rate of 15 minutes. As a
result, they completely miss the demand fluctuations present
in the periods in between. Furthermore, the H0 SLP assumes
that each week day has exactly the same load profile, while
Saturday and Sunday each have a different profile. High tem-

12118 VOLUME 9, 2021



E. Proedrou: Comprehensive Review of Residential Electricity Load Profile Models

poral resolution profiles, on the other hand, do reflect the fluc-
tuations generated by the turning on and off of appliances and
are, therefore, much more dynamic than low sampling rate
models (see [88]). It should also be noted that the mathemat-
ical properties of residential electricity loads depend on their
spatial scales and the number of houses being considered.
The larger the number of houses, the smaller the fluctuations
would be, but they would still be present and clearly visible
(see [88]). A more detailed discussion on how the number
of houses, the sampling rate of a model and the data that
were used to create it affect the mathematical properties of
a residential load model can be found in [88].

C. BASED ON THE APPLICATION
The model itself or its output can have several primary
intended applications, usually more than one at the same
time. As with the categorisation based on the sampling rate,
there is no official classification. However, the models can be
divided into four broad categories: (a) demand side manage-
ment (DSM), (b) planning, control and design of energy sys-
tems, distributions grids and local energy efficiency strategies
(PCD) and (c) residential load profiles (RLP).

1) DEMAND SIDE MANAGEMENT
Models whose primary intended application is to be used
in demand side management systems are grouped in the
demand side management subcategory. Such models are con-
cerned with how the electricity consumption of households
can be reduced/altered through the implementation of new
technologies or shifted to times of the day with historically
low electricity demand and/or when the electricity prices are
low. This can be achieved through the implementation of new
technologies in household appliances such as energy efficient
fridges or room heaters that can be pre-programmed to switch
on at specific times. Some of these devices can also use algo-
rithms that can switch appliances On/Off on demand, or when
certain conditions are met or schedule their usage in advance
for a certain time period of the day. Examples of such appli-
ances are washing machines that are switched on when the
price of electricity drops below a certain threshold, devices
that switch On/Off when the outdoor or indoor temperature
reaches a certain value or washing machines and robotic
vacuum cleaners which can be controlled remotely. Eighteen
such models were identified (see Table 1).

2) PLANNING, CONTROL AND DESIGN OF ENERGY
SYSTEMS, DISTRIBUTIONS GRIDS AND LOCAL ENERGY
EFFICIENCY STRATEGIES
Models whose primary intended application is the planning,
control and design of energy systems, distributions grids
and local energy efficiency strategies (PCD) fall into this
subcategory. Such studies aim to help electricity grid plan-
ners build electricity grids which minimise electricity con-
sumption using different technologies including demand side
management. Nine such models were identified (see Table 1).

3) RESIDENTIAL LOAD PROFILES
Models whose sole declared application was the generation
of residential electricity load profiles (REL) were placed in
this last subgroup. Nineteen such models were identified (see
Table 1).

D. BASED ON THE STATISTICAL METHODS
Lastly, the models can be grouped based on the statistical
methods used to model the residential load profile.

1) MARKOV CHAIN MODELS
Fourteen of the models surveyed used Markov chains
(MChain) to simulate the switching On/Off of devices (see
Table 1), with the majority of them assuming that the acti-
vation/deactivation of a single device is independent from
the activation/deactivation of any other devices present in the
household. This assumption is often false, e.g., if a house
possesses both a washing machine and a dryer. In that case,
the usage on the washing machine will be followed by the
usage of the dryer after the washing machine has finished
[19]. Of the fourteen models in this category only two ([19],
[46]) considered the paired usage of devices. Virtually all the
models used a combination of the usage patterns of residents
and the load profiles of the devices to model the electricity
load of the household. In general, such models defined a
starting state which then transitioned to the next states. The
state the system transitioned to depended on the transitioning
probability. Each model used a different method to calculate
it. Some used transitional probability matrices. Others used
a generated uniformly-distributed pseudo-random number
which when compared to the cumulative distribution of the
state transition determined which transition took place. Yet
in others the probability of transitioning from an On to an
Off state was a time-dependent parametrised binary function
whose parameters were determined by a cumulative distribu-
tion function.

2) PROBABILISTIC MODELS
Twenty five models (see Table 1) used non-Markov, proba-
bilistic statistics (PPM) to model the residential load profiles
of single houses. These models used general statistical meth-
ods such as sums of Gaussians, probability distributions,
cumulative probability functions or conditional demand anal-
ysis to model the load profiles of individual appliances
and whole households. These models display a wide range
of complexity. They have been used to determine whether
devices are On or Off and, in the case of devices with
uncertain usage periods, to determine for how long a device
was used. Moreover, they have been used to develop the
occupancy profiles of the houses. Only one model used
parameter fitting to extract the optimal values for their model
parameters [20] while the rest assigned probabilities by cri-
teria that limited their average values to within tolerance
bands around the values indicated by national statistics or
measured data.
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3) MONTE CARLO MODELS
Five models combined a PPM and/or MChain approach with
the usage of Monte Carlo methods (MCarlo) (see Table 1).
These method were used to extract the probability profile of
a process [14] or to determine whether devices were used and,
in the case of devices with uncertain usage periods, to deter-
mine how long they were used for [47]. Neue et al. [41]
used these methods to develop activity-specific profiles for
occupancy, disaggregated appliance and indoor-lighting elec-
tricity usage. Muratori et al. [39] used these methods to cre-
ate residential load profiles which connected the electricity
demand with psychological and behavioural factors typical
of the household occupants. Labeeuw et al. [32] used these
methods to create a wide variety of residential customer pro-
files, where each profile represented a group of households
with similar consumption patterns. Johnson et al. [27] used
these methods to combine occupant behaviour and residential
load models to simulate variations in electricity consumption
based on the time of the day and day of the week. All models
usually used measured residential load profile data and sta-
tistical methods such as clustering algorithms and goodness-
of-fit to find the optimal values for their parameters.

