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ABSTRACT Generally, fingerprint-based indoor localization works inefficiently when deployed in a
large-scale area. This is because it consumes massive resources and takes long processing time for searching
the exact location in the large fingerprint database. Moreover, the changing environment can degrade overall
performance. To tackle these problems, we propose an adaptive indoor localization system for a large-scale
area. Our system consists of three main parts. First, our area classification algorithm is the key to overcome
the problem caused by the large-scale area. It identifies an area of the user’s queries whether they are
outdoor or located in a specific building. Specifically, the algorithm can filter out the queries sent from
outdoor or out-of-scope areas. Then, the information of this part is sent to the next part. Second, our
fingerprint-based indoor localization algorithm can utilize the information from the first part by searching
only the fingerprint in the specific building. This can significantly reduce searching space and processing
time in order to localize the exact location. Third, our missing-BSSID detector algorithm detects the missing
Basic Service Set Identifiers (BSSIDs) in the incoming query and updates a sampling database. This part is
for our system to quickly adapt to the changing environment. We evaluated and deployed our system in a
large-scale exhibition including 37multi-floor buildings, covering 486,000m2 and generating approximately
600,000 records of queries from users. In addition, we created a simulation to evaluate our system in the
critically-changing environment. Our proposed system achieves high accuracy. More importantly, our area
classification algorithm can significantly reduce the overall processing time compared to the previous work.
Also, we showed that when applying our missing-BSSID detector algorithm to our system as well as other
existing systems, the overall system performance can be significantly improved.

INDEX TERMS Area classification, fingerprint, indoor localization, indoor localization system, large-scale,
Wi-Fi.

I. INTRODUCTION
Recently, there have been several techniques proposed for
indoor localization. These techniques can be classified into
two categories. The first category is the group of techniques
that use Bluetooth [1]–[4], Zigbee [5], Radio Frequency Iden-
tification (RFID) [6]–[10], Acoustic Signal [11], Wi-Fi probe
request [12], [13], Channel State Information (CSI) [14] and
Signal to Noise Ratio (SNR) [15]. These techniques require
installation of infrastructure in advance, leading to expensive
cost.

The second category is the group of techniques that do
not require the pre-installation of infrastructure [16]–[35].
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In [16]–[19], embedded sensors in smartphones such as
accelerometer and gyro sensor are applied to count user’s
steps and track user’s direction. Although this technique does
not require the pre-installation of infrastructure, it still suf-
fers from a cumulative error problem. In [20], [21], Global
System for Mobile (GSM) is utilized for indoor localiza-
tion. This technique uses the existing cellular infrastruc-
ture and achieves high accuracy for localization. However,
many smartphone models limit access to GSM data [20].
Thus, the smartphone models cannot utilize GSM for indoor
localization. In [22]–[25], geomagnetic is applied for indoor
localization. This technique measures disturbance of the
Earth’s magnetic field affected by steel elements in the build-
ing. However, the variation of steel object’s position in the
building can cause low accuracy for indoor localization.
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Among techniques in this category, the most popular tech-
nique is Wi-Fi fingerprint.

The Wi-Fi fingerprint can provide high accuracy for both
2D and 3D localization [16], [26]–[35]. This technique uses
the existing Wi-Fi infrastructure which is normally pro-
vided in public buildings. Furthermore, a Wi-Fi interface is
embedded in users’ smartphones. Thus, this technique can
be deployed without installing additional infrastructure and
users are not required to carry any special devices. Wi-Fi
fingerprint has the assumption that, in each area, there exists a
unique signal fingerprint. The process can be divided into two
phases: a training phase and a localization phase. First, in the
training phase, one needs to survey signal fingerprints in
the target area and store those fingerprints into the database.
Second, in the localization phase, the localization algorithm
is needed in order to compare Wi-Fi scanning results with
the information in the database. Then, the algorithm returns
the matching position. However, when applying the Wi-Fi
fingerprint technique in the large-scale area, such as a big
exhibition or convention centers, it suffers from the following
problems.

1) Long processing time: The target area needs to cover
many floors and buildings. As the size of the target area
increases, the number of signal fingerprints in the database
increases. As a result, the fingerprint technique consumes
massive resources and takes long processing time.

2) Waste of resources: In practice, users are able to query
for their location from any location including indoor (say,
within scope area) and outdoor (say, out-of-scope area). In the
case of query from outdoor, the traditional fingerprint tech-
nique wastes resources and processing time for searching
fingerprints in all of the database. This is because it cannot
find the fingerprint which is similar to the query. Moreover,
in some cases, it may return an incorrect indoor location
because the query, which is actually from the outdoor loca-
tion, is similar to the signal fingerprint at that indoor location.

3) Performance degradation due to the changing environ-
ment: In a large-scale area such as a big exhibition, Wi-Fi
signal fingerprint may be changed occasionally due to many
reasons such as removing and installing new Wi-Fi access
points or hotspot. These reasons can significantly reduce
accuracy of the Wi-Fi fingerprint technique.

Previously, an area classification algorithm [26], [36]–[38]
has been proposed to classify an area of the user which
can be indoor, outdoor [36], [37] or located in a specific
building [26], [38]. These area classification algorithms can
identify a user’s area to reduce searching space and com-
putation. However, they do not consider the effect of the
changing environment. The detailed discussion can be found
in Section II. Briefly, the changing environment is one of
the most important issues when applying the area classifica-
tion algorithms in a large-scale exhibition. This is because
the users may carry Wi-Fi hotspot for sharing internet to
other devices, new Wi-Fi access points may temporarily be
installed for exhibition’s purposes, or some Wi-Fi access
points may disappear due to the closed offices.

In our previous work [27], we proposed DiffHit, the
fingerprint-based floor localization algorithm. DiffHit pro-
vides high accuracy (up to 100% of accuracy) compared to
the existing fingerprint-based algorithm [28]. In this article,
we extend our previous work and propose a new adaptive
indoor localization system for a large-scale area to tackle
all of the three above-mentioned problems. Our system con-
sists of three parts. The first part is a new area classifi-
cation algorithm named ExtHit. It can identify an area of
the user whether it is indoor or outdoor. ExtHit filters out
the queries sent from outdoor (say, out-of-scope) location,
so there is no exhaustive searching in all of the database.
Moreover, ExtHit does not require an outdoor fingerprint
which can increase manpower to collect fingerprints. It can
reduce searching space and processing time in the large-scale
database by classifying fingerprints into specific buildings.
The second part is a fingerprint-based indoor localization
algorithm named InHit. It uses the information from ExtHit
to reduce searching space and processing time in order to
localize the exact location inside the specified building. The
third part is a missing-BSSID detector algorithm named
MissingHit. It detects the missing BSSIDs in the incom-
ing query and updates a sampling database. Thus, the sam-
pling database or the fingerprint database can adapt itself
to the changing environment. Our ExtHit is flexible. It not
only works perfectly with our InHit, but it is also compat-
ible with other fingerprint-based indoor localization algo-
rithms. Moreover, our MissingHit is also compatible with
other fingerprint-based area classification algorithms and
fingerprint-based indoor localization algorithms. Our sys-
tem has been tested in a real large-scale exhibition which
includes 37 multi-floor buildings, covers more than 486,000
m2 and generates more than 600,000 records of queries
from users. The exhibition area is shown in Figure 1. The
results show that ExtHit achieves high accuracy for identi-
fying the user’s location whether it is indoor, outdoor or in
a specific building. Therefore, it can limit searching space,
leading to significantly-reduced processing time. According
to the experiment results, our MissingHit can significantly
improve the accuracy of ExtHit, InHit and other existing area
classification algorithms and indoor localization algorithms.
Besides, ExtHit is robust to heterogeneity, i.e., heterogeneous
mobile devices and critically-changing environment.

