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ABSTRACT Many visual simultaneous localization and mapping (SLAM) systems have been shown to
be accurate and robust, and have real-time performance capabilities on both indoor and ground datasets.
However, these methods can be problematic when dealing with aerial frames captured by a camera mounted
on an unmanned aerial vehicle (UAV) because the flight height of the UAV can be difficult to control and
is easily affected by the environment. For example, the UAV may be shaken or experience a rapid drop in
height due to sudden strong wind, which may in turn lead to lost tracking.What is more, when photographing
a large area, the UAV flight path is usually planned in advance and the UAV does not generally return
to the previously covered areas, so if the tracking fails during the flight, many areas of the map will be
missing. To cope with the case of lost tracking, we present a method of reconstructing a complete global map
of UAV datasets by sequentially merging the submaps via the corresponding undirected connected graph.
Specifically, submaps are repeatedly generated, from the initialization process to the place where the tracking
is lost, and a corresponding undirected connected graph is built by considering these submaps as nodes
and the common map points within two submaps as edges. The common map points are then determined
by the bag-of-words (BoW) method, and the submaps are merged if they are found to be connected with
the online map in the undirect connected graph. To demonstrate the performance of the proposed method,
we first investigated the performance on a UAV dataset, and the experimental results showed that, in the
case of several tracking failures, the integrity of the mapping was significantly better than that of the current
mainstream SLAMmethod. We also tested the proposed method on both ground and indoor datasets, where
it again showed a superior performance.

INDEX TERMS Monocular visual SLAM, UAV images, undirected connected graph, submaps, complete
global map.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a tech-
nique for obtaining 3D geometric information of an unknown
environment and estimating the sensor pose in the corre-
sponding environment. As such, the SLAM technique has
a very wide application potential in automatic driving, aug-
mented reality, virtual reality, mobile robots, and unmanned
air vehicle (UAV) navigation [1]. With the ongoing devel-
opment of sensor and computer vision technology, many
kinds of sensors have been integrated in SLAM systems
(such as LiDAR, GPS, and inertial measurement unit (IMU)
sensors) [2]. However, SLAM based on cameras has been
actively studied because the sensor configuration is much
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simpler. SLAMbased on stereo cameras has beenwidely used
with both indoor and ground datasets [3]; however, this setup
is not suitable for UAVs (especially micro aerial vehicles)
since the length of the baseline is normally only 20 cm, which
is quite short when the images are captured from a height of
nearly 1 km [4]. SLAM based on a single camera, which is
also called monocular visual SLAM, has received extensive
attention and has been widely studied for its simplicity and
cheapness. Thus, we developed the proposed method using
only monocular visual SLAM. In monocular visual SLAM,
without the assistance of any other sensors, lost tracking often
occurs for many reasons, such as image blurring caused by
the camera moving too fast (UAV platforms, in particular,
are quite easily affected by random shaking caused by uncer-
tain factors such as wind), illumination variation, and weak
scene texture features. Once the tracking of a monocular
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FIGURE 1. UAV dataset experimental results. (a) The UAV data from Wuhan University. (b) The flight trajectory of the UAV and the locations of the
interruptions (the red rectangles mark the interruptions). (c) The processing result of ORB-SLAM2.

visual SLAM system (such as ORB-SLAM2) is lost, the
motion of the subsequent video frames and the information
of the corresponding map points cannot be generated, which
leads to an incomplete map. Figure 1 depicts a set of UAV
data, where there were three interruptions during the flight.
Figure 1a is UAV data from Wuhan University (the images
captured sequentially from top left to bottom right). Figure 1b
shows the flight trajectory of the UAV and the locations of the
interruptions (marked by the red rectangles). Figure 1c is the
processing result of the ORB-SLAM2 system, where it can
be seen that the processing result of ORB-SLAM2 is only
partial, due to the interruptions.

To solve the lost tracking problem, the current visual
SLAM systems employ a relocalization strategy, which
makes the tracking thread continue the online working by
inspecting the connections between the subsequent new
frames after tracking was lost and the generated map before

tracking was lost, and localizes the new frames under the
coordinate system of the generated map if the corresponding
connections are found. However, there is a crucial disadvan-
tage to this relocalization strategy, i.e., the map information
and the corresponding camera motion knowledge are not esti-
mated and will be missing from the place where the tracking
failed to the place where the new frame could be successfully
relocalized. To recover this missing information, including
the corresponding map and the camera motion when the
unexpected tracking was lost in monocular visual SLAM and
provide a complete global motion trajectory and map, which
is often required inmany applications (e.g., 3D position infor-
mation for emergency relief), we present a method of recov-
ering the missing map parts using submaps and an undirected
connected graph. This is integrated with the local mapping of
the tracking or the loop closing thread based on the widely
known ORB-SLAM2 package [5]. A general overview of the
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FIGURE 2. System threads and module. Our method adds the process of reinitializing and building submap connections
in the event of a system trace failure (The green box shows our method).

