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ABSTRACT Two sets A and B, whose elements fulfill a total order on operator ≤, can have a binary
relation R ⊆ A × B represented by the k2-tree compact data structure, which greatly improves storage
space. Currently, Count query is managed by either using Range query or to modify the structure to have
aggregate information, implying additional time or space in order to perform the query. This article presents
Compact Count, which exploits the k2-tree properties to reduce the paths to be scanned to count the numbers
in a range r , thus ensuring an expected runtime of O(logk r logk n) and storage of O(logk r) with the
k2-tree parameters n and k . Our algorithm was compared through a series of experiments that consider
both synthetic data with different distributions and real data, with a solution based on the Range algorithm.
Experimental results show that Compact Count is 250 to 1,000 times faster than Range on synthetic and real
data, respectively, with a small additional storage cost, as expected by the theoretical analysis.

INDEX TERMS Algorithm, compact data structures, counting query.

I. INTRODUCTION
Abinary relation R over two sets of objects A and B is a
subset of the Cartesian product A × B, that is, R ⊆ A × B.
There are many problems in the areas of mathematics, engi-
neering, and computer science in which it is convenient to
represent properties between objects by binary relations [1].
For example, R ⊆ N × N allows representing a set of
points in a Cartesian plane (as Geographical Information
Systems or GIS) or a binary relation F ⊆ A × A can
represent the links between web pages in the World Wide
Web, assuming A as a set of web pages. It is also possi-
ble to represent a communication network or transportation
network by binary relations assuming that A is the set of
nodes or cities, respectively. Binary relations can also be
used to represent relative positions between points in a plane
(point p is to the right of point q) [2] or to represent relation-
ships between customers and products in recommendation
systems [3]. Studying binary relations like this has been very
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fruitful, as researches were made to characterize them [4],
to give new ad-hoc data structure [5], to compress them [6],
to detect anomalies [7] and to model them [8].

A series of operations on sets of binary relations have
been defined in the literature. For example, assuming that
x ∈ A and y ∈ B, some of these operations allow verifying
if two objects are related, that is, if (x, y) ∈ R, or to obtain
the set of objects related with a particular object x ∈ A,
namely, {y ∈ B | (x, y) ∈ R} (direct neighbors) or the
set of all the objects related to an object y ∈ B, that is,
{x ∈ A | (x, y) ∈ R}. Assuming a total order for both A and B
and considering the operator ≤, a very important operation
on a set of binary relations is Range, which allows obtaining
all the relations (pairs (x, y) ∈ R) between objects specified
in a range of objects from both A and B. Thus, considering
intervals [x1, x2], [y1, y2] from A and B, respectively, Range
calculates the set {(x, y) | (x, y) ∈ R ∧ x1 ≤ x ≤ x2 ∧ y1 ≤
y ≤ y2} (for example, see [9]). A variant of this operation
is Count , which allows counting the number of relations
that exist in the specified range. We define Count more
formally as
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Definition 1: Let R ⊆ A × B, [x1, x2] and [y1, y2] be
intervals from A and B, respectively, and range r = [x1, x2]×
[y1, y2] and count(r,R) = ||{{(x, y), (x, y) ∈ R ∧ x1 ≤ x ≤
x2 ∧ y1 ≤ y ≤ y2}||.
The Count query can be easily obtained from Range;

however, one may want to obtain only the number of related
elements and not the list of elements, especially in statistical
studies. It is therefore important to find an efficient way to
implement Count .

Binary relations have been traditionally represented by
data structures such as graphs, trees, inverted lists, and binary
matrices; adjacency lists and the adjacency matrix are the
most commonly used to store and process them computa-
tionally [1]. Compact data structures have currently been
proposed for storing large sets of binary relations. The data
structure binary relation wavelet tree (BWRT), based on the
wavelet tree [10] is proposed in [11] to represent binary rela-
tions. The k2-tree data structure that efficiently stores (sig-
nificant saving of memory) binary relations represented by
an adjacency matrix is proposed in [12]. Unlike compressed
data structures, compact data structures allow information to
be directly processed in its compressed state without decom-
posing [13], which makes them especially suited for use in
devices with limited capacity, such as smartphones and lap-
tops, and/or benefit from the memory hierarchy. By requiring
minimal storage it is possible to store the structure in memory
types closer to the CPU (central processing unit) and thus
improve application performance.

The objective of this research is to enhance the capacity
of k2-tree to efficiently manage the aggregate query Count
without modifying the structure.