Our contribution in this article is fourfold. First, we pro-
pose the area classification algorithm named ExtHit.
The algorithm consists of three modules as follows:
(1) The unknown-BSSID filtering module removes an
unknown-BSSID in the user’s query because these BSSIDs
can reduce performance of the overall system including
accuracy and processing time. (2) The indoor/outdoor iden-
tification module can identify whether the user is indoor
or outdoor. This module prevents the system from wasting
resources for processing the queries which are sent from the
outdoor or out-of-scope area. (3) The building identification
module can identify which building the user is located with
extremely-high accuracy. The Wi-Fi fingerprint based indoor
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FIGURE 1. The exhibition area in Chulalongkorn University.

localization algorithms can utilize this module to reduce
their searching space in order to localize the exact location.
Second, we propose InHit as a new 3D indoor localization
algorithm. InHit achieves up to 100% accuracy for floor
localization and has average error distance 0.12 meters for
localization. Third, we propose MissingHit, as a missing-
BSSID detector algorithm. The algorithm detects the missing
BSSIDs in an incoming query. It achieves very high accu-
racy in detection. The fingerprint based indoor localization
systems can adapt their fingerprint database by integrating
with MissingHit. Fourth, we propose the overall system
architecture in which ExtHit, InHit and MissingHit work
together for adaptive indoor localization. This can be used
as a guideline to build up the indoor localization system for a
large-scale area.

This article is organized as follows. Section II discusses the
related works. Our system including the proposed architec-
ture and the proposed algorithms are described in Section III.
The performance evaluation is discussed in Section IV. The
conclusion is elaborated in Section V.

II. RELATED WORKS
Several techniques have been proposed for indoor localiza-
tion. Table 1 compares these techniques in many aspects.
As can be seen in Table 1, Bluetooth, Zigbee, RFID, Acoustic
signal andWi-Fi probe request requires additional infrastruc-
ture installation. This leads to expensive cost for deployment.
Although Geo-magnetic, GSM and the Wi-Fi fingerprint do
not require infrastructure installation in advance, these tech-
niques still require site survey to collect signal characteristics
in the target area. This consumes time and manpower for
signal site survey. In the case of availability in commercial
smartphones, Zigbee and RFID are not available in most of
the smartphone models. Thus, users who want to use these
techniques are required to carry special devices for indoor
localization. Also, it has been recently difficult to use GSM
signals for indoor localization because many smartphone
models limit access to GSM data [20]. In case of accuracy,
Bluetooth, Zigbee, RFID, Acoustic signal, Geo-magnetic
and Wi-Fi fingerprint can achieve a high level of accuracy
(< 2.5 m error). GSM and Wi-Fi probe request can achieve a
medium level of accuracy (< 5 m error). Embedded sensors

TABLE 1. Comparison of technology for indoor localization.

can achieve a low level of accuracy because they suffer from
the cumulative error problem. In case of robustness to the
changing environment or noises, techniques using an acous-
tic signal can suffer from acoustic noise. The accuracy of
techniques using geo-magnetic can be degraded due to the
variation of steel object’s position in the room or building.
For instance, moving tables or chairs in the room can degrade
localization accuracy.

Wi-Fi fingerprint is the most popular technique for apply-
ing to indoor localization [39]–[42] although it requires time
and manpower for site survey. This is because Wi-Fi technol-
ogy is available in commercial smartphones and the Wi-Fi
signals are typically available in buildings. Using Wi-Fi for
indoor localization does not require additional cost for infras-
tructure installation.

Moreover, Wi-Fi fingerprint can achieve high accuracy for
indoor localization and a fingerprinting process can reduce
the impact of the noises from the changing environments. The
indoor localization based on Wi-Fi signal mainly relies on
the signal fingerprints which are collected and stored in the
database. The localization process is done by comparing the
current signal with those signal fingerprints in the database.

Recently, there have been many approaches proposed
for indoor localization [16], [27]–[35]. However, in the
large-scale area, all of these approaches cannot work effi-
ciently. This is because the processing time of the algorithms
significantly increases as the number of signal fingerprints
in the database increases. Moreover, they do not concern the
queries from the out-of-scope area which usually occur and
can decrease the performance of the system.

Horus [29] is an indoor localization system based on
Wi-Fi signal fingerprint technique. In the offline phase, Horus
creates radio map, clusters radio map and pre-processes

VOLUME 9, 2021 8849



T. Vongsuteera, K. Rojviboonchai: Adaptive Indoor Localization System for Large-Scale Area

signal strength model. In the online phase, Horus
performs four modules. First, the correlation handling mod-
ule captures correlation between consecutive samples for
obtaining a better location estimator. Second, the discrete
space estimator module returns location which has maximum
probability. Third, the small-scale compensator module han-
dles small-scale variation of the wireless channel. Fourth,
the continuous space estimator module returns a more exact
location in continuous space by using the user’s discrete
estimated location as an input. However, Horus needs a long
processing time when deployed in the large-scale area and the
algorithm does not concern the queries from the out-of-scope
area which can waste computational resources. Moreover,
the accuracy can be degraded in the changing environment.

He et al. [26] proposed an area classification algorithm for
large-scale area. The algorithm consists of three main mod-
ules: First, one-class inside/outside-region detection module
classifies the outside signals as outliers. Second, an area
classification module determines the area of the user for
searching space reduction. Third, a device calibration mod-
ule calibrates the device’s scanning results. Nevertheless,
this algorithm does not concern the impact of the changing
environment which can occur when the system is deployed
in a large-scale area. Thus, the overall performance of the
algorithm can be degraded.

DiffHit [27] is a floor localization algorithm based on
Wi-Fi signal fingerprint technique. The algorithm can be
divided into two steps. First, the algorithm creates Wi-Fi
signal fingerprints from Wi-Fi scanning results by using the
top-N technique. Second, the algorithm utilizes the different
order of Wi-Fi access points for comparing the current Wi-Fi
signal with the Wi-Fi signal fingerprints in the database. The
complexity of the algorithm is O(n) where n is the number of
fingerprints in the database. DiffHit was tested and compared
with a previously-proposed indoor localization algorithm.
It can achieve up to 100% accuracy. However, DiffHit suffers
from long processing time when it is deployed in a large-scale
area because the complexity of the algorithm increases as the
number of fingerprints in the database increases.

RADAR [31] is an indoor localization system based on
Wi-Fi fingerprint technique. The system calculates the sim-
ilarity between the user’s Wi-Fi measurement and Wi-Fi
fingerprint in the database by using the Euclidean distance.
Then, the system selects k fingerprints which provide the
most similarity to calculate the mean of location. The median
error distance of the RADAR system is about 2 − 3 meters.
Since the complexity of RADAR depends on the number
of fingerprints in the database, RADAR suffers from long
processing time when deployed in the large-scale area. More-
over, RADAR can suffer from the changing environment
because it does not have the process to update the fingerprint
database.

Recently, WinIPS [32] proposed the Gaussian Pro-
cess Regression with Polynomial Surface Fitting Mean
(PSFM-GPR) to predict received signal strength (RSS) val-
ues on each virtual reference point in order to construct a

TABLE 2. Comparison of indoor localization systems based on Wi-Fi
signal.

fingerprint. Then, for localization, the system leverages the
Signal Tendency Index with Weighted K Nearest Neighbor
(STI-WKNN) to estimate the user’s location. Nevertheless,
the processing time of WinIPS directly depends on the num-
ber of fingerprints in the database. So the algorithm takes
a long processing time when deployed in the large-scale
area. In addition, the algorithm wastes resources and time
to process the queries which are sent from the out-of-scope
area because it does not have any process to filter out those
queries.

We summarized the indoor localization systems based on
Wi-Fi signal fingerprints in Table 2. Horus [29] was tested in
two testbeds including one floor of the building in the univer-
sity and one floor in office space. RADAR [31] was tested in
one floor of the office space. WinIPS [32] was tested in one
floor of the several layout spaces. However, Horus, RADAR
and WinIPS have not been implemented, evaluated and dis-
cussed inmulti-floor building, large-scale and indoor/outdoor
scenarios. The system proposed byHe et al. [26] was tested in
a large-scale area including three floors in a business building,
three floors in a shopping mall, two floors in an international
airport and five floors in a university campus. The system
can identify the location of the query whether it is indoor or
outdoor.