In general, as can be seen in Table 1, each model uses
whichever statistical method or combination ofmethods gives
the best results for its intended purpose as well as the input
datasets available to its authors. This review could not iden-
tify any clear preferences for the usage of one statistical
method over another in any type ofmodel. Actually, the use of
the statistical methods appeared to be strongly influenced by
the type of data available to the authors and, therefore, by how
that data could be used to build a model that could create the
residential load profile of a house or a group of houses.

However, because low sampling rate datasets (15 min-
utes - 1 hour) are deterministic in nature [37], they can
be easily modelled using simpler methods such as sums
of Gaussians, probability functions, cumulative probability
functions or conditional demand analysis. At high sampling
rates (1 minute - several Hz), however, the stochastic nature
of the residential electricity consumption becomes evident.
This stochastic nature is due to the randomness of the switch-
ing On/Off of devices by the residents of each house [88].
As a result, stochastic methods usually need to be combined
with deterministic methods to accurately model residential
load datasets measured at high sampling rates. Consequently,
Markov processes andMonte Carlo techniques are used often
but not exclusively (e.g., the usage of only probability distri-
butions in [17] and [19] shows). A summarised version of
the suggested categories and their subcategories are shown
in Table 2.

In conclusion, residential load models can be categorised
in several different ways depending on their structure, their
sampling rate, their intended application and their statistical
techniques. Until now, however, authors focused only on the
categorisation based on their structure and ignored models
which combined characteristics of both bottom-up and top
down models.

IV. PARAMETER IDENTIFICATION
In general, the parameters chosen as model input depend
strongly on the type of the model. Micro-parameters, such
as appliance load and time-use/user activity information,
are more common in bottom-up and hybrid models. Macro-
parameters, such as building stock, demographics (number,
age, sex, race/ethnicity of household occupants), socio-
economic data (income, level of education and family type
of occupants) and lifestyle habits (time people spend indoors,
types of household entertainment, amount of home cooking
etc.), are more common in top-down and hybrid models.

A. MICRO-VARIABLE CATEGORIES AND THEIR
PARAMETER IDENTIFICATION
Models whose input is the load profile of individual appli-
ances (while they are in use and their yearly consump-
tion) obtain the values of their parameters from (a) directly
from the manufacturers ( [24], [39], [42], [47], [52]), (b)
from measurements performed under controlled conditions
(e.g., in laboratories [53]), or (c) from state/country author-
ities or universities organised and funded by states/countries
who then make the anonymised data available to researchers
([7], [14], [19], [22], [32], [35], [45]–[47], [52]–[54]). More
rarely, they are measured directly through intrusive appliance
monitoring (i.e., through metering devices attached to the
household appliances of the participants during the measure-
ment campaigns) ([10], [27], [42], [46], [55]). The sources of
the values used in [5], [17], [24], [36], and [56] are unclear.
With the advent of non-intrusive load modelling (NILM) and
disaggregation techniques, it is now possible to extract the
load profiles of individual appliances from the metered load
profiles of single houses as long as the data is accessible.

According to Picon et al. [90], there are four categories of
micro-variables used in bottom-up residential load profiles.
In the first category belong electrical appliances that can
only be switched on or off, e.g., ovens and hot water kettles
(see Figure 2a,b). In the second category belong appliances
whose electricity consumption is adjustable such as stoves,
irons, fans and hair dryers (see Figure 2c,d). In the third
category belong appliances during whose operation differ-
ent consumption events happen, such as washing machines.
They have different washing programs (with or no pre-
wash, with hot, warm and cold water programs, for woollen,
synthetic or mixed fibre clothes etc.) and each program is
characterised by different processes (washing, rinsing and
spinning cycles). This results in variable electricity consump-
tion during their operation (see Figure 3). Other devices that
also belong to the third category are refrigerators, PCs, laser
printers and televisions (see Figure 4). In the last category
belong appliances which are always in use and have one
(constant) consumption rate. Any appliance with a stand-by
mode (while it remains on stand-by mode) belongs in this
category. Such appliances are PC monitors (when not turned
off or being used), microwaves with digital clocks (when not
used) and modems. These appliances form the base load of

12120 VOLUME 9, 2021



E. Proedrou: Comprehensive Review of Residential Electricity Load Profile Models

TABLE 1. Model categorisation table. The models are sorted according to the method used to calculate the electricity consumption of the household and
their year of publication. The table also provides information about the sampling rate of each model, their intended application and the statistical
technique/s used.
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TABLE 1. (Continued.) Model categorisation table. The models are sorted according to the method used to calculate the electricity consumption of the
household and their year of publication. The table also provides information about the sampling rate of each model, their intended application and the
statistical technique/s used.

TABLE 2. Model categorisation summary. Categorisation of the reviewed
models based on their main features. The subcategories of each category
are also presented.

the load profile [91] and, because they are always On, cannot
be identified using disaggregation or NILM analysis. The
effects of various devices on the residential load profile as
well as the base load (the constant consumption of≈ 0.5 kW)
can be seen in Figure 5. A more in depth analysis on the
classification of household appliances can be found in [24].