Although there exists considerable literature about the
capacity (operations or queries) of the k2-tree data structure
(as in [12], [14], [15]), there is no efficient algorithm to
calculate Count without modifying the structure. One way
to directly calculate Count is by the Range operation (as
suggested in [13]), but, this requires unnecessary access to
several k2-tree nodes, which implies an inefficient operation.
Other solution is to incorporate additional information to the
upper part of the conceptual tree, called k2-treap [16], effec-
tively having a trade-off between memory and speed. This
solution only requires to identify the involved submatrices
in the range, as the number of points in those submatrices
are, in general, stored. This article proposes: i) an ad-hoc
algorithm (Compact Count) to calculate Count from binary
relations represented by a k2-tree without additional informa-
tion, and that benefits from the properties of the structure and
ii) a series of experiments that evaluates the performance of
Compact Count.
There are several algorithms that can benefit fromCompact

Count. For example, assuming that R ⊆ N2 is represented by
a k2-tree, a primary example is the calculation of the K ≥ 1
nearest neighbors (Increasing Radius method [1]). The num-
ber of points in square C with edge size d and circumscribing
the circumference can be calculated from a circumference
centered on q and radius d . If the number of points inC is less

thanK , the same procedure can be appliedwith a radius of 2d .
Algorithms for solving the constrained skyline problem can
also benefit [17], which is a variant of the skyline problem that
requires ranking the skyline points according to the number
of dominated points. But not necessarily we need additional
algorithms. The Count query is useful by itself. It is well
known that aggregate queries, likeCount can be useful to give
additional information for decisionmaking process [18], or to
count the number of links in or linked to a particular Web
Page to ranking it. In particular, counting relations in k2-trees
are very important, as, in both scenarios, the information is
not just sparse, but also clustered (by Tobler’s first law of
geography [19] and by alphabetical order in URLs [6]).

The remainder of the article is organized as follows.
Section II describes the k2-tree compact data structure and
previous work over aggregate queries. Our algorithm is
described in Section III. The theoretical analysis of our algo-
rithm in terms of time and storage is presented in Section IV.
Section V illustrates a set of experiments that show the behav-
ior of the algorithm. Finally, the conclusions are discussed in
Section VI.

II. BACKGROUND
The research done in this manuscript presents a way to effi-
ciently count binary relations represented in a compact data
structure called k2-tree. Let us introduce this concept and the
way that Count query has been addressed in it.

A. k2-TREE
Let us consider a binary relation represented by a binary
adjacency matrixM of size n× n, such that n is a power of k .
A k2-tree is a tree representation of thismatrixM in a compact
way:M is subdivided in k2 submatrices of nk ×

n
k . Then, each

k2 submatrix is represented by a bit whose value is 1 if at least
one cell contains a 1 and 0 otherwise (all cells are 0). Those
submatrices represented by 1 are recursively subdivided in k2

submatrices. The subdivision ends when a submatrix is found
with all its cells at 0 or when the individual cells are reached.
Fig. 1 illustrates an example of an adjacency matrix and its
respective k2-tree representation where k = 2 and n = 4.

FIGURE 1. A matrix (left) and its k2-tree representation (right). This
k2-tree is stored in bitmaps T = 1001 and L = 11011110.

Nevertheless, the tree is not stored as is. A k2-tree is
actually stored by two bitmaps called T and L. The internal
nodes whose order is established by a widthwise path are
stored in T , while leaf nodes ordered after a widthwise path
are stored in L. The values stored in the bitmaps in Fig. 1 are
T = 1001 and L = 11011110. This separation is performed
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because L does not have the additional structures to respond
to queries inherent to the compact data structures described
below because it is unnecessary [20].

Any operation over a k2-tree requires two basic opera-
tions over the bitmaps, which are typical of compact data
structures. Let B be a bitmap of size l and the operation
rankb(B, i) counts the number of bits of B whose value is
b (zero or one) to position i with 1 ≤ i ≤ l. In addi-
tion, the operation selectb(B, i) calculates the position of B
to where there are i bits with value b [13], [20]. To some
extent, select is the inverse function of rank expressed as
rankb(B, selectb(B, i)) = i.
The operation rank can be calculated in time O(1) and

select in timeO(log log n) using storage n+o(n) [20]. Storage
is used for both storing the bitmap and the additional structure
that reduces the response time of both queries. In the case of
a k2-tree, and to reduce the memory being used, this structure
is only implemented over T , which performs rank and select
queries over this bitmap.

It is possible to navigate the k2-tree using the rank opera-
tion to find the ith child of a node inside the tree. In order
to find the position of the ith child in bitmap T : L of
a node representing position x in bitmap T of the k2-tree,
equation (1) is applied as:

childi−1(x) = rank1(T , x) · k2 + i− 1. (1)

For example, for k2-tree in Fig. 1, if we want to obtain
the second child of node 3, we have that child1(3) =
rank1(T , 3) · 4 + 1 = 2 · 4 + 1 = 9. As bitmap T as only 4
positions, the second child of node 4 is in position 9− 4 = 5
of bitmap L.

B. PREVIOUS WORK
Let us, again, assume a binary relation represented by a binary
adjacency matrixM of size n× n, such that n is a power of k .
The Count query returns the amount of binary relations (1 in
the matrix) in a particular range r = [x1, x2]× [y1, y2].
Aggregate queries as Count have been considered in two

dimensional grids and, in particular, for binary relations. Let
us suppose that we need to count m relations. For example,
inwavelet trees, which are a compact way to represents grids,
Count query can be resolve in O(logm) time. The algorithm
involves traversing thewavelet tree. It is possible to consider a
time of O( log n

log log n ) using a modification of this structure [21].
Now, in the structure considered in this research,

as explained in [13], the standard (and naïve) way to compute
Count in k2-tree is to use Range query (i.e. traversing the k2-
tree). This implies to retrieve all the relations m inside the
range r , which has a worst-case scenario of O(|r| + logkn)
and average of O(

√
m) [12].