proposed system is shown in Figure 2. Ourmain contributions
are threefold. Firstly, we propose a method to deal with
tracking failure: After tracking failure, we can restore the
missing map by creating submaps. Secondly, we propose an
adaptive threshold selection method to determine the connec-
tion relationship between submaps, so as to connect submaps
into a complete map. Finally, we optimize the connection
relationship between submaps by using undirected connected
graphs. We demonstrate the proposed method’s performance
via evaluation on UAV images, and some ground and indoor
datasets are further tested to further show the method’s
capability.

The rest of this paper is organized as follows. In Section 2,
we review the related works. Section 3 describes the proposed
method of reconstructing a complete global map and cam-
era motion trajectory. Section 4 presents the results of the
experiments conducted on various datasets. Finally, Section 5
concludes the paper.

II. RELATED WORK
Over recent decades, real-time visual SLAM has been
broadly investigated in various fields [1], [6], such as

automation and robotics, computer vision, and photogram-
metry. In this section, we review some of the state-of-the-art
works in visual SLAM research. Specifically, we focus on the
studies of motion tracking and the solutions for lost tracking
and submaps in SLAM.

A. SOLUTIONS FOR MOTION TRACKING
There has been a great deal of research on improving tracking
performance and attempting to decrease the possibility of
lost tracking. In visual SLAM, these works can be generally
classified into three categories: feature-based methods, direct
methods based on photometric consistency, and multi-sensor
aided tracking methods.

1) FEATURE-BASED METHODS
Oriented brief (ORB) features are oriented multi-scale fea-
tures from accelerated segment test (FAST) corners with
256-bit descriptors, which are widely used in feature-based
SLAM, mostly because they are extremely fast to compute
and have good invariance to the viewpoint [7]. However,
the corresponding processes of feature point extraction and
matching can easily be negatively affected by the change of
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illumination, view angle, and weak texture, which leads to
lost tracking. In order to relieve this drawback and improve
the tracking performance, other types of features, such as
plane features and line features, have been integrated with
visual SLAM.

For example, Lee et al. [8] used only plane features in the
tracking, which is an approach that is mostly applicable to an
environment dominated by plane features; Taguchi et al. [9]
presented a method combining point and plane feature prim-
itives to obtain a minimal set of primitives in a RANSAC
framework to robustly compute the correspondences and esti-
mate the sensor pose; Raposo et al. [10] adopted plane fea-
tures as the primitives in visual odometry, and point features
were only extracted when the plane features were insuffi-
cient to determine the sensor motion; and Concha et al. [11]
proposed an approach based on superpixel region matching,
which was shown to be more reliable in tracking than the tra-
ditional point-feature-based methods for indoor scenes with
weak texture and rare features, but this approach does suffer
from a limited accuracy in complex outdoor scenes.

Some studies [12]–[14] have used different line segment
parameterization approaches and have tried to use the line
features for solving the motion tracking, while essentially
employing the two endpoints to describe and track a line seg-
ment. Jeong et al. [15] used both 3D line and corner features
as landmarks in tracking under an extended Kalman filter
framework. Based on ORB-SLAM2, Pumarola et al. [16]
presented a line segment detector method to achieve the
extraction and matching of straight lines with the same name,
combined with ORB features for the tracking, which turned
out to be more reliable in scenes with abundant line features
and rare point features. Lee et al. [17] extracted the miss-
ing points with lines to improve the tracking accuracy and
robustness in an indoor scene.

2) DIRECT METHODS BASED ON PHOTOMETRIC
CONSISTENCY
The extraction and matching of feature points can be time-
consuming, and a scene with weak texture and only very
rare features may be detected, which may give a low accu-
racy or even failure in pose estimation. What is more, these
feature points only represent a very small part of the image
information, which can be improved by considering all the
information given in the image. Thus, the direct methods
based on global pixel information assume that the image
intensity of the same spatial point should be consistent in
the corresponding neighboring images, and the position and
orientation of the camera are estimated through minimization
of the photometric error. Direct sparse odometry (DSO) [18]
combines a fully direct probabilistic model (by minimizing a
photometric error) with consistent, joint optimization of all
the model parameters, including the geometry, represented
as the inverse depth in a reference frame, and the camera
motion. In contrast to the feature-based methods, the direct
methods can utilize all the information in the image and have
a higher tracking accuracy and robustness in scenes with only