As electric vehicles (e.g. cars, scooters, bicycles) are
gaining in popularity, manufacturers are starting to produce
e-vehicle load profiles. Such manufacturer profiles have low
sampling rates (15 - 30 minutes). The e-vehicle load profile
depends on several factors such as the type of electric vehicle
(e.g. bike, scooter or car), the size of its battery, its nominal
charging power, the typical daily driven distance and the daily

FIGURE 2. Appliance category 1 & 2. a) oven and b) hot water kettle, are
Category 1 appliances which can be turned on and off. The small
fluctuations can probably be attributed to sensor noise. c) hair dryer and
d) fan are Category 2 appliances. The different electricity consumption
modes are clearly visible in the form of steps in the case of the hair dryer.
In the case of the fan the different electricity consumption modes are
visible in the form of different colour lines and the presence of steps. The
loads were measured in November 2016. The plots were originally
published by Gao et al. [89] and edited to allow their presentation in a
single figure.

energy requirement, the typical charging times (in the morn-
ing or in the evening or over the course of the day). E-vehicles
should be placed in Category 1 because they appear to charge
at a constant rate of, e.g., 160 W and stop charging as soon
as the battery is full or the car is disconnected from the plug.
An example of such a load profile can be seen in Figure 6.

B. MACRO-VARIABLE CATEGORIES AND THEIR
PARAMETER IDENTIFICATION
Models whose input was the active power consumption of
a single or multiple houses obtained the values of their
parameters directly from measurements collected by meter-
ing devices attached to the houses main electricity power line
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FIGURE 3. Appliance category 3: Washing machine. The electricity
consumption loads of a washing machine operating at a) 30 degrees, b)
45 degrees, c) 55 degrees and d) 65 degrees. The loads were measured in
November 2016. The plots were originally published by Gao et al. [89]
and edited to allow their presentation in a single figure.

FIGURE 4. Appliance Category 3. The electricity consumption loads of a)
a refrigerator, b) a PC c) a TV and d) a laser printer. The variation in the
electricity consumption of the devices is clearly visible in the form of
abrupt jumps in the electricity consumption. Specific changes in state that
result in the fluctuation of electricity consumption are marked for the
refrigerator and the TV. The loads were measured in November 2016. The
plots were originally published by Gao et al. [89] and edited to allow their
presentation in a single figure.

FIGURE 5. Appliance influence on the residential electricity load
profile. The electricity consumption load of a household with the various
appliance loads and how they alter it are indicated. The noise visible can
be attributed to sensor noise. The plot was originally published by
Tuomisto [90].

([6], [10], [20], [37], [46], [48], [88]) or were generated from
older bottom-up models ([13], [41]).

Models whose input was a) time use data, b) user activity
information regarding the length of usage of various appli-
ances in households, c) demographic data (number, age, sex,

FIGURE 6. Electric-car charging profile. The plot shows the charging
profile of a an electric car. In this Figure the car is plugged in and charging
4 times over the course of 24 hours. Each time the car is connected to the
plug and starts charging, the electricity consumption jumps from 0 to
160 W. The dataset used to create this plot was published by Muratori
in 2018 [26].

race/ethnicity of household occupants), d) socio-economic
data (income, level of education and family type of occu-
pants) or e) lifestyle habits usually obtained the values of
their parameters from time usage diaries filled by partici-
pants of past measurement surveys ([3], [8], [14], [16], [19],
[22], [27], [35], [39], [41], [42], [46], [53], [57]). Usually,
these measurement campaigns were organised and funded by
states/countries who then made the anonymised data avail-
able to researchers. On rare occasions, the data were col-
lected by surveys conducted by the authors themselves [42].
Infrequently, models used usage profiles or normalised usage
profiles found in older papers ([7], [41], [45], [54]).

Lastly, models whose input was residential building stock
information (to determine the number of single houses,
detached houses, semi-detached houses and blocks of flats)
usually derived the values of their parameters from census
surveys organised and funded by states/countries who then
made the anonymised data available to researchers ( [41],
[48]). The geometrical characteristics, construction types and
materials, appliance infiltration levels, heating system types
and controls were usually determined from the building reg-
ulations for, both, new and existing buildings in the relevant
countries ([41], [48]). The number of rooms, layout and floor
plans were usually determined from representative dwellings
defined in older studies ( [41], [48]). On very rare cases,
this information was also collected as part of measurement
campaigns [55].

V. FUTURE RESEARCH DIRECTIONS AND APPLICATIONS
With the increasing number of renewable electricity feed-
in, the ever increasing number of electricity-powered devices
used in households (including vehicles) and the emergence
of and integration into the electricity grid of mini- and
micro-grids ([77], [78]) (which can be autonomous or semi-
autonomous or fully connected to the grid), three main future
research directions and applications for the residential elec-
tricity loadmodels can be foreseen: a) Smart Homes, b)Mini-
Grids, Micro-Grids and Smart Cities and c) investigating the
effects of new appliances, new building technologies and new
regulations on the residential load profile.
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a) In Smart Homes, bottom-up or hybrid residential elec-
tricity load profile models could investigate and eventually
be used for demand side management and load shift-
ing. Such models would help households with installed
photovoltaic/micro-wind electricity generation capabilities
and battery storage to remain energy neutral by forecasting
and load shifting the electricity demand to balance it with
the generation. For houses who cannot generate their own
electricity, they would allow them to reduce their electricity
bills through load shifting or reduce their electricity con-
sumption by highlighting devices that consume high amounts
of electricity. These models would need to use live feed-
in or historical data from smart devices/plugs and (if installed)
renewable electricity generation sources.