An interesting alternative was given in [16]. In that work,
Brisaboa et al. worked with two-dimensional geographic
information (or OLAP cubes). In particular, the information
managed can be seen as a two dimensional grid with values
in the range [0, d − 1]. A compact data structure called k2-
treap is presented, where the topology of the positive values is

stored in a k2-tree, and additional information (as the positive
values of the leaves and aggregate data in the internal nodes)
are stored separately. Again, the base structure is modified in
order to obtain better results in aggregate queries.

In practice, every upper node in the tree stores information
for the Sum and Count query, but in an efficient way (storing
just the difference between the current node and its parent).

In the experimental section, it is shown that storing aggre-
gate information in the first 8 to 16 levels of the tree signif-
icantly improves the speed of Count query, but permanently
sacrificing store space (below 30%).

In conclusion, solutions to aggregate queries have implied
modifying the original structure. As our objective is to speed
upCount query in k2-tree without adding additional informa-
tion to the compact data structure, this solution is out of our
scope.

III. PROPOSED ALGORITHM: Compact Count
In this section, we describe our algorithm (Compact Count)
to calculate the number of elements (relations or cells at 1)
within a query range r = [x1, x2] × [y1, y2] over a set of
stored data in a k2-tree. The algorithm exploits the properties
of the k2-tree to discard as quickly as possible zones of the
adjacency matrix that do not intersect with range r , which
reduces the number of accesses to the k2-tree nodes.

One of the properties of the k2-tree that exploits the algo-
rithm is established in the following lemma:
Lemma 1: Leaves of any k2-tree node, which represent

1× 1 cells, are adjacent to each other within bitmap L.
Proof: As previously indicated, the k2-tree nodes are

represented within bitmap T : L (bitmap T concatenated
with bitmap L) by performing a widthwise path through the
tree. This implies that the leaf nodes of any submatrix are
represented in adjacent locations within bitmap T : L. There-
fore, the leaf nodes (1×1 cells) are represented contiguously
within bitmap L.

Due to Lemma 1, it is possible to count the relations within
a submatrix of the k2-tree. The procedure implies to identify
in which position in L the first and last descendant is found
and obtain the number of 1s between these two positions by
the rank1 operation. For example, to count the number of 1s
in the second non-empty submatrix ([2, 3]× [2, 3]) of Fig. 1,
the k2-tree is descended until the fifth and eighth bit of L is
reached.

This property of the k2-tree is used by Compact Count to
identify what we call maximum quadrants that constitute the
range and to count the relations that each of them contains,
as previously described.
Definition 2: A maximum quadrant for range r is a

squared submatrix of the k2-tree that is completely contained
within r , but its parent node does not meet this condition.
In Fig. 2, for range r = [0, 6] × [0, 5] of the query (high-

lighted in yellow), submatrix s = [0, 3]×[0, 3] is a maximum
quadrant. It should be noted that s is completely contained
in r ; however, the matrix on the level immediately above
(matrix [0, 7]× [0, 7]) of which s is one of the k2 children is
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FIGURE 2. Example of Compact Count execution.

not a maximum quadrant. Similarly, submatrix [0, 1]× [4, 5]
is a maximum quadrant, but submatrix [0, 3]× [4, 7] is not.

Therefore, let |M | be the number of maximum quadrants
that comprise range r .
Lemma 2: The number of relations in a range is the sum

of the number of relations in each maximum quadrant that
comprises it.

Proof: A range is comprised by one or more maximum
quadrants. Given that the maximum quadrants are quadrants
of the k2-tree, the relations contained in them do not intersect
each other. Therefore, the sum of the number of relations that
each maximum quadrant contains is the total relations of the
range.
Let p be the number of relations contained within r and mi

is the number of relations within the ith maximum quadrant
that comprises it. Since r is comprised by |M | maximum
quadrants, it can be determined that:

p =
|M |∑
i=1

mi. (2)

This last statement is clear, as in Fig. 2, we have 12 max-
imum quadrants: s1 = [0, 3] × [0, 3], s2 = [0, 1] × [4, 5],
s3 = [2, 3]× [4, 5], s4 = [4, 5]× [0, 1], s5 = [4, 5]× [2, 3],
s6 = [4, 5] × [4, 5] plus the individual relations [j, 6], with
j ∈ {0, . . . , 5}. In this case, we have p = 2+ 1+ 0+ 1+ 0+
3+ 0+ 0+ 0+ 1+ 0+ 0 = 8.

A. HOW TO COUNT RELATIONS WITHIN A QUADRANT
Let N be a submatrix or quadrant represented by an internal
node of the k2-tree and indexed by j in bitmap T . The objec-
tive of this algorithm is to calculate the number of 1s in N .

Equation (1) describes how to navigate in the k2-tree using
bitmap T : L, descending to search for the location of the ith
child. This is how to descend from an N submatrix to the first
and last descendent leaf within L by iteratively using (1) to
locate the first child node (child0(j)) and the last child node
(childk2−1(j)).
The problem with (1) is applying it over an empty node,

which is a node that represents a submatrix with all its cells

at zero; for example, [0, 1] × [2, 3] in Fig. 1. Therefore,
it is important to not only identify the first/last descendant
for each navigated level in the k2-tree but also to locate the
first/last non-empty descendant for each level.