very rare features. Dense tracking and mapping (DTAM) [19]
involves selecting frames and then computing detailed tex-
tured depth maps to generate a surface patchwork and build
dense maps by GPU acceleration, which are then used for
the tracking by comparing the new frames with these dense
maps. This approach effectively reduces the uncertainty of
pose estimation, and many semi-dense algorithms based on
edge and corner features have been proposed. For example,
semi-direct visual odometry (SVO) [4] involves extracting
the FAST feature points in the image and then estimating
the camera pose transformation by the direct method, accord-
ing to the information around the feature points. Instead
of feature extraction, the large-scale direct SLAM method
(LSD-SLAM) [20] computes the depth of the semi-dense
points with abrupt gradient changes, such as edges and cor-
ners, on the basis of SVO, and it uses the same idea as DTAM
for the tracking, which is improved by considering the geo-
metric consistency and loop closure. As a result, LSD-SLAM
can deal with scenes with a weaker texture and larger scale,
and can be run on a CPU in real time.

3) MULTI-SENSOR AIDED TRACKING METHODS
To improve the tracking performance, some methods have
attempted to integrate multiple sensors into visual SLAM.
For example, Leutenegger et al. [21] presented a vision and
IMU data combination algorithm, in which the camera pose
is computed and optimized by marginalization, which has
contributed to the rapid development of multi-sensor fusion
algorithms; the VINS-Mono method, which was developed
by Qin et al. [22], involves embedding a low-cost IMU into
visual-inertial odometry, where a tightly coupled, nonlinear
optimization-based method is presented to fuse the IMU and
feature observations, which can obtain absolute pose estima-
tion and reduce the risk of lost tracking; and Bu et al. [23] pro-
posed a real-timemosaicking system for UAVvideo by fusing
GPS data, so that the camera’s pose in theWGS84 coordinate
framework can be estimated without ground control points.
However, GPS signals are easily obscured on the ground,
so the improvement of robustness for SLAM tracking on the
ground is still limited.

B. SOLUTIONS AFTER TRACKING IS LOST
The above tracking methods normally work well; how-
ever, tracking can often be lost in practice, e.g., through
rapid motion change, poor textures for the feature-based
methods, illumination changes for the direct methods, and
GPS-denied environments for methods using GPS or IMU
signals. Currently, to deal with lost tracking and ensure that
the tracking thread works for a long period of time, most
of the monocular visual SLAM methods start relocalization
detection after tracking is lost to determine the current pose of
the camera [4], [4], [18], [22], [24]. Relocalization strategies,
which are similar to detection of loop closure, can be roughly
divided into two types: image-to-image and image-to-map.

The image-to-image methods use a visual BoW model to
describe the images by combining word bags and feature
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points, with the basic rationale being that correspondences
should be with the same word bag. Thereby, the similar-
ity between images can be efficiently determined, and after
matching similar images, the corresponding relative positions
can be solved by using either a five-point algorithm for an
essential matrix or an eight-point algorithm for a fundamental
matrix. The relocation problem can thus be considered as an
image retrieval problem (a similar problem exists in structure-
from-motion (SfM) [25]–[27]) by employing random forest
and a hash image retrieval method. The image-to-image relo-
calization strategy is employed in filtering-based SLAM [28]
and the state-of-the-art frame-based SLAM [24], [29]. After
similar images are found, the pose of the camera can be
recovered only if there are enough correspondences between
the current image and the previous ones, so that the system is
able to continue tracking and mapping under the coordinate
system of the previously reconstructed map.

The idea of image-to-map matching is to determine the
connection between the reconstructed map and the current
new frame. Specifically, they are connected if there are
enough reconstructed map points that can be observed by
the current new frame, and vice versa. In the filtering-based
SLAM framework, Williams et al. [30] proposed a three-
point-pose algorithm combined with the RANSAC algo-
rithm to determine the position and pose of the current
camera relative to the map. In the frame-based SLAM
framework, Straub et al. [31] proposed to match the descrip-
tors of the current frame with the descriptors associated
with the map points stored in the map, to estimate the
pose of the current frame. However, image-to-map matching
involves a large amount of calculations and is slow. There-
fore, Moteki et al. [32] proposed the method of selecting an
image-to-image or image-to-map method based on the geo-
metric model between the current frame and the target frame,
which is a more efficient approach.