Although Horus [29] and the system proposed by
He et al. [26] were evaluated in many buildings, those
buildings were tested separately in each experiment. More-
over, each building in the tested scenarios was far away
from each other. Thus, these approaches are not effective in
the large-scale exhibition where many buildings are closely
located. Furthermore, these approaches are not adaptive to

8850 VOLUME 9, 2021



T. Vongsuteera, K. Rojviboonchai: Adaptive Indoor Localization System for Large-Scale Area

FIGURE 2. System architecture.

the changing environment which is the main problem that
can degrade the performance of the system. Our proposed
system using ExtHit, InHit and MissingHit is evaluated in
a large-scale exhibition including 37 multi-floor buildings
which are located close to each other. Our proposed ExtHit
can identify the user’s query whether it is sent from outdoor or
a specific building. Then, it sends this information to our pro-
posed InHit. InHit effectively localizes the exact location of
the user based on the information from ExtHit. Furthermore,
MissingHit utilizes those user’s queries to detect the missing
BSSIDs and adapts the fingerprint database to the changing
environment. In aspects of processing time, according to the
evaluation results in Section IV.C.8, ExtHit significantly out-
performs the system in [26]. This is because the complexity
of ExtHit is much lower and ExtHit does not require feature
extraction.

III. ARCHITECTURE DESIGN
A. ARCHITECTURE OVERVIEW
In order to identify approximate location of users, we assume
that each building or area has different characteristics of the
Wi-Fi signal depending on its own environment.

Figure 2 illustrates our system architecture. The system
consists of three main parts: First, our area classification
algorithm, named ExtHit, identifies the area of the user which
is outdoor or located in a specific building. If the algorithm
can identify the building, the building ID will be sent to the
next part. Otherwise, an outdoor location service, such as
Global Positioning System (GPS), will perform. Second, our

fingerprint-based indoor localization algorithm, named InHit,
uses the building ID from the previous part to limit searching
space in the fingerprint database. Then, the system returns the
user’s location as a result. Third, our missing-BSSID detector
algorithm, namedMissingHit, detects the missing BSSIDs in
the incoming query and updates a sampling database.
ExtHit consists of threemainmodules: an unknown-BSSID

filteringmodule, an indoor/outdoor identificationmodule and
a building identification module. The unknown-BSSID filter-
ing module filters out the unknown BSSIDs in the incoming
query. As a consequence, the filtered incoming query will be
used as an input of the indoor/outdoor identification module.
Next, the indoor/outdoor identification module identifies
the filtered incoming query whether it is located indoor or
outdoor. If the module returns an indoor as an output, it will
proceed to the building identification module. The building
identification module identifies which building the user is
located. Finally, ExtHit sends the building ID to InHit, which
is our indoor localization algorithm.

Our unknown-BSSID filtering module, indoor/outdoor
identification module and building identification module
are described in detail in Sections III.B III.C and III.D,
respectively.

B. UNKNOWN-BSSID FILTERING MODULE
In practice, there are many unknown BSSIDs appearing
due to the installation of Wi-Fi access points. Moreover,
the queries from the area located outside the system’s cover-
age area contain all of the unknown BSSIDs. These situations
can degrade the performance of the overall system.

To mitigate the above-mentioned problem, we design
the unknown-BSSID filtering module to remove unknown
BSSIDs from the user’s query. First, a known-BSSIDs cre-
ation algorithm creates a single list of known BSSIDs from
all of the scanning results which are collected in the training
phase and stored in the database. Then, an unknown-BSSIDs
filtering algorithm filters out the unknown BSSIDs in the
incoming query. Then, it returns the filtered incoming query
which contains only the list of the known BSSIDs as a result.

The pseudocode for the known-BSSIDs creation algo-
rithm and the unknown-BSSIDs filtering algorithm are shown
in Algorithm 1 and 2, respectively. The complexity of
Algorithm 1 isO(sn)where s is the number ofWi-Fi scanning
results obtained in the training phase and n is the maximum
number of BSSIDs in the Wi-Fi scanning results. The com-
plexity of the Algorithm 2 is O(n) where n is the number of
BSSIDs in the user’s query.

C. INDOOR/OUTDOOR IDENTIFICATION MODULE
According to our experiments, we observed that Received
Signal Strength Indicator (RSSI) values of Wi-Fi access
points scanned at indoor positions are significantly higher
than those scanned at outdoor positions. Figure 3 illustrates
one of our experiments. Figure 3(a) shows the scanning posi-
tions and access points’ locations. The filled-square is the
building area which is indoor. The positions A, B and C are
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Algorithm 1 Creating the List of Known
Input: collection of Wi-Fi scanning results sc_list
Output: known BSSIDs set bssid_set
1: Initialize bssid_set
2: for each sc in sc_list do:
3: for each bssid in sc do:
4: Add bssid to bssid_set
5: end for
6: end for
7: return bssid_set

Algorithm 2 Filtering the Unknown BSSIDs
Input: Wi-Fi scanning result from query sc,

known BSSIDs set from database bssid_set
Output: filtered Wi-Fi scanning result filtered_sc
1: Initialize filtered_sc
2: for each bssid in sc do:
3: if bssid is in bssid_set then
4: Add bssid to filtered_sc
5: end if
6: end for
7: return filtered_sc

FIGURE 3. Experimental results showing Wi-Fi scanning results at indoor
and outdoor positions. (a) Scanning positions and access points’
locations. (b) Wi-Fi scanning result at position X. (c) Wi-Fi scanning result
at position Y.

Wi-Fi access points’ locations. The positions X and Y are
the scanning positions. Figure 3(b) and 3(c) show the Wi-Fi
scanning results in order of signal strength at the positions
X and Y, respectively. These results indicate that the orders
of access points are the same at both positions. However, the
RSSI values are significantly different. Therefore, we use this
finding to design our indoor/outdoor identification module.

This indoor/outdoor identification module has two phases.
First, a training phase collectsWi-Fi signals scanned at differ-
ent positions in the indoor location in order to create the rep-
resentative fingerprints for each building. Then, it calculates
an adaptive threshold scorewhich will be used as a parameter
in the next phase. Second, a localization phase identifies the
user’s area which is located inside the building.

1) TRAINING PHASE
In the training phase, we collect Wi-Fi signals scanned at dif-
ferent positions in the indoor location, and create a represen-
tative fingerprint of each building. For each Wi-Fi scanning
result, we sort and form it as

Si =
[
s1i , s

2
i , s

3
i , . . . , s

n
i

]
(1)

Algorithm 3 Fingerprinting Algorithm for ExtHit
Input: top-N BSSIDs N ,

collection of Wi-Fi scanning results sc_list,
building name building_name

Output: fingerprint fingerprint
1: Initialize bssid_set
2: for each scanning_result in sc_list do:
3: Initialize countN to 0
4: for each bssid in scanning_result do:
5: if countN is less than N then
6: Add 1 to countN
7: if bssid not in bssid_set:
8: Add bssid to bssid_set
9: end if
10: end if
11: end for
12: end for
13: fingerprint← {building_name, bssid_set}
14: return fingerprint

where Si is the Wi-Fi scanning result i, sji is the BSSID of
access point j in Si, n is the number of BSSIDs in Si, and the
RSSI of sji is higher than or equal to the RSSI of sj+1i .

Our fingerprinting algorithm is used for creating the rep-
resentative fingerprint which can represent the characteristics
of indoor positions of each building. The algorithm uses the
BSSIDs to identify the Wi-Fi access points. It combines N
BSSIDs which provide the strongest signal strengths of each
Wi-Fi scanning result in the building to create the repre-
sentative fingerprint of the building. The pseudocode of our
fingerprinting algorithm for ExtHit is shown in Algorithm 3.
The top-N BSSIDs means the first N access points which
provide the strongest signal strengths and are used to create
the representative fingerprint of the building. The complexity
of the algorithm is O(Ns) when using top-N BSSIDs as an
input of the algorithm and s is the number of Wi-Fi scanning
results which are selected to create the representative finger-
print. After the creation, we have

FP = {F1,F2,F3, . . . ,Fb} (2)

where FP is a set of building’s fingerprints, b is the number
of buildings in the system and Fi is a fingerprint of building i
which can be defined as

Fi =
{
f 1i , f

2
i , f

3
i , . . . , f

m
i

}
(3)

where f ji is the BSSID of access point j in Fi,m is the number
of BSSIDs in Fi

After the fingerprint creation, in order to calculate the
adaptive threshold score, we transform the Wi-Fi scan-
ning result by using 2 parameters including top-N BSSIDs,
which are used in the fingerprint creation process, and the
pre-defined RSSI. The BSSIDs which provide RSSI less than
the pre-defined RSSI will be removed in the transformation
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Algorithm 4 Indoor/Outdoor Identification Algorithm
Input: top-N BSSIDs N ,

minimum RSSI min_rssi,
Wi-Fi scanning results from query sc,
list of fingerprints from database fp_list

Output: fingerprint score score
1: Initialize countN to 0
2: Initialize score to 0
3: for each bssid in sc do:
4: if countN is less than N then
5: Add 1 to countN
6: if bssid. rssi is more than or equal to min_rssi:
7: for each fp in fp_list do:
8: if bssid in fp:
9: score← score + 1
10: end if
11: end for
12: end if
13: end if
14: end for
15: return score

process. Thus, we have

Ti =
[
s1i , s

2
i , s

3
i , . . . , s

l
i

]
(4)

where Ti is a transformation result of Si, ski provides RSSI
higher than or equal to the pre-defined RSSI and l is the
number of BSSIDs in Ti. Then, the system calculates the score
Hi of Ti using the Equation (5)

Hi = max
0≤j≤b

∑l

k=1

{
1, ski ∈ Fj
0, otherwise

(5)

The pseudocode of the score calculation is shown in
Algorithm 4. The complexity of the algorithm isO(bN)when
using top-N BSSIDs as an input of the algorithm and b is
the number of the building’s fingerprints. Finally, the system
selects the minimum of the calculated scores to be the adap-
tive threshold score to use in the next phase.