Therefore, if T : L[child0(j)] = 0, we can actually get
the first non-empty child of a node located within T : L in
position j considering:

firstChild(j) = select1(T , rank1(T , child0(j))+ 1) (3)

The rank function over the location of the first child indi-
cates the number of 1s existing before locating the first child.
To locate the first non-empty child, a unit must be added to
the result of the rank function and then the select function
must be applied to obtain the searched location.

For example, in Fig. 2, if we need to get the first
non-empty child of node 0, first we consider child0(0) =
rank1(T , 0) · 4 + 0 = 4. But as T [4] = 0, then we need
to use firstchild(0) = select1(T , rank1(T , child0(0)) + 1) =
select1(T , rank1(T , 4)+ 1) = select1(T , 4+ 1) = 7.

In the same way, it is possible to obtain the position of
the last non-empty child of a node located within T : L in
position j:

lastChild(j) = select1(T , rank1(T , childk2−1(j))) (4)

The rank function over the location of the last child indi-
cates the number of 1s existing before locating the last child.
It is possible to obtain the location of the last non-empty child
after applying the select function.

For example, in Fig. 2, the last non-empty child of
node 3 is lastChild(3) = select1(T , rank1(T , child3(3))) =
select1(T , rank1(T , 19)) = select1(T , 9) = 16.
Algorithm 1 presents the getN function, which counts the

relations within a submatrix represented within bitmaps T : L
in position j. Overall, after verifying that the submatrix is
neither leaf nor empty, the algorithm iteratively descends to
identify the first and last non-empty descendant for each level
of the k2-tree until it reaches the leaf level. Finally, in line 19,
the difference of rank between the last and first position is
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applied. This operation determines the value of the number
of 1s (relations) existing within the submatrix.

As previously explained in Subsection II-A, bitmap L has
not additional structures to respond rank queries. This implies
that to execute line 19, the additional structures must be
extended to allow the application of the rank operation over
L in constant time.

B. HOW TO COUNT RELATIONS WITHIN A RANGE
As explained, to count the relations within a query range in a
k2-tree indexed matrix, the maximum quadrants must be first
identified and then the relations counted using getN over each
of them.

Algorithm 1 getN(T : L, j)

Input: T : L bitmap that represents k2-tree internal nodes
Input: j position in T : L that represents the submatrix
Output: number of relations inside the submatrix
1: if j is a leaf then
2: return L[j]
3: end if
4: if T [j] = 0 then
5: return 0
6: end if
7: firstChild = j
8: lastChild = j
9: while firstChild is not a leaf and lastChild is not a leaf

do
10: firstChild = child0(firstChild)
11: if firstChild is not a leaf then
12: firstChild = select1(T , rank1(T ,firstChild)+ 1)
13: end if
14: lastChild = childk2−1(lastChild)
15: if lastChild is not a leaf then
16: lastChild = select1(T , rank1(T , lastChild))
17: end if
18: end while
19: return rank1(T : L, lastChild) − rank1(T :

L,firstChild)

To identify the maximum quadrants, a queue is used to
store those submatrices that intersect with both range r of the
query and its complement in order to examine their children.
The first submatrix to enter is the root, which represents the
complete matrix. Each extracted submatrix N is subdivided
into its k2 childrenNi, 1 ≤ i ≤ k2, which are verified for their
relation to r to define the action to be performed with Ni:
• Ni ⊆ r (Ni is contained in range r): getN is applied over
Ni and 1s are added in Ni to the total of 1s in r .

• (Ni 6=⊆ r)∧ (Ni ∩ r 6= ∅) (Ni intersects r without being
contained therein): Ni enters the queue.

• Ni ∩ r = ∅ (Ni does not intersect r): Ni is discarded.
The algorithm ends when the queue is empty.
The following data are saved for each stored submatrix:
〈(x, y), l, i 〉 where (x, y) are the coordinates of its corner

nearest to the origin, l is the size of its edge, and i is the index
that represents the submatrix in bitmap T : L.

Algorithm 2 CompactCount(k2 tree k , Range r)

Input: k k2 tree
Input: r query range
Output: number of relations inside r
1: total = 0
2: queue = ∅ {Process queue}
3: queue = queue∪{k.root} {An object 〈(0, 0), k.n,−1〉 is

added to the queue queue}
4: while queue 6= ∅ do
5: N = queue.top
6: for each child Ni in N do
7: if Ni 6= ∅ then
8: if Ni ⊆ r then
9: total = total + getN (k.T : L,Ni.x)
10: else
11: if Ni ∩ r 6= ∅ then
12: queue = queue ∪ Ni {The object

〈(xNi , yNi ), lNi , iNi isadded〉}
13: end if
14: end if
15: end if
16: end for
17: end while
18: return total

The Compact Count pseudocode is presented in Algo-
rithm 2. Whether or not Ni intersects r is confirmed in line 7.
If it does not intersect, it is immediately discarded. In the
case that it does intersect, it is revised to determine if Ni is
completely contained in r (line 8) or not (line 11). In the
first case, getN is applied, while Ni enters in the queue in
the second case.