The above-mentioned relocalization strategies have been
used in some widely known visual slam systems, such as
ORB-SLAM2, which have obvious defects when dealing
with the case of tracking failure, and require the current new
frame to have a high similarity to the reconstructed map or
the oriented frames. If a similar scene is not detected after
the system tracking is lost, the system will remain in the lost
state and cannot continue mapping and positioning until the
relocation is successful. As a result, the corresponding map
information (consisting of the map from the place tracking
was lost to place the relocation was successfully solved)
cannot be recovered.

C. SUBMAPS
The concept of the ‘‘submap’’ for SLAM was developed by
Ni et al. [33], and is defined as a local map with a local
coordinate system and frames with known relative pose and
3D map points. A global map consists of several overlapping
submaps covering different parts of the entire scene.

The submap was originally proposed to efficiently solve
the problem of the high computational cost of global

optimization with limited computational resources [34], [35].
The global map is divided into several overlapping submaps.
The submaps are first optimized individually, and then a
single submap is taken as a whole for the global opti-
mization. This strategy of using submaps can effectively
reduce the computational cost while obtaining near- optimal
results [36]–[38].

The submaps are generated to solve the problem of missing
map information, where the map from the place of the previ-
ous initialization to the place where the lost tracking occurred
forms a new submap. Specifically, when lost tracking occurs,
the subsequent new frames are directly reinitialized, and the
new frame is tracked in the new coordinate system. The
map obtained before lost tracking occurs again is the corre-
sponding new submap. In this way, submaps are recursively
generated. The multiple submaps are then connected to form
a global map describing the complete scene.

To solve the problem of missing map information due to
tracking failure and to provide a complete global map and
motion trajectory, we present amap restoration fusionmethod
based on the generated submaps and the corresponding undi-
rected connected graph. The proposed method is based on
the monocular ORB-SLAM2 framework. After the system
tracking failure, even if the relocation requirements cannot
be met, the tracking and mapping thread can still continue,
but the corresponding submaps are saved, and are eventually
joined together into a complete map. In theory, the proposed
method is applicable to all the previous methods (such as
SVO, DSO, and ORB-SLAM), and can act as an effective
supplement to the existing methods, to ensure the complete-
ness and accuracy of the mapping.

III. METHODOLOGY
A. METHOD AND THOUGHT
In this section, we introduce the details of the proposed algo-
rithm. Because the motion trajectory of aerial photogram-
metry is relatively simple and regular, we used a dataset of
UAV video data to illustrate the use of the method proposed
in this paper, but the method is also applicable to ground
data.

The light blue band in Figure 3 represents the UAV’s
motion trajectory. The image in the figure represents the
frame. The red rectangle indicates that the matching failed at
this point and the tracking was lost. The green line indicates
that the images can be successfully matched and that there is a
connected relationship. Figure 4 shows the processing results
obtained by ORB-SLAM2. The frames covered by the light
red represent the missing maps due to tracking failure.

In this paper, the red rectangles in Figure 3 are used as
intervals, and the frames are grouped according to the acqui-
sition order to obtain Figure 5a. Each set of frames and their
corresponding map points constitute a local submap in the
global scene map, and are represented as (A, B, C, D, E,
F, G, H, I). The system is based on ORB-SLAM2, with the
following processes added:
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FIGURE 3. UAV trajectory and matching relationship between images.

FIGURE 4. The processing result of ORB-SLAM2 (the frames covered by
the light red represent the missing maps due to tracking failure).

• The system is reinitialized when the tracking fails, and
a new map is built.

• Retrieval of connected frames. For the current frame in
the map, the BoW model is used to retrieve the frames
in the other submaps. Frames are found that match the
current frame (which meet a certain threshold), and the
retrieved frames are called connected frames.

• The strength of the connections between the submaps is
measured.

• The optimal connection based on the undirected con-
nected graph is selected.

B. REINITIALIZE TO BUILD A NEW MAP
The main task of the visual SLAM tracking module is to
output the camera poses and determine the frames in real time
to complete an unoptimized visual odometer. When the track-
ing fails, ORB-SLAM2 performs the relocation operation.
If the relocation is not successful, all the frames that have not
been successfully relocated will be lost until the relocation
is successful. In order to avoid the situation of missing maps,
when the tracking fails, the previous map is used as a submap,
and the system is reinitialized immediately to build a new
map.