b) In Mini-Grids, Micro-Grids and Smart Cities, top-
down/hybrid residential electricity load profile models could
be used to investigate how could i) load shifting or ii)
demand forecasting of the small groups of houses, neigh-
bourhoods or small villages belonging to these mini- and
micro-grids help grid controllers maintain the stability of
these grids. If future Smart Cities are composed of clusters of
such grids, they could help maintain the stability of the entire
city. Of course, in both cases (mini-, micro-grids and Smart
Cities), they would need to be part of a larger grid model or a
city-wide electricity grid model, respectively.

In the case of load shifting, the balancing would take place
through active load shifting of the demand of each house (this
would require access to the live feed-in of each house which
would then be used as input for the model and would allow
the controllers to control at least the major devices in each
house). It will, therefore, be critical that the residents of each
household actively opt-in to the system. In the case of demand
forecasting, residential electricity load profile models could
be used to forecast the electricity demand of the group of
houses in advance (using the historical feed-in of the smart
meters installed in each house). The forecasting would allow
them to deploy extra energy resources (e.g., electricity from
battery storage or hydrogen fuels or to buy electricity from the
grid) when the demand is forecasted to be higher than the gen-
eration. It would also make it possible to fine tune the model
to best fit the needs and characteristics of each individual
mini- or micro-grid. For example, a cluster of student houses
and dorms will have different consumption characteristics
and peak times (high consumption in the morning and night
but low during the rest of the day) compared to a retirement
community (moderate consumption over the day with peaks
in the early morning, lunch and dinner times). Such models
could help both researchers and engineers identify the best
technologies that could be used to successfully balance the
generation and consumption ([78], [79]), the best protection
schemes [80] and the best control systems to ensure the stable
and secure operation of such grids ([81]–[83]) by providing
accurate group residential load profiles for the particular
mini- and micro-grids in question.

c) Lastly, residential load models could be used (as has
been done in the past) to study how the addition of new

FIGURE 7. H0 SLP vs the measured residential load profile of a group of
houses. Comparison of the H0 SLP used by German electricity providers
vs the actual electricity consumption average of the 12 houses measured
during the NOVAREF project [33] for the week between 08.04-15.04.

devices (e.g., smartphones, tables, smart watches, gaming
consoles, smart devices, etc.), new vehicles (e-cars, e-scooter,
etc.), new social conditions (e.g., working from home),
new building technologies and new building standards (pas-
sive/zero energy houses) will affect the residential electricity
load profile and create short (the next few minutes) and long
term forecasts (the next several weeks). They could also
help study and analyse the impact of smart houses on the
residential load profile of the future and, hence, help create
plans and strategies.

VI. MODELLING CHALLENGES
A. UNSUITABILITY OF THE BDEW H0 SLP
The publicly available H0 SLP [21] is not well suited to the
creation of the residential electricity load profile models of
the future because it assumes that every household follows the
same electricity consumption patterns regardless of the num-
ber of the household occupants, their socio-economic sta-
tus or the number and the type of electrical devices they use.
The residential electricity load profile of a group of houses
looks closer to the NOVAREF load profile visible in Figure 7
(which is the average of twelve houses recorded at a sampling
rate of 2 seconds) measured during the NOVAREF project
[33]. In reality, the residential load profile of a single house-
hold can vary strongly from house to house, as can be seen
in Figure 8. Furthermore, the majority of the measurements
that the BDEW used to create the H0 SLP were collected in
the decades preceding 1990, with only a few measurements
performed between 1995 and 1998. As a result, it completely
ignores the effects that the increasing number of electrical
devices introduced into the household since 1999 can have
on the residential electricity load, especially on time-scales
shorter than 15 minutes.

According to the BDEW report (which was written
in 1999), a 10 – 20 % deviation between the predicted
H0 SLP and the actual consumption was to be expected
at any given time [12]. Due to the increased usage of
multiple electronic devices (such as smartphones, smart
speakers, electric heaters, gaming consoles, internal lighting
etc.), electro-mobility, work-from-home, self-generation and
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FIGURE 8. Daily electricity consumption measurements from 9 houses.
The electricity consumption measurements of a selection of houses
measured during the NOVAREF project for a single calendar day [33].
a) House 1, b) House 2, c) House 3, d) House 4, e) House 6, f) House 9,
g) House 8, h) House 10, i) House 11. As can be seen, the residential
electricity load of an individual house can vary greatly and usually looks
very different from the H0 SLP.

individual consumption, the deviations between the expected
and actual consumption are likely to be higher in 2020 than
reported in the BDEW report and likely to increase evenmore
in the next years or decades.

Another issue the H0 SLP does not address is the exis-
tence of ‘‘second’’ or ‘‘vacation’’ homes. The consumption
characteristics of these houses can be radically different from
those of the standard load profile, as they are characterised by
either high consumption in the summer and low consumption
in the winter or normal consumption during the week but
zero consumption during the weekends (or vice-versa) [4].

Therefore, in order to create accurate models, researchers
need to use residential electricity load profile datasets mea-
sured during measurement campaigns. Unfortunately, at the
time of writing of this review, there are only 25 publicly avail-
able or available at request residential load profile datasets
(see Table 3). The low number of residential load profile
models in existence can be directly attributed to the limited
accessibility to such datasets, which can itself be directly
attributed to privacy concerns.