C. AN EXAMPLE
Fig. 2 illustrates an example of an 8 × 8 matrix in which
a range of r = [0, 5] × [0, 6] is delimited within it. Its
representation in a k2-tree and implementation in its respec-
tive bitmaps T and L also appear. Marked spaces in both
representations show the path the algorithm must follow to
find the number of relations that exist within the range.

TABLE 1. Execution of Compact Count over the k2-tree of Fig. 2.

Table 1 shows the steps performed by the algorithm to
count the 1s within the range marked in Fig. 2. For this
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example, the nodes that enter the queue are represented using
the same format described in Section III-B.

The root is initially inserted in the queue. After revising
its children, node 1 is completely within the range; therefore,
the getN function is applied to obtain the number of 1s, two
in this case. The other three submatrices enter the queue.

There are two children in node 2 that are completely within
the range and two outside. Of the twowithin, one is empty and
the other (node 6) adds a 1 to the total. getN defines whether
the node is empty or not.

When the algorithm revises node 3, two nodes are com-
pletely within the range and two intersect it. One of the nodes
completely contained within the range is empty. The other
(node 8) adds another 1 to the total of 1s. Nodes 9 and 10 enter
in the queue.

As for node 4, one node is completely contained within the
range and another intersects it. The node that is completely
contained adds three 1s to the total, while the intersecting
node is empty.

When revising nodes 9 and 10, node 9 does not contribute
any new relation (1s) to the total and node 10 contributes one
for a total of eight relations.

IV. ANALYSIS
A. TEMPORAL ANALYSIS
The cost of counting the number of relations (1s) within a
submatrix N defined in the k2-tree must be determined at the
start. In this case, cost is measured on the basis of the number
of rank and select operations performed.
Lemma 3: Counting the number of relations (1s) within a

submatrix N is O(h), where h is the height of the submatrix.
Proof: The actions of accessing both the first and last

non-empty child node isO(1) because it involves atmost three
rank/select operations for each one. These operations must
be repeated h times for each level of the tree to descend the
k2-tree to the leaves. This is equivalent to a cost of 6h = O(h).

The temporal cost of obtaining the number of relations
(1s) within a range r is defined by the sum of the cost of
identifying the maximum quadrants (TgetM ) and the cost of
counting the 1s within these quadrants (TcountM ) is

T = TgetM + TcountM (5)

Given Lemmas 3 and (2), it can be concluded that the cost
of counting the 1s within each of the maximum quadrants
constituting range r is

TcountM = 6
|M |∑
i=1

hi, (6)

where hi is the height of the ith maximum quadrant
(0 < hi ≤ H and H is the height of the k2-tree).
To identify all the maximum quadrants, it is necessary

to descend from the root of the k2-tree to where each of
the |M | maximum quadrants is located. For each maximum
quadrant Ni, H − hi levels must be traversed from the root to

height hi of each quadrant. Therefore, the cost of identifying
all the maximum quadrants is

TgetM =
|M |∑
i=1

(H − hi) = |M |H −
|M |∑
i=1

hi. (7)

Considering (5), (6) and (7), we obtain that

T = |M |H −
|M |∑
i=1

hi + 6
|M |∑
i=1

hi = |M |H + 5
|M |∑
i=1

hi. (8)

Recalling that hi ≤ H , it can be concluded that
∑|M |

i=1 hi ≤∑|M |
i=1 H = |M |H . In addition, H = logk n, where n is the

matrix size, and applying this to (8), the temporal cost of
Compact Count is limited by

T (n) ∈ O(|M | logk n). (9)

The temporal cost ofCompact Count depends on the height
of the k2-tree (thus the size of the matrix), and mainly on
the number of maximum quadrants that constitute the range.
Therefore, the temporal cost does not directly depend on the
number of relations (1s) in the range but on their distribution.

When the empty maximum quadrants are larger and more
numerous, the temporal efficiency of Compact Count is
better.

B. SPATIAL ANALYSIS
Additional storage (not including storage occupied by the
k2-tree) that is required by Compact Count is determined by
the storage occupied by the queue tomaintain the submatrices
that intersect r but are not completely contained in r . The
quadrants maintained in the queue are the ancestors of the
maximum quadrants. At any level, submatrices are those
without non-empty children. For each submatrix removed
from the queue, it will reinsert at least one submatrix provided
it also has a maximum quadrant descendant. The re-entry of
submatrices in the queue can only reach the parents of the
maximum quadrants since, by definition, maximum quad-
rants do not enter in the queue. Assuming that the maximum
quadrants |M | that constitute the range come from different
parents, it can be concluded that the queue can have at most
|M | elements.

This value can decrease because there can be maximum
quadrants that are siblings and maximum quadrants whose
ancestors were empty.

It is also important to consider the additional space
required by the k2-tree to respond to the rank query over
bitmap L. This requires space of order o(n), which is small
compared with the queue.