C. RETRIEVAL OF THE CONNECTED FRAMES
For a newly created map, the system establishes whether
the current frame forms a connected relationship with the
other submaps. The specific operation is as follows. The
adaptive threshold selection method is adopted to retrieve the
connected frames. Firstly, the words in the BoW model of
the current frame are calculated. The number of words in
common between the current frame and the adjacent frame
is denoted as N0 (the adjacent frame refers to the previ-
ous frame of the current frame), the number of words in
common between the current frame and the nearby frame
whose overlap with the current frame is 50% is denoted as
N1 (the nearby frame refers to the frame closest to the current
frame in the current map), and the proportionality coefficient
k = N1/N0 is calculated. Then, according to the number
of common words of the BoW model, all the frames in the
other submaps are searched to find the frames with the same
words as the current frame. Then, the maximum number of
common words of these frames k is set as the threshold, i.e.,
the frames with an overlap of more than 50% are selected
as candidate frames, as shown in Figure 6. The BoW score
between the current frame and the adjacent frame is denoted
as S0. The BoW score between the current frame and the
nearby frames whose overlap with the current frame is 50% is

FIGURE 5. (a) The submaps of each segment. (b) The undirected connected graph formed after each submap is
connected.
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FIGURE 6. The practical significance of the adaptive threshold coefficient.
From left to right, the two red frames are the frames that overlap with the
current frame by 50% and the nearest frame, corresponding to the
relationship between the actual overlapping range between the nearby
frame and the adjacent frame in the threshold selection. The relationship
is thus considered, instead of simply setting a fixed absolute parameter.

denoted as S1, and the proportionality coefficient l = S1/S0
is calculated. Then, the highest score of the BoW score of the
current frame and the candidate frames l is then set as the
threshold, and the connected frames are then selected based
on the BoW score. The function that retrieves the loop frames
in the ORB-SLAM2 loop closing thread is then called. The
original fixed thresholds (0.8 and 0.75) are then replaced with
the previously calculated thresholds, and the frames that meet
the conditions as connected frames are finally selected.

D. MEASURING THE STRENGTH OF THE CONNECTIONS
BETWEEN THE SUBMAPS
After a connected frame is found, the map where the current
frame is located can form a connected relationship with the
submap where the connected frame is located. However,
when connecting submaps, there may be multiple connected
frames between the submaps. By comparing the geometric
configuration of the connected frames, the connection rela-
tionship with the highest accuracy and the best reliability for
coordinate transformation is selected, so as to combine the
multiple submaps.

The geometric configuration of the connected frames
mainly refers to the intersection angle between the connected
frames. In aerial photogrammetry, the larger the intersection
angle of a stereo image pair, the higher the accuracy. When
the intersection angle is too small, the error in the direction of
the vertical image plane will be very large. According to the
principle of photogrammetry [39], the smaller the intersection
angle of the stereo image pair, the worse the accuracy in the
depth direction of the 3D point coordinates obtained from
the forward intersection of the stereo image pair, as shown
in Figure 7.

Since the formulas for photogrammetry are more intuitive
than the mathematical models in computer vision, we take
the formula for photogrammetry forward intersection as
an example. The error of the depth direction is shown in
Equation (1):

mh = mx/tanθ (1)

where θ represents the intersection angle of a stereo image
pair, mx represents the plane error, and mh represents the

FIGURE 7. Intersection angle and error ellipse.

FIGURE 8. The relationship between the intersection angle and depth
direction accuracy.

FIGURE 9. An undirected connected graph with weights.

median error in the depth direction.

tanθ =
b
f
=

B
H

(2)

where b represents the image baseline, f represents the cam-
era focal length, b represents the photography baseline, and
H represents the photography height, as shown in Figure 8.
It is known that if the photographic baseline is too short,
the error ellipse will become extremely flat and the depth
direction error will be large.
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FIGURE 10. Submap algorithm flowchart.

Therefore, if the intersection angle between the connected
frames is larger, it indicates that the connection reliability
of this part is better, the 3D coordinates of the calculated
map points are more accurate, and the error of transforming
the two submaps to the same coordinate system is smaller.
Of course, the intersection angle should not be too large, and
no more than 45◦ is appropriate. In order to better reflect the
number of smaller intersection angles, the geometric config-
uration of the connected frames is described by the median of
the intersection angle, rather than the average.

The number of existing connected frames between two
submaps is denoted as F, and the number of map points
contained in the connected frame is M. The median inter-
section angle between connected frames is θm, in degrees.
In this paper, a factor C is proposed to measure the connection

strength between submaps, as shown in Equation (3). In this
study, the empirical values were set through experiments. The
order of magnitude F is 10, the order of magnitude M is 100,
and θm is 10◦. The effect of θm on the submap accuracy is
not linear, but instead curvilinear, so this is set to the second
power. The strength of the connected frames between the
submaps is compared, i.e., the size of the value of C:

C = F+ 0.1M+ 0.1θm2 (3)

E. SELECTION OF THE OPTIMAL CONNECTION BASED ON
THE UNDIRECTED CONNECTED GRAPH
When there are multiple connection paths between multiple
submaps, the strongest connection path needs to be selected.
This is essentially a problem of finding a connected path for
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FIGURE 11. UAV experimental dataset.

an undirected connected graph. For the connection between
submaps, each submap is similar to a group of undirected
connected graphswithweights equal to the strength of the dif-
ferent connection paths, as shown in Figure 9. Each submap is
a node in an undirected connected graph. The connection rela-
tionship between each submap is the edge, and the connection
strength corresponds to the weight of each edge. As shown
in Figure 5a, the UAV’s flight path is A-B-C-D-E-F-G-H-I,
and Figure 5b shows the undirected connected graph formed
after each submap is connected.