2) LOCALIZATION PHASE
In this phase, whether the user’s position is indoor or out-
door will be determined. Our indoor/outdoor identification
algorithm is used. First, we form the incoming query as
Equation (1). Next, we transform the incoming query by the
methodology as shown in Equation (4). Then, we calculate
the score of the incoming query using the Equation (5).
Finally, if the score is higher than or equal to the adaptive
threshold score, which means the scanning location of the
incoming query is most likely to be inside the building,
the algorithm will return ‘‘indoor’’ as a result. Otherwise,
it will return ‘‘outdoor’’ as a result. This is because there is
not enough matching between the BSSIDs in the building’s
fingerprint and those in the incoming query.

D. BUILDING IDENTIFICATION MODULE
In order to limit searching space, we design a low complex-
ity algorithm to identify which building the user is located.
A building is an appropriate scale to limit searching space for
other algorithms because these algorithms consider the floor
or area in the building.

We assume that each building has its own unique Wi-Fi
signal fingerprint. The fingerprint can be represented by the
BSSIDs which provide high signal strength when the scan-
ning positions are in the building.

This building identification module consists of two phases.
First, a training phase, the Wi-Fi scanning results are col-
lected from target positions. The fingerprint of the building
is created from those Wi-Fi scanning results in the building.
It includes the Wi-Fi results scanned at the target positions
on every floor of the building. Second, a localization phase
identifies the building at which the user is located.

1) TRAINING PHASE
The process and the methodology of the fingerprinting algo-
rithm are the same as the training phase of our indoor/outdoor
identification module. The pseudocode of the fingerprinting
algorithm is shown in Algorithm 3.

Note that the parameter N in the top-N BSSIDs for the
building identification module can be different from that for
the indoor/outdoor identification module. This is because
each algorithm works separately and the parameter N which
provides the best performance will be selected for each
algorithm.

2) LOCALIZATION PHASE
In this phase, our building identification algorithm is used.
The algorithm uses the concept of the nearest neighbor tech-
nique to identify the building by comparing the incoming
query with theWi-Fi signal fingerprints in the database. First,
we form the incoming query as Equation (1) and transform
the incoming query using the top-N BSSIDs which were used
in the previous phase. Note that the top-N BSSIDs means
the first N access points which provide the strongest signal
strengths. Thus, we have,

Q =
[
q1, q2, q3, . . . , qp

]
(6)

where Q is a transformation result of the incoming query and
p is the number of BSSIDs in Q. Then, the algorithm calcu-
lates a α value which represents the similarity between the
incoming query and each building’s fingerprint. The α value
of building’s fingerprint Fi can be calculated as Equation (7).

α =
∑p

j=1

{
1, qj ∈ Fi
0, otherwise

(7)

After the calculation, the algorithm returns the building
ID which provides the maximum α value as an answer. The
pseudocode of the building identification algorithm is shown
in Algorithm 5. The complexity of the algorithm is O(bN)
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Algorithm 5 Building Identification Algorithm
Input: top-N BSSIDs N ,

Wi-Fi scanning result from query sc,
list of fingerprints from database fp_list

Output: building ID building_id
1: Initialize countN to 0
2: for each fp in fp_list do:
3: Initialize fp. α to 0
4: end for
5: for each bssid in sc do:
6: if countN is less than N then
7: Add 1 to countN
8: for each fp in fp_list do:
9: if bssid in fp:
10: Add 1 to fp. α
11: end if
12: end for
13: end if
14: end for
15: Initialize α to 0
16: for each fp in fp_list do:
17: if fp. α is more than α then
18: α← fp. α
19: building_id← fp.building_id
20: end if
21: end for
22: return building_id

when using top-N BSSIDs as an input of the algorithm and b
is the number of buildings’ fingerprints.

E. InHit ALGORITHM
InHit is a fingerprint-based 3D indoor localization algorithm.
It consists of two phases. First, the training phase collects
Wi-Fi signals from target locations and creates a fingerprint
map in the database. Second, the localization phase localizes
the floor and the exact position on the floor at which the user
is located.

1) TRAINING PHASE
The training phase for InHit algorithm is different from that
for ExtHit algorithm. The fingerprinting algorithm for InHit
will create the Wi-Fi signal fingerprints for every target loca-
tion. For each Wi-Fi scanning result of each target location,
we also form it as Equation (1). Then, the algorithm selects
top-N BSSIDs which provide the strongest signal strength
from the Wi-Fi scanning result to create a Wi-Fi signal
fingerprint for the location. Thus, we have a set of Wi-Fi
fingerprints, denoted as GP, defined as

GP = {G1,G2,G3, . . . ,Gr (8)

where r is the number of fingerprints in the module’s
database, Gi is the fingerprint i which can be defined as

Gi =
[
s1i , s

2
i , s

3
i , . . . , s

t
i

]
(9)

Algorithm 6 Fingerprinting Algorithm for InHit
Input: top-N BSSIDs N ,

collection of Wi-Fi scanning results sc_list,
floor level floor_level
position (x,y)

Output: fingerprint fingerprint
1: Initialize countN to 0
2: Initialize bssid_list
3: for each bssid in sc_list do:
4: if countN is less than N then
5: Add 1 to countN
6: Add bssid to bssid_list
7: end if
8: end for
9: fingerprint← {floor_level, (x, y), bssid_set}
10: return fingerprint

where t is the number of BSSIDs in Gi. The pseudocode
of the fingerprinting algorithm is shown in Algorithm 6.
The complexity of the algorithm is O(N ) when using top-
N BSSIDs as an input. Note that the parameter N in the
top-N BSSIDs for the InHit algorithm can be different from
that for the ExtHit algorithm. This is because each algorithm
works separately and the parameterN which provides the best
performance will be selected for each algorithm.

2) LOCALIZATION PHASE
We also transform the incoming query as Equation (6) by
using the same parameter as the training phase of this module.
Then, the algorithm calculates a β value which represents the
similarity between the transformation result of the incoming
query and each fingerprint in the database. Then, the algo-
rithm returns the floor and position on the floor of the finger-
print that provides the maximum β value.

The system calculates the β value of the incoming query,
denoted as Q, and fingerprint Gi using Equation (10)

β =

p∑
j=1

t∑
k=1

{
1, qj=ski and

∣∣∣RSSI (qj)− RSSI(ski )∣∣∣≤ γ
0, otherwise

(10)

where RSSI (s) is RSSI of s and γ is a predefined value for
the algorithm.

The pseudocode of the localization algorithm is shown
in Algorithm 7. The complexity of the algorithm is O(rN 2)
when using top-N BSSIDs as an input and r is the number of
fingerprints in the database.