C. BEST CASE
The key variable that determines both the temporal and spatial
cost is the number of maximum quadrants |M |within range r .
Therefore, the best case minimizes this value. The lowest
value for |M | is 1. This occurs when r is a submatrix of the
k2-tree, regardless of its size. If r covers a quadrant equivalent
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to 1
k2

of the matrix, the cost will be similar to when r covers
only a 1× 1 quadrant.
The temporal cost in this best case scenario is O(logk n),

which represents the descent from the root to identify the
maximum quadrant and the subsequent descent to the leaves
to identify the first and last descendant to finally perform the
count.

In the best case of spatial cost, there will only be one
submatrix for each iteration that meets the condition to enter
the queue: the ancestor of the maximum quadrant. For each
descended level until reaching the particular quadrant, only
one submatrix will be within the queue. Therefore, spatial
cost is O(1).

D. WORST CASE
As explained in the previous subsection, the key variable that
determines both the temporal and spatial cost is the number
of |M | maximum quadrants. Therefore, the objective is to
maximize |M |.

If we want the worst case with regard to the size of the
query range r , selecting any straight line will ensure that we
will have as many maximum quadrants as the size of the
range. These are the temporal and spatial costs, which are
O(r logk n) and O(r), respectively.

Since our query does not usually depend on the size of the
range, we try to maximize cost with regard to the matrix size.

We try to obtain the highest number of maximum quad-
rants. Starting at the root and if we want to descend to the
highest number of quadrants (k2 at this point), we must
have a minimum query range of 2 × 2 and a maximum of
n − 1 × n − 1, both centered. At the next level, we have
4 · (k − 1) quadrants to descend (considering that the four
quadrants in the center would be maximum quadrants). This
query goes from n

2+1×
n
2+1 to n−1×n−1, both centered.

Continuing with the previous logic, we can obtain the range
of a larger query to be n−1×n−1, as shown in the example
of Fig. 3.

FIGURE 3. Specific example of worst case for Compact Count.

Lemma 4: The number of maximum quadrants for the
worst case is O( nk ).

Proof:
Based on the previous explanation, the number of quad-

rants that are added per level is qi = (qi−1−4)·k+4·(2k+1).

This occurs because the quadrants in the center of level i are
always maximum quadrants; therefore, only the peripheral
quadrants are added in the level. For each quadrant of the
previous level that is not found in the corner (i.e., qi−1 − 4),
k quadrants are added in this level. For each corner quadrant
(exactly four), 2(k + 1) are added. The base case of this
recurrence equation is q2 = k2 because no quadrants are ever
in the n− 1× n− 1 range at levels 0 and 1.
The recursive equation is solved by:

logk n∑
i=2

qi =
logk n∑
i=2

k i + (4k + 4)

×

logk n−3∑
i=0

(logk n− 2− i)k i = O
(n
k

)
. (10)

As an alternative solution, the approximation qi = O(k i)
can be considered if the recurrence is solved by changing
the variable and the master theorem (theorem for solving
recurrence equations), which leads to the same result as
expressed by:

logk n∑
i=2

qi =
logk n∑
i=2

O(k i) = O
(n
k

)
. (11)

The cost of both temporal and spatial Compact Count is
therefore O

( n
k logk n

)
and O

( n
k

)
, respectively.

E. EXPECTED CASE
To study the expected case, we can perform an analysis
similar to the previous worst-case scenario. Assuming that
the query range is squared, simply stated as r = x × x, this
implies that the largest quadrant that fits in that range has a
height of logk n−blogk xc. Likewise, we will use the variable
0 < δ ≤ 1, which represents the density (i.e., m

n2
) of the

k2-tree to assume howmany quadrants can be empty per level.
Therefore, qi = δ · ((qi−1 − 4) · k + 4 · (2k + 1)). If we solve
the recurrence equation by changing the variable and master
theorem, we will obtain the following three results.
• If δ · k > 1, then qi = O((δ · k)i).
• If δ · k = 1, then qi = O(i).
• If δ · k < 1, then qi = O(1).
Therefore, the number of maximum quadrants, depending

on δ, is

dlogk xe∑
i=2

O(qi) =



O(x · δlogk x − δ · k) if δ · k > 1,

O(log2k x) if δ · k = 1,

O(logk x) if δ · k < 1.

(12)

The temporal and spatial cost ofCompact Count increases:
• If δ · k > 1, then the temporal cost is O((x · δlogk x − δ ·
k) · logk n) and the spatial cost is O(x · δlogk x − δ · k).
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• If δ · k = 1, then the temporal cost is O(log2k x · logk n)
and the spatial cost is O(log2k x).

• If δ · k < 1, then the temporal cost is O(logk x · logk n)
and the spatial cost is O(logkx).

V. EXPERIMENTAL RESULTS
In this section, we present and discuss the results of a series
of experiments that show the performance of our algorithm
against the solution based on Range.
As stated in section II, Range query is the standard way

that k2-tree manages counting the relations represented in it.
Also, as our objective is not to modify the structure, but to
enhance the capacity of k2-tree, we exclude any modification
of the structure in this section, as k2-treap [16]. In particular,
the study of modifications of base structures for aggregate
functions (as in [16] and [21]), use traversing the structure as
a baseline to its studies.