For an undirected connected graph containing n nodes,
the process of solving the minimum spanning tree is to find a
path that contains n−1 edges and can connect n nodes, so as
to minimize the sum of the edge weights (i.e., the cost). For
the connection of the submaps, the higher the value of C in
Equation (3), the higher the connection strength. Therefore,
a negative value of C was chosen as the weight of the undi-
rected connected graph in this study. Kruskal’s algorithm [40]
can be used to solve the minimum spanning tree.

F. ALGORITHM FLOW
Each time the system tracking fails, the construction of the
map is restarted. The previously established map is called a
submap. The proposed method uses the idea of graph theory
to connect these submaps into a complete map. In graph
theory, each segment of the submap is taken as a node, and the
connected relationship between each segment of the submap
is taken as the edge. The connectivity detection is used to
determine whether there is a connected relationship between
submaps. The map currently being tracked is denoted as C,
and the n submaps S1 . . . Sn generated by the previous track-
ing failure are stored in stack L. The algorithm flow is as
follows:

1. Track the current map C and denote the current frame
as F.

2. Determine whether the current map C is successfully
initialized. If it has not been completed, continue to
initialize C; if it has been completed, go to the next step.

TABLE 1. Submap merging process table.

3. Determine whether the orientation of F in C is suc-
cessful. If the orientation is successful, proceed to the
next step. If the orientation fails, perform the follow-
ing operations: determine whether the system tracking
failure conditions are met (several consecutive frames
fail to be oriented), and if the system tracking failure
conditions are not met, the currently read F is discarded
and the next frame is read and recorded as F. Restart
step 3. If the tracking failure condition is met, suspend
the tracking of C, denote C as Sn+1 and save it in L, and
create a new map to start tracking. Denote it as C and
go back to step 1.

4. Determine whether there is an unrecovered submap Si
(i ∈ [1, n]) in the missing submap stack L. If Si exists,
go to the next step; if Si does not exist, all the submaps
in L are retrieved or no submap exists in L. Go back to
step 1 and read the new frame.
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FIGURE 12. UAV dataset experimental results. (a) The flight trajectory of the UAV (the color lines
represent the flight trajectory of submaps of different segments). (b) The processing result of
ORB-SLAM2. (c) The processing result of the proposed system (with the letters representing the
submaps). (d) The undirected connected graph.

5. Determine whether Si and C are connected through F.
If Si and C are connected, proceed to the next step; if Si
and C are not connected, go back to step 1 and read the
new frame.

6. Determine whether the connected strength of the two
submaps reaches the threshold. If the threshold is met,
convert Si to the C coordinate system andmerge the two
submaps. Continue to track C, and go back to step 1 and
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FIGURE 13. Outdoor street dataset.

remove Si from L; if the threshold is not met, continue
tracking C, and go back to step 1.

The algorithm flowchart is shown in Figure 10:
We take Figure 5 as an example to illustrate the process of

merging submaps. The new submap is added to stack L1, and
the currently tracked map to stack L2. As shown in Table 1,
map A is first tracked, and A joins L2; when A fails to track,
the system is reinitialized. A, as the first submap, is added
to L1, and we start tracking the second map B. L2 is updated
to B; after B fails to track, B joins L1, and we start tracking
the third map C. L2 is updated to C; after C fails to track,
C joins L1, and we start tracking D. L2 is updated to D; when
tracking D, the system indicates that D is connected to C,
and then merges them into D-C. C is removed from L1, and
L2 is updated to D-C. After a while, it is found that D-C
is connected to B. These are then merged into D-C-B. B is
removed from L1, and L2 is updated to D-C-B, and so on.
The submaps are finally merged into I-H-G-F-E-D-C-B-A,
which is a complete map. The red letters in Table 1 indicate
that the two submaps currently have a connected relationship.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the method proposed in this paper, a UAV
dataset, a ground dataset, and two indoor datasets were used
in the experiments.