Residential electricity load profiles can also be created by
combining the occupant behaviour datasets or models with
publicly available datasets of short measurements obtained
from various appliances. A table of six publicly available
datasets of various devices can be seen in Table 4.

B. MODEL SOURCE CODE AVAILABILITY AND STRUCTURE
All the residential load profile models presented in this paper
were created for and used in very specific projects. Each
model tried to answer a very specific question or to address
a very particular issue. Due to this and the fact that, for
decades, it was believed that residential load profiles do not
vary strongly from house to house, there has never been an
industrial standard for residential electricity load profilemod-
els. The closest thing to an industrial standard in residential

load modelling has been the H0 SLP-like datasets generated
by each country’s authorities or energy providers.

As a result, it was not common practice to make the source
code of the models developed or the data used in the projects
publicly available. Each of these modellers had to build
their model from scratch. Had the source code been publicly
available, they could have instead focused their efforts into
adjusting the source code to fit their needs, increase the
model’s complexity or conduct more in-depth research rather
than wasting their time and resources performing duplicate
work.

Going forward, residential load models should facilitate
the exchange of ideas and increase the collaboration within
the community. In order to achieve these goals, future models
should a) be made open source and b) be distributed under
a Copyleft license [76] so that (i) proper credit is given and
(ii) all software developed based on them are licensed under
identical open-source terms. This will ensure the greatest pos-
sible impact by being universally accessible to all researchers.
They should, furthermore, be c) properly documented so that
the researchers have a full understanding of the source-code
and d) be modular so that future users can add, remove and
develop functionalities as needed.

C. PRIVACY CONCERNS
The number of residential load profile datasets in existence
is higher than the twenty five publicly available ones pre-
sented in Table 3. Proof of this are the models presented in
Section III, none of which was built using publicly available
datasets ([88] did however make the datasets used to build
it publicly available). Accessing these non-publicly available
datasets can be challenging and often impossible as such
datasets are usually collected in the course of measurement
campaigns. These campaigns, and consequently the data col-
lected, are controlled by strict privacy and confidentiality
agreements which strongly restrict their sharing and/or usage
in any project other than the one they were collected for. As a
result, they cannot be shared with researchers unaffiliated
with the institution/s they were collected by. Often, they
cannot even be shared with researchers who belong to the
same institution/s but are unaffiliated with the specific project
the data were collected for.

This is very unfortunate as the data collected during such
campaigns can be very valuable for model building, i.e., they
might contain the total electricity consumption of a house-
hold/s and/or the electricity consumption of individual appli-
ances and/or the electricity consumption of multiple appli-
ances connected to a common plug. These quantities are
usually measured in Watts per unit time (hour/fifteen min-
utes/minutes/seconds/milliseconds intervals depending on
what is measured and the capabilities of the sensor used
to measure them). The total electricity consumption of a
household is measured by attaching ameter to themain power
supply (Watts per hours/fifteen minutes/minutes/seconds
intervals). The electricity consumption of individual appli-
ances is measured by attaching smart meters to individual
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TABLE 3. Publicly available datasets of residential electricity load profiles. This table presents all the publicly available residential electricity load
profile datasets which contain measurements of a minimum of 24 hours. They are sorted by year of publication and include the sampling rate,
the measurement period, the features of each dataset and the country where the data were measured. The features available are A1 = aggregate
consumption of single household/s, A2 = electric car, A3 = individual circuits consumption, A4 = occupancy status, A5 = PV generation, A6 = micro-wind
generation, A7 = individual appliances consumption, A8 = indoor temperature, A9 = outdoor temperature, A10 = building, room and appliance
characteristics.
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TABLE 3. (Continued.) Publicly available datasets of residential electricity load profiles. This table presents all the publicly available residential
electricity load profile datasets which contain measurements of a minimum of 24 hours. They are sorted by year of publication and include the sampling
rate, the measurement period, the features of each dataset and the country where the data were measured. The features available are A1 = aggregate
consumption of single household/s, A2 = electric car, A3 = individual circuits consumption, A4 = occupancy status, A5 = PV generation, A6 = micro-wind
generation, A7 = individual appliances consumption, A8 = indoor temperature, A9 = outdoor temperature, A10 = building, room and appliance
characteristics.

TABLE 4. Publicly available datasets of short measurements of various appliances. Each appliance was measured for short periods of time, usually an
hour or less. The table includes information about the year they were published, their sampling rate, the number of submeters used, the number of
houses they were measured in, the total length of time the measurement campaign lasted and the country where the measurements took place.

appliances (Watts per minute/seconds/millisecond intervals).
The electricity consumption of multiple appliances is mea-
sured by attaching a plug level monitor to a common plug
(Watts per minute/seconds/millisecond intervals). The data
is then saved locally or transmitted to a remote server and
anonymised.

As mentioned above, the root causes for the low num-
ber of publicly available residential load profile datasets are
the privacy concerns of the participants and, to a smaller
degree, the financial constrains of such campaigns. As a rule,
participants do not trust that their data will be anonymised
before being analysed, leading to a sense of an invasion
of or threat to their privacy. Such concerns are not entirely
unfounded: if the person who analyses the non-anonymised
datasets has knowledge of the number, types and load profiles

of the devices in the household or long experience with
analysing such datasets, they could potentially identify when
each device was activated/deactivated, potentially revealing
the activities of the participants in their houses. Very often,
participants in measurement campaigns have requested, after
participating in the study for some time, to be removed from
them. Such privacy concerns are especially strong in coun-
tries with a history of state surveillance, such as Germany, and
make it extremely difficult to convince people to participate
in measurement campaigns in the first place, especially long-
term ones lasting for several years.