F. MissingHit ALGORITHM
In a real situation, many BSSIDs which we surveyed can
be missed due to the access points replacement or the
closed offices. These situations degraded the performance
of the overall system. To tackle the problems, we propose
a missing-BSSID detector module, MissingHit, to detect the
missing BSSIDs from the user’s query and remove those
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Algorithm 7 Localization Algorithm for InHit
Input: Wi-Fi scanning result sc,

pre-defined value γ ,
fingerprints from the database fp_list,

Output: floor level floor_level,
position position

1: for each fp in fp_list do:
2: Initialize fp. β to 0
3: for each bssidsc in sc do:
4: for each bssidfp in fp do:
5: if bssidsc equals to bssidfp:
6: if |RSSI(bssidsc)–RSSI(bssidfp)| ≤ γ
7: Add 1 to fp.β
8: end if
9: end if
10: end for
11: end for
12: end for
13:
14: Initialize β to 0
15: for each fp in fp_list do:
16: if fp. β is more than β then
17: β ← fp. β
18: floor_level← fp.floor_level
19: position← fp.position
20: end if
21: end for
22: return floor_level, position

BSSIDs in the sampling database to maintain the perfor-
mance of the overall system.

When user queries to the system for localization, the sys-
tem duplicates the incoming query to this module and we
form the incoming query, defined as Ri, using Equation (1).
Then, when the system completes the localization process,
the system also sends the fingerprint ID of the most matched
fingerprint, using the InHit algorithm, to this module in order
to detect the missing BSSIDs.

For the missing-BSSIDs detection process, this process
will work once a day because, in our case, we deploy the sys-
tem in the exhibition. Thus, the environment can be changed
everyday. Thus, if the system is deployed in different condi-
tions, the working period of this process can be changed. Note
that, in order to set the working period, using a few user’s
queries to detect the missing BSSIDs is not practical because
some BSSIDs may temporarily disappear from the scanning
result and should not be deleted. Therefore, the system should
wait for a reasonable period of time in order to detect the
missing BSSIDs.

When it is time to update the sampling database, such as
the end of the day, a missing-BSSID detection algorithm will
be called. For each pair of incoming query and its fingerprint
ID, the algorithm queries an initial sampling database for
the Wi-Fi scanning result which matches the fingerprint ID
and we also form the Wi-Fi scanning result, defined as Pi,

Algorithm 8 Creating the Set of Actual Missing-BSSIDs
Input: list of missing-BSSIDs setMS,

list of found-BSSIDs set FS,
Output: set of actual missing-BSSIDs AMS
1: Initialize AMS to {}
2: Initialize U_MS to {}
3: for each ms_i in MS do:
4: U_MS← U_MS unionms_i
5: end for
6:
7: Initialize U_FS to {}
8: for each fs_i in FS do:
9: U_FS← U_FS unionfs_i
10: end for
11:
12: AMS← U_MS – U_FS
13: return AMS

using Equation (1). Then, the algorithm creates a possible
missing-BSSIDs set of Ri, defined as MS i, using the Equa-
tion (11)

MS i = {x|x ∈ Pi, x /∈ Ri} (11)

and the algorithm creates a found-BSSIDs set of Ri, defined
as FS i, using the Equation (12)

FS i = {x|x ∈ Ri} (12)

Next, the algorithm creates the actual missing-BSSIDs set,
defined as AMS by using Equation (13)

AMS = ∪ui=1MS i − ∪
u
i=1 FS i (13)

where u is the number of incoming queries which are used for
updating the sampling database. Finally, the module updates
the sampling database by duplicating the initial sampling
database to up-to-date sampling database and removing the
BSSIDs which exist in the AMS set. Therefore, when the
other modules update their fingerprint database, the fin-
gerprint databases will not include those missing BSSIDs
which are detected by this module. The pseudocode for
creating the AMS is shown in Algorithm 8. The complex-
ity of the algorithm is O(un) where n is the number of
BSSIDs in the incoming query and u is the number of
incoming queries which are used for updating the sampling
database.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
1) EXTHIT
We evaluated the accuracy ofExtHit in the large-scale campus
exhibition named Chula Expo 2017. The data for accuracy
evaluation were collected in 37 multi-floor buildings in Chu-
lalongkorn University. The map of the exhibition area in
Chulalongkorn University is shown in Figure 1. We gathered
5 datasets in which the 1st, the 2nd and the 3rd datasets were
collected before the exhibition, the 4th dataset was collected
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TABLE 3. The number of collected Wi-Fi scanning results and details for
each dataset.

FIGURE 4. The floor plan of the ENG3 building.

in the exhibition days, and the 5th dataset was collected from
the real users’ queries in the exhibition days.We gathered data
by continuously sampling along the walkway in the building
for the indoor data, and sampling around the walkway outside
the building within 2 − 3 meters from the building’s wall
for the outdoor data. The details for each dataset are shown
in Table 3. We use one Samsung Galaxy S5 and two LG
Nexus 5X to collect data. The two LG Nexus 5X are defined
as Nexus 5X (A) and Nexus 5X (B) to differentiate between
these devices.

2) INHIT
InHitwas initially evaluated in the ENG3 building of the Fac-
ulty of Engineering, Chulalongkorn University. We collected
3,175 Wi-Fi scanning results from 127 different positions on
the 1st, the 2nd and the 3rd floors of the building. We divided
the area along the walkway into a grid with the equal size.
The length of each grid is 4 meters and the center of each
grid is the coordinate of the reference point to collect the
Wi-Fi scanning results. The floor plan of the building is
shown in Figure 4. The red dots in the figure are the scanning
positions (says, the reference points of each grid).

We use one Samsung Galaxy Note 4, one Samsung Galaxy
S5 and one LG Nexus 5X to collect data.

3) SIMULATION
In order to evaluate the impact of the changing environment
including missing BSSIDs and varying RSSI, we created the
simulation of these scenarios.

In the case of missing BSSIDs, we randomly select the
BSSIDs from the testing data with the number of BSSIDs
which we require to remove. Then, we remove the selected
BSSIDs in the testing data before we begin the evaluation in
order to evaluate the impact of the missing BSSIDs.

In the case of varying RSSI, we also randomly select the
BSSIDs from the testing data with the number of BSSIDs
which we require to vary the RSSI. Next, we vary the RSSI of
selected BSSIDs of each testing data using the Equation (14)

RSSInew = 10× log10(10
RSSIold

10 × ω) (14)

where RSSInew is the varied RSSI value, RSSIold is the origi-
nal RSSI value andω is the percent of remaining transmission
power of the access point which provides the BSSID.

Moreover, to mitigate the varying result due to the random-
ization, we repeat the simulation for 10 times with different
random seeds and average the results of these simulations.

B. METRIC
1) ACCURACY
Accuracy is measured as a percentage of the number of
correct results using Equation (15). In the case of the
indoor/outdoor identification module, ncorrect is the number
of correct area results. In the case of the building identifica-
tion module, ncorrect is the number of correct building results.
In the case of the indoor localization algorithm, ncorrect is the
number of correct floor results and nall is the number of tested
data.

Accuracy =
ncorrect
nall

× 100 (15)

2) ERROR DISTANCE
Error distance is measured as a distance between the real
scanning position and the localized position using Euclidean
distance as in Equation (16) where x = {x1 , x2} is the real
scanning position and y = {y1 , y2} is the localized position.

Error distance =
√
(x1 − y1)2 + (x2 − y2)2 (16)

3) CUMULATIVE PROCESSING TIME
Cumulative processing time is measured as a summation of
processing time of the algorithm on a set of data using Equa-
tion (17) where si is the ith sampling, p(si) is the processing
time of the algorithm on the ith sampling and n is the number
of tested samplings.

Cumulative processing time =
∑n

i=1
p(si) (17)

C. EXPERIMENTAL RESULTS
1) INDOOR/OUTDOOR IDENTIFICATION MODULE
In order to determine the appropriate values of top-N and the
pre-defined RSSI, we varied the number of top-N BSSIDs
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TABLE 4. The maximum accuracy of the indoor/outdoor identification
module for each parameter.

and the pre-defined RSSI to investigate the accuracy. More-
over, we also tested with various models of mobile devices.
We used the 1st dataset to evaluate the module because this
dataset consists of the samplings collected at both indoor and
outdoor locations.

We started the test with top-1 BSSID and −90 dBm as the
pre-defined RSSI. Then, we increased the number of top-N
and the pre-defined RSSI to top-80 and −55 dBm, respec-
tively. The accuracy results of the indoor/outdoor identifica-
tion module are shown in Figure 5. The maximum accuracy
for each case is summarized in Table 4.

According to Table 4, the highest accuracy can be achieved
when tested with Nexus 5X. This might be because the
wireless interface of LG Nexus 5X is a newer technology
than Samsung Galaxy S5. Thus, LG Nexus 5X is more sen-
sitive to signal than Samsung Galaxy S5. As can be seen in
overall, the maximum accuracy that the module achieves in
every case of mobile devices are slightly different. Thus, the
indoor/outdoor identification module can operate for various
devices.