Both runtime and additional memory (excluding storage of
the k2-tree structure) used by the algorithms for each given
data set were measured in the experiments. Synthetic and
real data sets were used. Relations were represented by the
ordered pair (x, y) with 0 ≤ x, y ≤ n within the n × n
matrix. The algorithm was implemented in the C and C++
language. We used the implementation of the k2-tree and
Range available in the library indicated in [20].

Data structure k2-tree performs well (in terms of space
and execution time), when the represented matrix has a
very low amount of 1s (sparsed matrix) and/or the rela-
tions represented are clustered [1]. In order to study the
effects of density and distribution of relations (amount 1s/n2)
we evaluate sets of synthetic data with different distri-
butions (uniform and clustered) and considering different
densities.

We also evaluate our algorithm in real case scenarios.
In order to do that, we use real data sets (snapshots)
from World Wide Web graph from .uk, obtained between
June 2006 and May 2007 [15]. Eleven indexed sets in a
k2-tree were used on a 1, 000, 000× 1, 000, 000 matrix with
a mean of 2,240,878 relations (1s). These data sets have been
used in different researches as [15] and [1].

The experiment was performed on a server with four
Intel(R) Xeon(R) CPU E3-1225 3.30GHz processors with
8192 KB of cache memory. The clock() function from
the times.h library implemented in C was used to measure
time. The shell script command /usr/bin/timewas used
to measure memory, whose -f option allows obtaining the
memory peak used by each process. The resources used
during reading/writing of the data were not considered in the
measurement.

Runtime and memory usage presented in the following
graphs and tables are the average of ten measurements of
execution for each data set evaluated. In the case of config-
urations over synthetic data sets (distribution, amount, range
values), we randomly generated ten data sets with different
points.

A. RUNTIME
1) NUMBER OF RELATIONS (1s)
The effect of the number of relations (1s) over the algo-
rithms was measured in these experiments. In this scenario,
the matrix size was set at 65, 536 × 65, 536 and the query
range r at [1, 65535] × [1, 65535]. The size of r represents
the worst scenario for Compact Count.

Table 2 and Fig. 4 show the runtime of the algorithms for
each set and distribution. According to the results in Table 2,
Compact Count performs better than Range in both distribu-
tions. More specifically, Compact Count is 96 times faster
on the average than Range (minimum 19, maximum 213)
for uniform data sets and 195 times faster on the average
(minimum 42, maximum 399) for sets with clustered dis-
tribution. Moreover, both algorithms exhibit better behavior
in clustered versus uniformly distributed sets. In the case of
Compact Count, it was three times faster for clustered sets
than uniformly distributed sets (see Fig. 4).

TABLE 2. Response time (ms) for number of relations (1s) in r .

FIGURE 4. Response time (ms) for number of relations (1s) for each
distribution in Compact Count

Data in Table 2 demonstrates the effects of the number
of relations (1s) in the performance of both algorithms. The
number of 1s has a greater negative effect on Range because
of the increased number of branches of the k2-tree it has to
explore to count the 1s in the leaves. In contrast, Compact
Count must descend the k2-tree twice for each maximum
quadrant, regardless of the number of 1s it contains. Compact
Count worsens only as the number of non-empty quadrants
increases. The increase in non-empty quadrants is slower in
the clustered than in the uniform distribution, which leads to a
much lower response time forCompact Count in the clustered
distribution.
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2) SET DENSITY
The previous group of experiments does not clearly show
the effect of density on the performance of the algorithms.
It precisely focuses on evaluating the performance of the
algorithms subjected to different densities of the sets of rela-
tions. Therefore, matrix size was set at 22, 360×22, 360 and
range r at [1, 22359]×[1, 22359], which represents the worst
case of Compact Count.

Table 3 and Fig. 5 show the runtime of both algorithms
for each studied distribution. Based on the data in Table 3,
it can be stated that Compact Count was 90 and 178 times
faster on the average than Range for sets with uniform and
clustered distribution, respectively; these averages are very
similar to those reported in Table 2 for the same distribu-
tions. According to Fig. 5, Compact Count benefits more
from clustering than Range. The effect of density on the
performance of the algorithms is explained by the same
phenomena described in the previous group of experiments
(see Section V-A0.a).

TABLE 3. Response time for density (ms).

FIGURE 5. Response time for density for each distribution in Compact
Count.

3) MATRIX SIZE
The aim of this group of experiments is to show the effect of
matrix size on the runtime of the algorithms. This involved
matrix sizes of 8, 192× 8, 192, 16, 384× 16, 384, 32, 718×
32, 718, and 65, 536×65, 536 (see Table 4), sets of 10million
relations (1s), and a query range r [1, 8191]× [1, 8191].
Table 4 shows that response time usually decreases for

both algorithms as matrix size increases. However, Compact
Count was 48 and 78 times faster on the average than Range
for the uniform and clustered distribution, respectively. Fig. 6
illustrates that Compact Count is approximately two times
faster in sets with clustered data than sets with uniform
distribution. Density decreases asmatrix size increases, main-
taining the number of relations constant; this increases the

TABLE 4. Response time for matrix size (ms).