As a result, all but four measurement campaigns ( [21],
[25], [30], [43], [65]) conducted measurements for less than
four years, only two of those measured a large amount
of houses ( [21], [65]) and only three of those recorded
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measurements at high sampling rates ([25], [30], [43]). As can
be clearly seen in Table 3, there are no publicly available
residential load profile datasets which contain decades of
measurements of hundreds of houses, with the exception of
[30] which used data measured over the course of multiple
measurement campaigns over more than two decades. The
published product of [30], however, was the reference load
profile H0 SLP rather than raw measurements, unlike the rest
of the 24 datasets. Of the high resolution datasets ([2], [11],
[15], [25], [30], [31], [34], [38], [40], [43], [51], [58]–[60],
[63], [64], [69], [70], [88]), only one measured more than
50 houses [59] and only one dataset recorded the electricity
consumption of one or more houses for more than 5 years at
high sampling rates [43] (see Table 3).

The advent of non-intrusive load monitoring (NILM), oth-
erwise known as non-intrusive appliance load monitoring
(NIALM) or load demand disaggregation techniques is likely
to increase privacy concerns due to its ability to disaggregate
composite loads and, hence, identify the activation or deac-
tivation of specific devices in a household whose electricity
load profile has beenmade publicly available [61]. To combat
such worries, the owners of certain publicly available datasets
have made access to their data contingent on legally binding
agreements which expressly forbid their usage for NIML
analysis.

The extend towhichmodels are affected from these privacy
issues depends mainly on their structure and sampling rate.
Bottom-upmodels, especially those with high sampling rates,
depend strongly on the load profiles of individual appliances
and their usage over time. Therefore, they are more strongly
affected as it is quite challenging to, both, convince people to
agree to join measurement campaigns and to prevent them
from withdrawing. Furthermore, every time a new model
is created, they need to expend time and money to buy
and install the necessary equipment, as well as to convince
individuals to join. This time and money would be better
spent focusing on building their models or answering scien-
tific/engineering questions. This would have been possible
had more and better quality datasets been publicly available.
Top-down models, on the other hand, especially those with
high sampling rates, are affected by the relative lack of pub-
licly available datasets with: (a) a measurement period longer
than 1 year, (b) a high sampling rate and (c) a large number
of measured houses (above 100). This relative lack of suitable
datasets stems from the fact that it is currently very difficult to
convince large numbers of people to agree to the monitoring
and collection of the electricity load profiles of their houses
for long periods of time.

D. SPATIAL RESOLUTION OF THE DATASETS
Another challenge the researchers face is the lack of spatial
resolution information in the publicly available datasets. Due
to the abovementioned privacy concerns, none of the publicly
available datasets include information about the spatial distri-
bution of the participating houses. The non-publicly available
datasets could also lack any spatial information, however,

since it has not been possible to access them, this is not a
statement that can be made with any certainty. As a result,
the effects of the different spatial distributions of households
on the aggregated residential load profile are not known and
have not been studied.

E. SAMPLING RATE OF THE DATASETS
The sampling rate of the existing publicly available datasets
poses a different set of challenges. The majority of these
datasets can be used to create models with a sampling rate
of an order similar to or lower than that of the dataset used.
Unfortunately, datasets with a resolution higher than 1minute
and possibly 1 second will be needed to address the chal-
lenges of demand side management and smart homes that
the switch to renewable energy sources and the increased
use of electronic devices, electro-mobility, social conditions
and self-generation and consumption will bring. This is made
clear by studying Figure 8, where it is evident that the
residential load profile changes every minute/second rather
than every fifteen minutes or one hour due to the usage of
multiple electrical devices, from ovens to smartphones. The
adoption of an ever-increasing number of electricity powered
devices such as tablets, gaming-consoles and electric cars as
well as the switch to electricity-powered interior heating and
working (even part time) from home will only intensify these
trends. A more thorough discussion on the subject can be
found in [88].

F. DATA GAPS AND MEASUREMENT ERRORS
A sixth challenge is the data gaps and measurement errors
contained in the recorded datasets. The data gaps are usually
caused by equipment failures and/or power outages, while
measurement errors can appear due to a variety of reasons,
which will not be discussed here. To remove them, post-
processing needs to be applied, a task that is usually very
time consuming. As a result, most datasets are offeredwithout
any post-processing (e.g., [11], [72]). Datasets that have not
been post-processed force the researchers to do the post-
processing themselves without having any clear knowledge
of the reasons for the data gaps or whether a strong deviation
from the measurements was caused by a measurement error,
an equipment failure or by an actual electricity consumption
event. This reduces the volume of data available and compli-
cates the process of model building.

G. LACK OF SECOND/VACATION MEASURED DATASETS
Another issue that should be addressed is the existence of sec-
ond/vacation homes, whose electricity consumption patterns
are distinctly different from those of primary homes. Primary
residencies are characterised by high electricity consumption
during the winter and low electricity consumption during the
summer, as can be seen in Figure 9.