In order to evaluate the impact of the changing environment
including missing BSSIDs and varying RSSI, we simulated
those scenarios with the simulation as we mentioned in
Section IV.A.3. by using the 1st dataset.
In order to select the optimal parameter for the simulation,

as can be seen in the Figure 5, the algorithm achieves high
accuracy for both devices when utilizes −86 to −90 dBm as
the pre-defined RSSI and top-30 to top-40 BSSIDs as an input
of the algorithm. Thus, we selected the average values which
are −88 dBm as the pre-defined RSSI and top-35 BSSIDs as
an input of the algorithm for this simulation.

In the case of missing BSSIDs, we started the test by
removing 10% of the BSSIDs from the testing data. Then,
we increased the number of removed BSSIDs to 70%. The
accuracy results of the simulation are shown in Table 5.
As can be seen in the table, the accuracy significantly
decreases when the number of missing BSSIDs are more
than 10%. This is because, when more than 10% of the
BSSIDs are removed, the calculated score according to the
Equation (5) decreases and becomes less than the adaptive
threshold score. As a result, the algorithm determines it as
the incoming query that is sent from outdoor although it is
sent from indoor. This can degrade the overall performance
of the system. In Section IV.C.5, we will show that using our
MissingHit can tackle the problem and therefore improve the
accuracy in these scenarios.

In the case of varying RSSI, we started the test by selecting
25% of the BSSIDs from the testing data and reducing the

FIGURE 5. Accuracy of the indoor/outdoor identification module.
(a) Tested with LG Nexus 5X. (b) Tested with Samsung Galaxy S5.

TABLE 5. Accuracy of the indoor/outdoor identification module
missing-BSSID scenarios.

transmission power of the selected BSSIDs to 90% of the
original transmission power. Then, we increased the number
of selected BSSIDs to 75% and reduced the transmission
power to 40%. The accuracy results of these scenarios are
shown in Table 6. As can be seen in overall, the accu-
racy for each case is slightly different. This is because,
according to the Equation (14) which describes the relation
between RSSI value and transmission power, the RSSI value
has logarithmic relation with the transmission power. Thus,
if the number of top-N applied is high enough, the algo-
rithm can still tolerate this changing RSSI value. Therefore,
the indoor/outdoor identification module is robust to varying
RSSI.
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TABLE 6. Accuracy of the indoor/outdoor identification module in
varying-RSSI scenarios.

FIGURE 6. Accuracy of the building identification module.

2) BUILDING IDENTIFICATION MODULE
We used the 2nd and the 3rd as datasets for evaluating the
building identification module. This is because these datasets
were collected in many buildings inside the exhibition area.

In order to evaluate the impact of mobile devices, we tested
the module with various numbers of top-N BSSIDs and var-
ied models of mobile devices.

Figure 6 shows the accuracy results of the building identifi-
cation module. We began the test with top-1 BSSIDs and we
increased the number of top-N BSSIDs to top-50 for every
case of mobile devices. Table 7 summarizes the maximum
accuracy for each case.

According to Table 7, when tested with LG Nexus 5X
the module provides higher maximum accuracy than when
tested with Samsung Galaxy S5 in every case. This might
be because the IEEE 802.11 wireless chip of LG Nexus 5X
is a newer technology than Samsung Galaxy S5. Therefore,
LG Nexus 5X is more sensitive toWi-Fi signal than Samsung
Galaxy S5.

As can be seen in overall, the maximum accuracy for each
case is slightly different. Thus, the building identification
module is robust to heterogeneous devices.

In order to select the optimal parameters for the building
identification module, we considered the above-mentioned
results and concluded that LG Nexus 5X (A) and top-17 is
the most appropriate condition. This is because it can provide
100% accuracy when tested with the same device model
and 98.93% accuracy when tested with other device mod-
els. Nevertheless, according to Figure 6, the accuracy tends
to be stable when the algorithm utilized more than top-10.
Therefore, if one concerns about the processing time and
can accept a little lower accuracy, we suggest top-11 as
an input of the algorithm to reduce the overall processing
time.

TABLE 7. The maximum accuracy of the building identification module
for each parameter.

TABLE 8. Accuracy of the building identification module in
missing-BSSIDs scenarios.

TABLE 9. Accuracy of the building identification module in varying-RSSI
scenarios.

Moreover, we also evaluated themodule in scenarios where
there exist missing BSSIDs and varying RSSI by using LG
Nexus 5X (A) as a tested device. In the case of missing
BSSIDs, we began the test by removing 10% of the BSSIDs
and increased to 70% of the BSSIDs. We used top-17 as
an input of the algorithm because it provides the highest
accuracy when tested with all device models. The simulation
results are shown in Table 8. As can be seen in the table,
the accuracy slightly decreases when the number of removed
BSSIDs increases. In Section IV.C.5, we will show that using
our MissingHit can improve the accuracy in these scenarios.
In the case of varying RSSI, we began the test by selecting

25% of the BSSIDs from the testing data and reducing the
transmission power of the selected BSSIDs to 90% of the
original transmission power. Then, we increased the number
of selected BSSIDs to 75% and reduced the transmission
power to 40%. The accuracy results of these scenarios are
shown in Table 9. As can be seen in the table, the accuracy
for each case is slightly different. Thus, the building identi-
fication module is robust to the scenarios where there exist
varying RSSI.

3) BUILDING IDENTIFICATION MODULE EVALUATED IN THE
REAL CHANGING ENVIRONMENT
We summarize the number of the unique BSSIDs before the
exhibition days and during the exhibition in Figure 7 using
the 2nd and the 4th datasets. The number of BSSIDs which
were found in both before the exhibition days and during the
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FIGURE 7. Changing of the number of the unique BSSIDs between before
the exhibition days and during the exhibition days.

exhibition days is 7,485 BSSIDs. The number of BSSIDs
which were found only before the exhibition (say, missed
BSSIDs) is 4,314 BSSIDs which is 36% of the BSSIDs
that were found before the exhibition days. The number
of BSSIDs which were found only during the exhibition
days (say, unknown BSSIDs) is 1,705 BSSIDs. As can
be seen, the number of the unique BSSIDs are critically
changed.

In order to evaluate the impact of the changing environ-
ment. We use the 2nd and the 4th datasets to evaluate the
building identificationmodule. This is because the 2nd dataset
was collected before the exhibition days and the 4th dataset
was collected during the exhibition days.

We tested the module with various numbers of top-N
BSSIDs and varied models of mobile devices.

Figure 8 shows the accuracy results of the module.
We began the test with top-1 BSSIDs and we increased the
number of top-N to top-50 for every case of mobile devices.
Table 10 summarizes the maximum accuracy for each
case.

According to Table 10, the overall accuracy in this eval-
uation is less than that in the previous evaluation. Apply-
ing the higher top-N tends to achieve the higher accuracy.
This is because of the impact of the changing environment
where the number of the unique BSSIDs are significantly
different. However, the maximum accuracy for each case
slightly reduces (approximately 3 − 7%). Thus, it can be
concluded that the building identification module is robust to
the changing environment. Moreover, these results are related
to our simulation results in Section IV.C.2 in that the accuracy
results decrease approximately 3% when removing 30∼40%
of BSSIDs and using Nexus 5X.

4) INHIT
We used the dataset collected in the ENG3 building as
described in Section IV.A.2 to evaluate our InHit indoor local-
ization algorithm. We tested the algorithm with various num-
ber of top-N BSSIDs and γ which is the predefined value.
Moreover, we also used various types of mobile devices to
evaluate the impact of these factors.

We used the dataset collected by Samsung Galaxy Note 4
to be a training dataset. Next, we began the test with top-
20 BSSID and 0 dBm as the γ value. Then, we increased
the number of top-N BSSIDs and the γ value to top-200 and

FIGURE 8. Accuracy of the building identification module evaluated in
the changing environment.

TABLE 10. The maximum accuracy of the building identification module
evaluated in the changing environment.

TABLE 11. The maximum accuracy for floor localization and the
minimum average error distance for localization of InHit algorithm.

10 dBm, respectively. Figure 9 and figure 10 show the accu-
racy of the floor localization and the average error distance in
the InHit, respectively. Table 11 summarizes the maximum
accuracy for floor localization and the minimum average
error distance for indoor localization.