FIGURE 6. Range size response time for each matrix size in Compact
Count.

probability of empty quadrants (without 1s), which lever-
ages both algorithms to their advantage. Results in Table 4
and Fig. 6 are consistent with those in Table 3 and Fig. 5,
respectively.

4) VARIATION IN SIZE OF QUERY RANGE r
The purpose of this group of experiments is to show the effect
of the query range size on the runtime of the algorithms. Both
the matrix size (65, 536×65, 536) and the sets (10million 1s)
were constant. The size of r was established as a percentage
between the size of r and matrix size. The studied ranges
were 0.01%, 0.1%, 1.0% 10%,25%, 50%, 99%, and 100%.
Squared ranges whose centroids coincide with the centroid
of the matrix were considered.

TABLE 5. Response time for range size (ms).

Table 5 shows thatCompact Count is far superior toRange.
It should be noted that as the size of range r increases,
the advantage of Compact Count is emphasized. Excluding
the case in which r is 100% of the matrix size (best case
for Compact Count), Compact Count was between 2 and
258 times faster than Range. Even in the worst case for
Compact Count (99%), it was 73 times faster than Range.
In the 100% case, Compact Count was 380,000 (uniform
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distribution) and 324,000 (clustered distribution) times faster
than Range.

The differences are explained by the fact that as the size
of r becomes larger, the number of maximum quadrants in the
first levels of the k2-tree increases and Compact Count must
perform only two descents per maximum quadrant to count
the number of 1s. In contrast, Range must perform a descent
for each 1 within r , and the number of descents increases as
the size of r increases.

Fig. 7 illustrates once again that Compact Count is more
efficient for clustered data, and the difference significantly
increases as the range approximates matrix size. When con-
sidering a range r with a size of 100%, the response time of
Compact Count decreases rapidly.

FIGURE 7. Response time for range size for each distribution in Compact
Count.

5) REAL DATA
The objective of this group of experiments is to evaluate
the runtime of the algorithms using real data sets, which are
described in Section V. Squared ranges with different sizes
and whose centroids coincide with the centroid of the matrix
were evaluated (see Table 6).

Table 6 demonstrates the difference in runtime between the
algorithms. More specifically, Compact count was approxi-
mately 900 times faster than Range.

TABLE 6. Response time of range size (ms) based on real data.

B. ADDITIONAL MEMORY USED BY THE ALGORITHMS
Additional memory required by the algorithms was also mea-
sured in all the experiments (excluding storage occupied by
the k2-tree). Given synthetic data in both the uniform and

clustered distribution, additional memory in all the experi-
ments was maintained between 20 KB and 120 KB for both
algorithms. In most cases, Compact Count required more
memory than Range, with a maximum of 60 KB additional
memory required by Compact Count. The experiments also
showed the scalability of both algorithms in additional stor-
age against all the studied variables.

In the real data scenario, additional storage was between
10 KB and 40 KB for both algorithms. Compact Count
reached a maximum of 40 KB and Range a maximum
of 25 KB.

VI. CONCLUSION
The algorithm called Compact Count is proposed in this
article to count the number of relations (number of 1s) found
in a query range r over a binary relation represented in the
k2-tree compact data structure. The algorithm benefits from
the widthwise path performed from the k2-tree to generate
bitmaps T and L. The runtime of the algorithm is limited by
O(logk r logk n) and additional storageO(logk r) with r as the
query size and n and k as the k2-tree parameters.

Through a series of experiments, we evaluated the perfor-
mance of Compact Count and compared it with the Range
algorithm, which is an adaptation of the algorithm that recov-
ers and counts all the relations (1s) in range r . When eval-
uating synthetic data, the experiments show that Compact
Count was 250 times faster than Range depending on the
distribution, size of r , set size, density, and matrix size.
When evaluating real data, speed increased to approximately
1,000 times for Compact Count. The runtime advantages of
our algorithm involve a minimal cost for additional storage
that varied between 50 KB and 120 KB, which was generally
slightly higher than the one required byRange. Themaximum
difference required by Compact Count over the additional
memory consumed by Range was 60 KB.

An alternative to solve the Count problem for the k2-tree
is to store aggregate information to the tree, alternative called
k2-treap. This would reduce the query time of T = TgetM +
TcountM to T = TgetM (time to obtain maximum quadrants).
Saving time depends on the height of the maximum quad-
rants (the higher they are, the more time saved); however,
in absolute terms, this does not imply an asymptotic decrease
in query time, which is still O(|M | logk n). Furthermore, for
a space-efficient implementation of the structure, the number
of points should only be stored in the upper quadrants. In an
average case, this means that the temporal acceleration does
not exceed O(logk n). Given that our objective is to extend
the capabilities of the k2-tree, we seek to minimally modify
the structure. We therefore consider that our alternative is
more suitable for this objective (mainly because the k2-tree
implementations currently in use already have the structure
for rank and select in the L array).

Given the properties of the compact data structures, such as
the k2-tree, these are emerging as very useful tools for storing
and processing large volumes of data directly into memory.
Our algorithm is an extension of the processing capabilities
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of the k2-tree. It can benefit other algorithms that need to
directly process this query over compressed data within this
compact data structure.
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