Depending on their usage, vacation residences are char-
acterised by low or no electricity consumption in the win-
ter and high electricity consumption in the summer with a
possible increased electricity consumption also during other
holiday times (when the residents vacation in the house and
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FIGURE 9. The H0 SLP yearly profile. The electricity consumption is
higher in the winter and lower in the summer. The spikes depict the
weekend electricity consumption while the troughs depict the electricity
consumption during the week. In the H0 SLP, the weekend electricity
consumption is always higher than the weekly electricity consumption.
The dataset spans the time period between 01.01.2017 at 00:15 and
01.01.2018 at 00:00 [12].

consume electricity). Secondary homes can either have high
electricity consumption during the holidays, when the fami-
lies or individuals spend their holidays there, or they can have
normal electricity consumption during the week but low or no
electricity consumption during the weekend if they belong to
people who work in a different city than their partners and/or
children and visit them every weekend.

Secondary/vacation homes might also have a different set
of appliances compared to the primary homes and they might
be used at different intervals than the ones used in pri-
mary homes. This would cause their electricity consumption
characteristics to diverge even more. This is important as a
significant number of vacation/secondary houses are located
in touristic regions and/or small villages (where mini- and
micro-grids are more likely to be installed). As a result, their
electricity consumption patterns will not conform with those
of the H0 SLP which will make maintaining the stability of
these grids more challenging. They will also not conform
with any of the above presented residential load profile mod-
els. These houses are rarely mentioned in the literature and
are even more rarely studied (there is only one publication
regarding this subject and it does not study the electricity con-
sumption itself but rather its yearly values [4]). As expected,
there are no publicly available datasets of second/vacation
home electricity consumption profiles.

H. LOW NUMBER OF RECORDED DATASETS PER
COUNTRY
Lastly, the electricity consumption patterns and statistical
characteristics of houses located in different countries can
vary strongly due to differences in GDP, different lifestyles,
different device availability/characteristics, length of day and
climate. This is especially true for households located in
different continents and latitudes, such as the USA, Germany
and India.

The countries where the publicly available datasets were
measured can be seen in Table 3 and in Figure 10. As can
be seen, the majority of the countries have produced no
more than two publicly available datasets, except for the UK,
theUSA, Canada andGermany. Because even countries in the
same continent (such as Germany, UK and Portugal) can have

FIGURE 10. Datasets per country distribution. Distribution of the
countries where the publicly available datasets were recorded. The UK
and the USA have the most, closely followed by Canada and Germany. The
rest have two or less datasets, with most having only one.

different consumption patterns if they are far enough from
one another or have different enough life-styles, they cannot
be used to model the same household. This results in a large
reduction of the datasets available to model the electricity
consumption profile of a household in a specific country.

VII. DISCUSSION
The majority of the challenges presented in Section VI can be
solved by increasing the number of publicly available high
sampling rate datasets. In order to achieve this, the number
of high sampling rate measurement campaigns must increase
and the collected datasets must be made available for further
research. For this to be achieved, more funding needs to be
made available for such campaigns and, more importantly,
the privacy concerns of the citizens of each country must be
addressed in order to increase the number of residents willing
to participate in such studies and reduce the number of resi-
dents withdrawing from a study after they have participated
in it for some time.

The number of measurement campaigns can increase
through governments supporting and funding a higher num-
ber of such studies. The privacy concerns of the citizens
can be addressed by ensuring that the data measured are
anonymised before any human has access to it, through the
deployment of an automated system, which will remove all
identifying information and delete the original data at the end
of the anonimisation process.

Unfortunately, this means that the latitude and longitude
coordinates of the participating houses must be removed
during the anonimisation process and no publicly available
datasets can ever contain the spatial coordinates of the partic-
ipating households. As a result, the only way to solve the lack
of spatial information issue, would be to have the datasets
clustered per city district, which might not provide enough
data for researchers who want to investigate how the layout
and design of low-voltage residential networks and mini-
/micro-grids would affect the load profile of a residential
neighbourhood.

Another possible solution is the use of a crowd-sourcing
approach through the creation of a web portal where resi-
dential consumers would be able to self-upload their smart-
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meter-measured electricity consumption time series. In order
to ensure their privacy and alleviate any concerns, the submit-
ted datasets would need to be anonymised through an auto-
mated system like the one described above. They would then
be made available to researchers. Such an approach could
be supported by national governments through encourag-
ing/financing the installation of high resolution smart meters
in households. Furthermore, in order to protect their privacy,
provide residents with the option to share their data and pre-
vent privacy corporatemalpractices of the type that Facebook,
Google, Apple and other internet companies have committed
in the past couple of years, the smart meters should give res-
idents complete access to their raw consumption time series
but only provide a 15 minute sampling rate time series to the
electricity providers for billing purposes. Such an approach
would promote research and, at the same time, alleviate any
privacy concerns the residents might have.

A step in this direction was made by the UCL Energy Insti-
tute, which announced the creation of a ‘‘secure, consistent
and trusted channel for researchers to access high-resolution
energy data’’ [1]. The data will be collected from households
who explicitly consented to have their data collected for
research purposes and will be anonymised using ‘‘established
‘5 Safes’ protocols’’ [1]. The database will contain the resi-
dential load profiles of potentially thousands of anonymised
UK houses and will be continuously populated with new
data every year. Most importantly, it will only be accessible
to accredited UK or UK-affiliated researchers and, through
them, accredited researchers who collaborate with them.