A. UAV DATASET EXPERIMENT
The first dataset is video shot by UAV, as shown in
Figure 11. The video resolution is 1920 × 1080, with a total
of 16,380 frames. The camera model is the onboard camera
of a DJI Phantom 4 drone, and the frame rate is 30 frames
per second. The camera orientation is relatively constant,
and the angle of view does not change dramatically, being
mainly vertically downward. The motion track of the camera
is S-shaped. The scenes shot by this group of data are mainly
residential areas and vegetation, with abundant feature points.

There were three interruptions during the flight. Figure 12a
is the flight trajectory of theUAV. Figure 12b is the processing
result of ORB-SLAM2. Figure 12c is the processing result
of the proposed system (with the letters representing the
submaps). Figure 12d is a schematic diagram of the undi-
rected connected graph. There are three interruptions in this
group of data, and the data are divided into four submaps—
A, B, C, and D—separated by the interruptions, according
to the collection order. When ORB-SLAM2 processed this
set of data, it was unable to solve the position of the current
frame in the world coordinate system, due to tracking failure
between submaps A and B, so submaps B and C were lost,
until submap D was successfully relocated and connected to
submap A. The final map only includes submaps A and D.
After the tracking failure between the A-B and B-C submaps
in the proposed system, the new world coordinate system was
reinitialized and tracking was continued. At the same time,
it was established whether there was a connected relation-
ship between the submaps. Finally, the paths between the
submaps A, B, C, and D were detected and restored, and
the four submaps were connected in series with the D-A-C-B
connected relationship.

B. OUTDOOR STREET DATASET EXPERIMENT
The second group of data is videos taken by handheld cam-
eras, as shown in Figure 13. The video resolution is 1920 ×
1080, with a total of 24690 frames. The camera model is a
GoPro Hero 6 motion camera, with a frame rate of 30 frames
per second. The camera orientation is complex and the angle
of view changes dramatically. The scenes captured by this
dataset aremainly residential streets. The scenes are complex,
including moving objects, and areas where it is difficult
to extract ORB features. In the process of data collection,
the tracking failure was caused by the rapid camera rotation
occurring at the street corner.

There are four interruptions at the corners of the street.
Figure 14a is the ground running trajectory. Figure 14b is
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FIGURE 14. Outdoor street dataset experimental results. (a) The ground running trajectory. (b) The processing result of
ORB-SLAM2. (c) The processing result of the proposed system (with the letters representing the submaps). (d) The
undirected connected graph.
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FIGURE 14. (Continued.) Outdoor street dataset experimental results. (a) The ground running trajectory. (b) The
processing result of ORB-SLAM2. (c) The processing result of the proposed system (with the letters representing the
submaps). (d) The undirected connected graph.

FIGURE 15. Indoor office dataset.

the processing result of ORB-SLAM2. The construction of
the map was stopped at the breaks, resulting in many miss-
ing maps. Figure 14c is the processing result of the pro-
posed system (with the letters representing the submaps).
Figure 14d is a schematic diagram of the undirected connec-
tion graph. This is divided into five submaps: A, B, C, D,
and E. Among them, A-B and C-D were interrupted due to
the tracking failure. C-A and E-C were connected through
relocation after the interruption. ORB-SLAM2 processed this
data, and the B and D submaps were lost after the tracking
failure. However, the proposed method detected the existing
connections between B-C and D-E, and restored B and D to
the world coordinate system of A-C-E, finally connecting the
five submaps.

C. INDOOR DATASET EXPERIMENT
1) INDOOR OFFICE DATASET
The third group of data is videos taken by handheld cameras,
as shown in Figure 15. The video resolution is 1920 ×
1080, with a total of 12,670 frames. The camera model is a
GoPro Hero 6 motion camera, with a frame rate of 30 frames
per second. The camera motion is more complex, some of the
perspective changes dramatically, and some of the perspective

TABLE 2. Comparison of the trajectory integrity.

is more simple. The scenes captured by this set of data are
mainly of an indoor office. The scenes are relatively complex,
with large white walls, which is not conducive to ORB feature
extraction, and the light changes are also quite drastic.

If the camera is shaken violently, the field of view will
change greatly, leading to failure of the tracking, so therewere
multiple interruptions in the trajectory. In order to improve the
readability, it is assumed that there are M submaps in total,
in which the blue polygon box contains multiple submaps
(this can be seen in Figure 16c). Figure 16a is the camera’s
running trajectory. Figure 16b is the processing result of
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FIGURE 16. Indoor office dataset experimental results. (a) The camera’s running trajectory.
(b) The processing result of ORB-SLAM2. (c) The processing result of the proposed system
(with the numbers representing the submaps). (d) The undirected connected graph.