As can be seen in figure 9, the accuracy for floor localiza-
tion of InHit tends to utilize higher top-N to achieve 100% of
accuracy when tested with other mobile devices. In figure 10,
the average error distance of InHit tends to critically decrease
from top-20 to top-80 and tends to slightly decrease when the
algorithm uses more than top-80. In addition, the algorithm
requires higher γ value to achieve lower average error dis-
tance when tested with other device models. This is because
the different device models are embedded with the different
wireless interfaces. Therefore, the RSSI values provided by
those wireless interfaces are varied. In overall, InHit achieves
up to 100% of accuracy for floor localization. Its average
error distance for 3D localization is approximately 0.12 to
0.63 meters.
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FIGURE 9. Accuracy of the floor localization in InHit algorithm.

FIGURE 10. Average error distance of the 3D localization in InHit
algorithm.

Furthermore, we evaluated InHit in the changing envi-
ronment scenarios including missing BSSIDs and varying
RSSI.We used the dataset collected by SamsungGalaxyNote
4 for the simulation as described in Section IV.A.3. In the
simulation, we used top-180 and 4 dBm as the γ value for
the input of the algorithm because the algorithm achieves
the maximum floor localization accuracy and the minimum
average error distance when utilizes these values.

In the case of missing BSSIDs, we started the test by
removing 10% of the BSSIDs from the testing data. Then,
we increased to 70% of the BSSIDs. Table 12 summarized
the average error distance results of the impact of missing
BSSIDs. According to the table, the average error distance
of each case slightly decreases when the number of removed
BSSIDs are increased. This is because, when we use a high
number of top-N BSSIDs as an input of the algorithm,
the β value is not affected much by the number of removed
BSSIDs. So the algorithm can still tolerate this change. Thus,
InHit is robust to the scenarios where there exist missing
BSSIDs.

In the case of varying RSSI, we started the test by selecting
25% of the BSSIDs from the testing data and reducing the
transmission power of the selected BSSIDs to 90% of the
original transmission power. Then, we increased the number
of selected BSSIDs to 75% and reduced the transmission
power to 40%. Table 13 summarized the average error dis-
tance results of the impact of varying BSSIDs. As can be seen

TABLE 12. The average error distance results of InHit algorithm in
missing-BSSIDs scenarios when using top-180 and 4 dBm as the γ value
for the input.

TABLE 13. The average error distance results of InHit algorithm in
varying-RSSI scenarios when using top-180 and 4 dBm as the γ value for
the input.

TABLE 14. The missing-BSSID detection rate results of MissingHit.

in the table, the average error distance is slightly different
in each case and the analysis of this simulation results are
already described in Section IV.C.1. Thus, InHit is robust to
the scenarios where there exists varying RSSI.

According to the simulation results, InHit is robust to the
changing environment including missing BSSIDs and vary-
ing RSSI.

5) MISSINGHIT
We used the simulation as described in Section IV.A.3 and
used the dataset as described in Section IV.A.2 to evaluate our
missing-BSSID detector module, MissingHit. We started the
test by removing 10% of the BSSIDs and increased to 70% of
the BSSIDs. According to the results of the InHit algorithm
in Section IV.C.4, the algorithm achieves high accuracy for
localization for both normal scenario and missing-BSSIDs
scenarios when utilizing top-180 and 4 dBm as the γ value.
Thus, we used those parameters as an input of the algorithm
to evaluate the module. The missing-BSSID detection rate
results are summarized in Table 14. According to the table,
the module can achieve a high missing-BSSID detection rate
in every case (approximately 97.55–98.03%). Therefore, this
module can be used to detect the missing-BSSID efficiently.
Then, the system can update the sampling database to tackle
the changing environment problems.

Since our indoor/outdoor identification module is not
robust to missing BSSIDs, we will use the MissingHit to
update the sampling database before the indoor/outdoor iden-
tification module creates its fingerprint database. We used the
1st dataset, as described in Section IV.A.1, which collected by
Nexus 5X (A) and Nexus 5X (B) as the training andv testing
data in this evaluation.
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FIGURE 11. Accuracy of the indoor/outdoor identification module with
MissingHit at 50% of BSSIDs are missed.

Figure 11 shows the accuracy results of the indoor/outdoor
identification module with theMissingHit in the scenario that
there are 50% of missing BSSIDs. The maximum accuracy
of the indoor/outdoor identification module is 88.83% when
using top-27 and −89 dBm as the pre-defined RSSI. As can
be seen in the figure, the maximum accuracy tends to utilize
lower top-N value compared to the normal scenario, which is
shown in Figure 5. So we can select an optimal parameter for
each situation in advance by observing from the simulation
results. Thus, in practice, the indoor/outdoor identification
module can adapt the parameter according to the number of
missing BSSIDs in order to achieve the maximum accuracy
for each situation.

Figure 12 shows the accuracy comparison of the
indoor/outdoor identification modulewithout MissingHit and
the indoor/outdoor identification module with MissingHit.
As can be seen in the figure, in the case of removing 70%
of BSSIDs, the accuracy increases from 58.79% to 85.92%.
Thus, the MissingHit can significantly improve the accuracy
of the indoor/outdoor identification module.

Then, in order to improve the accuracy for the building
identification module, we use the MissingHit to update the
sampling database before the building identification module
creates its fingerprint database. We used the 2nd and the 3rd

datasets which were collected by Nexus 5X (A) and Nexus
5X (B) for this evaluation.
Table 15 shows the accuracy comparison of the building

identification module without MissingHit and the building
identification modulewith MissingHit. As shown in the table,
the MissingHit can improve the accuracy of the building
identification module in every scenario.

In overall, the algorithms have higher robustness to
the changing environment when integrated with Miss-
ingHit. This is because MissingHit updates the sampling
database before the indoor/outdoor identification module and
the building identification module creates their fingerprint
database.

FIGURE 12. The accuracy comparison between the indoor/outdoor
identification module without MissingHit and the indoor/outdoor
identification module with MissingHit.

TABLE 15. The accuracy comparison between the building identification
module without MissingHit and the building identification module with
MissingHit.

6) PERFORMANCE COMPARISON WITH THE EXISTING AREA
CLASSIFICATION TECHNIQUE
We compare the performance of our proposed ExtHit with
that of the area classification system proposed in [26] because
the system in [26] is recently proposed. Moreover, it achieves
high accuracy and uses the Wi-Fi signal as an input. The
system in [26] consists of three main modules. First, the one-
class inside/outside-region detection module identifies the
user’s query whether it is located indoor or outdoor. Second,
the area classificationmodule determines building of the user.
Third, the device calibration module calibrates the device’s
scanning results. We conducted two experiments as follows.
1st Experiment: the objective of this experiment is to

evaluate the one-class inside/outside-region detection mod-
ule of the system proposed in [26], and to compare with
our indoor/outdoor identification module. The 1st dataset as
shown in Table 3 is used in this experiment. Since Princi-
pal Component Analysis (PCA) is reported in [26] that it
provides the best performance, it is applied in the one-class
inside/outside-region detection module.

Moreover, we evaluated themodule in themissing-BSSIDs
scenarios by using the simulation as described in
Section IV.A.3. Since our MissingHit can improve the accu-
racy in the changing environment, we also integrate the mod-
ule with one-class inside/outside-region detection module of
the system proposed in [26] and compare the accuracy results
in Figure 13. In the normal scenario where there is no miss-
ing BSSIDs, the system proposed in [26] achieves 83.17%
of accuracy while our proposed system achieves 93.27%.
Furthermore, the accuracy of the system proposed in [26]
significantly decreases in the missing-BSSIDs scenarios.
This is because the missing-BSSIDs affect the reconstruction
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FIGURE 13. Accuracy of the one-class inside/outside-region detection
module of the system proposed in [26] in the missing-BSSIDs scenarios.

error value which PCA utilizes to determine a region of
incoming query. However, after integrating with our Miss-
ingHit, the accuracy of the system significantly increases,
approximately 23.64%.
2nd Experiment: the objective of this experiment is to

evaluate the area classification module of the system pro-
posed in [26], and to compare with our building identification
module. The 2nd and the 3rd datasets shown in Table 3 are
used as a training data and a testing data, respectively. Since
Probabilistic Support Vector Machine (SVM) is reported
in [26] that it provides the best performance, it is applied in
the area classification module.