Another, albeit highly imperfect, solution in the absence
of measured residential load datasets is the use of synthetic
residential load profiles. At the moment, there are only two
such publicly available datasets. The first dataset can be
generated through the freely available software that Dr. Noah
Daniel Pflugrad created [44]. The major drawback of this
software is its sampling rate which ranges from 1 to 6 hours
and is, therefore, ill-suited for high resolution residential
load profile modelling. The second data set was created by
Tjaden et al. (2015) [50]. It has a sampling rate of 1 s and is
publicly available. As can be seen, there are too few publicly
available synthetic datasets, which makes it a problematic
solution. There are, however, many publications describing
methods which can be used to generate them. Unfortunately,
the source code which these publications were based on is
also not publicly available. A possible solution to this prob-
lem would be making all (past and future) codes publicly
available where possible. This would increase the ability of
researchers to generate synthetic data sets and, by making
these datasets publicly available, will increase the number of
publicly available synthetic data sets.

To address the lack of data on secondary/vacation homes,
the best solution is for governments and research institutes
to organise and fund measurement campaigns which focus
specifically on theses types of houses. The same applies for
the low number of publicly available datasets for any single
country.

Lastly, going forward, any residential electricity load pro-
file dataset used to create a residential electricity load pro-
file model should (after the proper anonymisation has been
applied) be made publicly available and be licensed under a
Copyleft licence [76]. This will make it possible for a) the
results presented in the publication to be verified/replicated
to ensure they can withstand scientific scrutiny and b) for new
research on the same data to be performed.

VIII. CONCLUSION
The rise of electromobility, the surge in ownership of electric-
ity powered devices together with the rise in the Earth’s pop-
ulation, the advent of work-from-home and the expansion of
self-generation and consumption will change the residential
load profile in the coming years and decades. In order to be
able to understand and forecast these changes, we must first
have a solid understanding of the state-of-the-art residential
electricity load profile and its modelling. This understanding
is unfortunately sorely missing, as this review has shown.
An extensive literature research, which assessed the current
state of residential load profile modelling, managed to iden-
tify only thirty two residential electricity load profile models.

At the beginning of the review, a universal definition of the
residential load profile model is constructed and the criteria
that it must fulfil are presented. Because no single search
engine contained all the publications, both Google scholar
and the Web of Knowledge are used. After filtering for
unrelated disciplines, conformation to the above mentioned
definition and duplicates, the number of relevant studies is
reduced to thirty two, a very small number when compared
with, e.g., energy consumption models (that do not differen-
tiate between electricity and fossil-fuel energy consumption)
which, according to Swan et al. [49], numbered 252 in 2009.

Up to this point, residential electricity models were only
divided into two broad categories: bottom-up and top-down
models. When the main features of all thirty two models are
considered, it becomes clear that a much more nuanced cat-
egorisation is necessary. In this review, a new categorisation
system is proposed based on the identification of the main
features of the thirty two studies. The models can be divided
into four main categories based on the a) methods used in
the model, b) the sampling rate of the model, c) the intended
application of the model and d) the statistical techniques used
in the model. Each category can then be subdivided into three
to four subcategories, depending on the forms that the model
features can take.

Future residential load profile models can be used to
research and facilitate the operation of energy neutral Smart
Houses or help reduce their electricity consumption and/or
energy bills through demand side management and load shift-
ing. They can also research and help maintain the stability
of mini- and micro-grids through load shifting or demand
forecasting of the small groups of houses, neighbour-
hoods or small villages belonging to these grids. They can
also be used as part of a larger mini- or micro-grid model or a
city-wide grid model to maintain the grid’s stability and help
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identify the best technologies that can be used to that end by
providing accurate residential electricity load profiles. Lastly,
they can be used to study how the addition of new devices,
vehicles, work-from-home, building technologies and stan-
dards will affect the residential electricity load profile and
create short and long term forecasts.

Researchers who attempt to build residential load profile
models face multiple challenges, the most important of which
are: a) the unsuitability of the BDEW SLP, b) the non-public
nature of the model source code, c) the spatial resolution of
the recorded datasets, d) the sampling rate of the recorded
datasets, e) the presence of data gaps and measurement
errors in the datasets, f) the lack of second/vacation recorded
datasets, g) the low number of recorded datasets per country
and h) the most important of all and the root of most of the
previously mentioned challenges, the privacy concerns of the
individuals who are approached to participate or are already
participating in measurements campaigns.

The majority of the previous challenges could be easily
rectified if the participants and/or the individuals asked by
researchers to join such campaigns were not concerned that
the collected data could be used to identify when individual
devices were turned On/Off in the household. These concerns
could be easily rectified by automating the anonymisation
process, thereby ensuring that no human would come in con-
tact with the recorded datasets before all spatial and identify-
ing information are removed. Erasing the raw data at the end
of the anonimisation process would further allay any concerns
that the participants or potential participants might have and
potentially increase the number of participating houses in the
process.

It is, therefore, imperative that governments and research
institutes create mechanisms that ensure the anonimisation
of the data recorded during measurement campaigns and
provide the funding necessary to do so. Another possibility
would be to encourage the public to install smart meters
with high sampling rates in their houses, while ensuring the
privacy of the participants by giving them access to their data,
restricting the access of the electricity providers to the raw
data and allowing the participants to share only as much data
as they are comfortable with. They could further encourage
a crowd-funding approach where individuals would be able
to upload their own electricity consumption datasets on a
web portal, where after all identifying information has been
stripped from the datasets, they could be made available to
researchers. A step in this direction has already been made
by the UCL Energy Institute in the UK through the Smart
Energy Research Lab project.
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