ORB-SLAM2, which only reconstructs half of the room.
Figure 16c is the processing result of the proposed system
(with the numbers representing submaps), which reconstructs

the entire room. Figure 16d is a schematic diagram of the
undirected connection graph. Due to the tracking failure at
the beginning of the data, ORB-SLAM2 lost most of the
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FIGURE 17. Indoor corridor dataset.

TABLE 3. Comparison of the trajectory error.

subsequent submaps until submap M was successfully con-
nected to the first submap by relocation. It can be seen
that the ORB-SLAM2 relocation method can easily cause
a loss of map information when processing the tracking
failure situation. Only when the camera captures the scene
again where the previous tracking failed and maintains the
tracking success state is it possible to generate a map of
this part. This undoubtedly increases the workload of the
mapping. The proposedmethod retained the first submap, and
at the same time reinitialized the tracking to obtain the 2nd,
3 . . .Mth connected submaps, finally obtaining the complete
map.

2) INDOOR CORRIDOR DATASET
The fourth set of data has the same collection conditions as
the third set, as shown in Figure 17. The video resolution
is 1920 × 1080, with a total of 17,880 frames. The scenes
captured by this dataset are mainly of an indoor corridor.

There were two interruptions in the trajectory. Figure 18a is
the camera’s running trajectory. Figure 18b is the processing
result of ORB-SLAM2, which only reconstructs half of the
corridor. Figure 18c is the processing result of the proposed
system (with the letters representing the submaps), which
reconstructs the entire corridor. Figure 18d is a schematic
diagram of the undirected connection graph. When ORB-
SLAM2 processed this set of data, it was unable to solve
the position of the current frame in the world coordinate

system, due to the tracking failure between submaps A and B,
so submap B was lost. Submap C was successfully relocated
and connected to submap A, but the final map only includes
submaps A and C. After the tracking failure between the A-B
submaps occurred in the proposed system, the new world
coordinate system was reinitialized and the system contin-
ued tracking. At the same time, it was established whether
there was a connected relationship between the submaps.
Finally, the paths between submaps C and B were detected
and restored, and the three submaps were connected in series
with the A-C-B connected relationship.

D. ANALYSIS OF THE EXPERIMENTAL RESULTS
The speed of the motion, sharp perspective changes, or the
shooting area lacking in texture can lead to tracking failure,
at which point ORB-SLAM2 will usually stop tracking, and
will use the relocation method to try to restore the camera
pose. However, the system cannot resume tracking until the
camera returns to the location of the tracking failure. After
the tracking failure, the proposed system keeps the previous
submap in the stack, and reinitializes the tracking of the newly
added video frame to form a new submap. When the sys-
tem detects the connection between submaps, it transforms
them into a whole connected map in the same coordinate
system, so as to make the reconstructed map more complete.
As shown in Table 2, the trajectory integrity of the proposed
system is far more complete than that of ORB-SLAM2,
which verifies the effectiveness of the proposed system.
As shown in Table 3, from the trajectory error, the proposed
system can basically keep close to the original ORB-SLAM2
level.

To sum up, in this study, we conducted four groups of
experiments aimed at different scenarios, and the current
more mainstream monocular vision SLAM framework of
ORB-SLAM2 was used as an open-source comparison. The
experimental results show that, in the case of tracking failure,
the proposed system can rebuild a more complete scene map,
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FIGURE 18. Indoor corridor dataset experimental results. (a) The camera’s running
trajectory. (b) The processing result of ORB-SLAM2. (c) The processing result of the
proposed system (with the letters representing the submaps). (d) The undirected
connected graph.

confirming the effectiveness of the proposed SLAM map
restoration algorithm based on submaps and an undirected
connected graph.

V. CONCLUSION
In this paper, we have proposed amap information restoration
algorithm based on submaps and an undirected connected
graph for monocular vision SLAM. When the system fails to

track multiple times and generates multiple submaps, as long
as there is connectivity between the submaps, it is possible
to merge the maps into a coordinate system. The proposed
method is able to retain more complete map information than
that retained by the existing relocation methods.

However, our method also has some limitations. Firstly,
because ORB-SLAM2 needs to select a pair of video frames
with sufficient parallax in the initialization phase, it may
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need to go through more video frames before the system
can be initialized successfully. To some extent, this can
‘‘waste’’ some video frames. Secondly, in some extreme
cases, such as the trajectory of the robot has not overlapped,
when tracking failure occurs, some submaps cannot find
the connected frames, then these submaps will be isolated,
the final map will be incomplete. Therefore, in the future,
we will consider reusing the video frames during the ini-
tialization process to make the reconstructed map even more
complete.
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