Furthermore, we also used the simulation as described in
Section IV.A.3 to evaluate the module in missing-BSSIDs
scenarios. Then, we integrated our MissingHit with the
area classification module of the system proposed in [26]
to improve the accuracy in the changing environment.
Figure 14 shows the accuracy results of this experiment. In the
normal scenario where the number of removed BSSIDs is
zero, the system proposed in [26] achieves 97.49% while
our proposed system achieves 100%. In the missing-BSSIDs
scenarios, the accuracy of the system proposed in [26] crit-
ically decreases when the number of removed BSSIDs is
higher than 40%. When the number of removed BSSIDs is
70%, the accuracy of the system becomes 3.99% which is
extremely low. This is because the more the missing-BSSIDs,
the sparser the vector. This leads to inaccurate classification
of SVM. However, when we help the system by integrating
the system with our MissingHit, the accuracy significantly
increases from 3.99% to 96.08%. This shows that our Miss-
ingHit is very helpful in the changing environment.

As can be seen in the both experiments, our proposed
ExtHit can significantly outperform the system proposed
in [26]. Moreover, our MissingHit can significantly improve
the accuracy of the system proposed in [26] in the changing
environment.

7) PERFORMANCE COMPARISON WITH THE EXISTING
INDOOR LOCALIZATION TECHNIQUE
We compare InHit with the existing indoor localization sys-
tems named RADAR [31] and WinIPS [32]. The dataset

FIGURE 14. Accuracy of the area classification module of the system
proposed in [26] compared to our proposed building identification
module in the missing-BSSIDs scenarios.

described in Section IV.A.2 is used for this evaluation.
We also evaluated those systems in the missing-BSSIDs sce-
narios by using the simulation as described in Section IV.A.3.
Moreover, we also integrate our MissingHit to improve the
accuracy for those systems. Table 16 and Figure 15 show
the floor localization accuracy and average error distance,
respectively.

In the normal scenario, removing 0% of BSSIDs, RADAR
and WinIPS algorithms achieves 100% of floor localization
accuracy. RADAR and WinIPS has average error distance
for 3D localization 0.43 and 0.54 meters, respectively. How-
ever, our InHit provides the least error distance. Specifically,
its average error distance is 0.12 meters which is less than
RADAR and WinIPS.

In the missing-BSSIDs scenarios, the accuracy of RADAR
critically decreases. This is because the missing-BSSIDs
leads to the sparser vector of incoming query. This affects
the Euclidean distance value which RADAR utilizes to local-
ize the incoming query. The accuracy of WinIPS slightly
decreases for both floor localization and 3D localization
because of the uniform scaling process which can relieve the
effect of missing-BSSIDs. After integrating with our Miss-
ingHit, in the case of removing 70% of BSSIDs, the floor
localization accuracy in RADAR significantly increases from
66.69% to 99.80% and average error distance significantly
decreases from 10.44 to 0.88 meters. Next, the floor localiza-
tion accuracy in WinIPS increases from 99.89% to 99.92%
and average error distance decreases from 1.1 to 0.96 meters.
As can be seen in overall, our MissingHit can also improve
the accuracy of other works for both floor localization and
3D localization.

8) PROCESSING TIME OF THE OVERALL SYSTEM
ARCHITECTURE
In this section, we evaluate the processing time of three
different indoor localization architectures in order to localize
the real incoming queries.
1st Architecture:Only InHit is deployed. The indoor local-

ization algorithm compares the incoming query with every
signal fingerprint in the database. Thus, the system takes a
lot of resources and time to process the incoming query.
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TABLE 16. Accuracy of the floor localization of RADAR and WinIPS
compared to InHit algorithms in missing-BSSIDs scenarios.

FIGURE 15. Average error distance of the 3D localization of RADAR and
WinIPS compared to InHit algorithms in missing-BSSIDs scenarios.

2nd Architecture: ExtHit and InHit are deployed. Refer
to Figure 2 for the 2nd architecture. This is our proposed
architecture in which ExtHit identifies the incoming query
whether it is outdoor or located in a specific building. Then,
InHit can use this information to reduce searching space.
Thus, the system takes less resources and time to process the
incoming query compared to the 1st architecture.
3rd Architecture: the system in [26] is deployedwith InHit.

Since the system in [26] contains only an area classification
algorithm, we integrated our InHit, an indoor localization
algorithm, with the system in [26] to complete the indoor
localization system. Thus, the system in [26] is used to reduce
searching space for InHit.
We used the 2nd dataset to create the fingerprint and the 5th

dataset which was gathered from the real users’ queries to test
the overall processing time for each architecture.

The 5th dataset contains 609,277 records of queries from
users. 405,969 records are invalid since they contain no
BSSIDs. This is because the users did not turn on their
Wi-Fi interfaces. In this evaluation, we used the remaining
203,308 records which are valid.

The cumulative processing time spent in each architecture
is shown in Figure 16. Table 17 summarizes the cumulative
processing time and the number of queries that the system
detects as an indoor query. As can be seen, using ExtHit to
limit searching space for InHit can significantly reduce the
overall processing time from 4,446 to 227 seconds. However,
the result shows that deploying the area classification system
in [26] cannot significantly reduce the overall processing
time. This is because, in the large-scale area, there are a lot of

FIGURE 16. Cumulative processing time spent in three different
architectures.

TABLE 17. The cumulative processing time and localization result of each
architecture.

FIGURE 17. Heatmap visualization of users’ queries at different time.
(a) Heat map of the valid queries during nighttime. (b) Heat map of the
valid queries during daytime.

unique access points. This leads to a large dimension of data
and long feature extraction processing time.

Moreover, according to Table 17, the number of queries
that the 1st architecture detects as indoor was approximately
40,000 queries. Most of these queries were actually sent
from outdoor but InHit returned as an indoor location. This
false detection leads to wasteful resource consumption and
processing time. This shows that the deployment of area
classification is highly necessary.

In Figure 16, we observed that the slopes of all architec-
tures change periodically. Specifically, the slopes decrease at
the 30,000th valid query and increase at the 45,000th valid
query. This is because the higher-slope part was the queries
obtained during the daytime when the exhibition was open-
ing. The lower-slope part was the queries obtained during the
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nighttime when the exhibition was closing. Thus, the number
of BSSIDs in the user’s queries depended on the period of
time. In the daytime, the average number of BSSIDs in the
user’s queries was 44 BSSIDs while in the nighttime, it was
only 7 BSSIDs. Thus, the processing time of the algorithm
was significantly different between daytime and nighttime.

To support the above-mentioned summarization, we visu-
alized the GPS information from users’ queries by using a
heat map. Figure 17(a) and 17(b) show the heat map of the
valid queries during nighttime and daytime, respectively.

V. CONCLUSION
In this article, we propose an adaptive indoor localization sys-
tem for a large-scale area. The system consists of three parts:
an area classification algorithm, a fingerprint-based indoor
localization algorithm and a missing-BSSID detector algo-
rithm. (1) the area classification algorithm consists of three
modules. First, the unknown-BSSID filtering module filters
out the unknown BSSIDs in the incoming query. Second,
the indoor/outdoor identification module identifies whether
the user is indoor or outdoor. It can achieve up to 93.27%
accuracy. This module does not require outdoor fingerprints,
thus does not need man power to collect fingerprints. Third,
the building identification module identifies at which build-
ing the user is located. It can achieve up to 100% accuracy.
The algorithm is robust to heterogeneous mobile devices
and the changing environment. Moreover, the algorithm
is compatible with other fingerprint-based indoor localiza-
tion algorithms. (2) The fingerprint-based indoor localization
algorithm achieves up to 100% accuracy for floor localization
and has average error distance 0.12 meters for localization.
(3) The missing-BSSID detector algorithm detects the miss-
ing BSSIDs in the incoming query and updates the sampling
database to improve the accuracy of other parts. It can achieve
up to 98.03% detection rate. Besides, the results show that
using our area classification algorithm to limit searching
space for our indoor localization algorithm can significantly
reduce the overall processing time compared to the existing
work. Moreover, our missing-BSSID detector algorithm can
effectively work together with our area classification algo-
rithm and our indoor localization algorithm. It can also work
with other existing area classification algorithms and indoor
localization algorithms in order to improve accuracy of the
overall system in the changing environment.
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